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Drug resistance, undesirable toxicity and lack of selectivity are the major challenges of
conventional cancer therapies, which cause poor clinical outcomes and high mortality in
many cancer patients. Development of alternative cancer therapeutics are highly required
for the patients who are resistant to the conventional cancer therapies, including
radiotherapy and chemotherapy. The success of a new cancer therapy depends on its
high specificity to cancer cells and low toxicity to normal cells. Utilization of bacteria has
emerged as a promising strategy for cancer treatment. Attenuated or genetically modified
bacteria were used to inhibit tumor growth, modulate host immunity, or deliver anti-tumor
agents. The bacteria-derived immunotoxins were capable of destructing tumors with high
specificity. These bacteria-based strategies for cancer treatment have shown potent anti-
tumor effects both in vivo and in vitro, and some of them have proceeded to clinical trials.
Pseudomonas aeruginosa, a Gram-negative bacterial pathogen, is one of the common
bacteria used in development of bacteria-based cancer therapy, particularly known for the
Pseudomonas exotoxin A-based immunotoxins, which have shown remarkable anti-
tumor efficacy and specificity. This review concisely summarizes the current knowledge
regarding the utilization of P. aeruginosa in cancer treatment, and discusses the
challenges and future perspectives of the P. aeruginosa-based therapeutic strategies.
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INTRODUCTION

Cancer is one of the most dreaded diseases of human, and is the first or second leading cause of
death in most countries of the world (1). The hallmark of cancer includes uncontrolled proliferation,
resistance to cell death, insensitivity to growth suppressors, sustained angiogenesis, replicative
immortality, and abilities of invasion and metastasis (2). The conventional treatment of cancer
includes surgery, radiotherapy and chemotherapy, which are well-established and effective in
Abbreviations: ExoA, exotoxin A; CARD, caspase recruitment domain; PA-MSHA, Pseudomonas aeruginosa-mannose
sensitive hemagglutinin; MSHA, mannose-sensitive hemagglutination; TLR4, toll-like receptor 4; IRAEs, immune-related
adverse events; ER, endoplasmic reticulum; APC, antigen-presenting cell; T3SS, type III secretion system; ExoS, exoenzyme S;
ExoT, exoenzyme T; OVA, ovalbumin; 3O-C12-HSL, N-(3-oxododecanoyl)-L-homoserine lactone; KBMA, killed but
metabolically active; LRP1, low density lipoprotein receptor related protein; PE, Pseudomonas exotoxin A; Fv, variable
fragment; PBMC, peripheral blood mononuclear cell.
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eliminating fast-growing cancer cells (3). However, these
conventional cancer therapies have a lot of limitations,
including inefficacy in drug-resistant tumors, lack of tumor
specificity, undesirable cytotoxicity to normal cells and adverse
effects on cancer patients (4). In the past decade, alternative and
complementary cancer therapies including nanoparticles,
extracellular vesicles for delivering therapeutic agents, gene
therapy, targeted therapy, diet therapy, herbal medicine,
bacteriotherapy and magnetic hyperthermia have gained a high
degree of research attention, and exhibited excellent anti-tumor
effects in vitro and in animal models (5, 6). However, most of the
therapeutic approaches are currently under preclinical and
clinical investigation.

Bacteria-mediated cancer therapy has emerged as a promising
approach in cancer treatment, which is capable of overcoming
some of the limitations of conventional cancer therapies (7).
Many obligate or facultative anaerobic bacterial species including
Clostridium sp., Bifidobacterium sp., Salmonella sp., Bacillus sp.,
Escherichia coli, Listeria monocytogenes and Pseudomonas
aeruginosa have been reported to penetrate and replicate in the
hypoxic regions of tumors or accumulate in the tumor
microenvironment (8, 9). Furthermore, these therapeutic
bacteria are able to inhibit tumor growth and metastasis by
production of toxins and stimulation of host immune responses
(10). In addition, bacteria can be genetically engineered for their
accessible genes, and used as vectors to deliver anti-tumor agents
or immunomodulatory proteins to tumor sites (11, 12).
Importantly, the genetically modified, live attenuated bacteria
can be eliminated by antibiotics or triggering and strengthening
host immune responses by immunomodulators such as
cytokines and host defense peptides after the cancer treatment
to prevent unintended infections (13–15).

Pseudomonas aeruginosa is a Gram-negative, aerobic bacteria
that is harmless to healthy individuals but causes severe
infections in cystic fibrosis patients and immunocompromised
individuals (16). Although P. aeruginosa is categorized as an
aerobe, it acts as a facultative anaerobe capable of using
alternative electron acceptors such as nitrate (NO3−), nitrite
(NO2−) and nitrous oxide (N2O) to produce energy under
oxygen-limited conditions (17). Live attenuated, inactivated or
genetically modified P. aeruginosa have been reported to
effectively cause tumor regression in mouse models by
inducing cancer cells to undergo programmed cancer cell
death (18–21), dampening proliferative signaling (22–24), and
activating host anti-tumor responses (25, 26). Furthermore,
many P. aeruginosa virulence factors including exotoxin A
(ExoA), exoenzyme T (ExoT), azurin, cyclodipeptides, Pa-
caspase recruitment domain (Pa-CARD) and rhamnolipids
have been found to exert potent cytotoxicity against various
cancer cells (27–32). In particular, ExoA is the most toxic
virulence factor of P. aeruginosa, and widely applied in
construction of immunotoxins for targeted cancer therapy
(33). The present review aimed to concisely summarize and
discuss the current findings on P. aeruginosa-based cancer
therapeutic approaches, including live attenuated or inactivated
P. aeruginosa as anti-cancer agents, P. aeruginosa as vaccine
Frontiers in Oncology | www.frontiersin.org 2
vectors for tumor antigen delivery, and P. aeruginosa ExoA-
based immunotoxins (Figure 1).
LIVE ATTENUATED OR
INACTIVATED P. AERUGINOSA AS
ANTI-CANCER AGENTS

The role of bacteria as anti-cancer agents was first identified by
German physicians W. Busch and F. Fehleisen who observed
tumor regression in the cancer patients suffered from erysipelas
caused by Streptococcus pyogenes infection (34). In 1891, William
Coley, an American surgeon, inoculated cancer patients with S.
pyogenes, which was the first time that bacteria were used to treat
cancer (35). Hypoxia is a common feature of solid tumors, which
is characterized by insufficient oxygen supply caused by rapid
tumor growth. (36) . Moreover, the hypoxic tumor
microenvironment promotes tumor growth and angiogenesis
(37). A number of obligate anaerobes including Clostridium sp.
and Bifidobacterium sp. and facultative anaerobes including
Salmonella sp., Bacillus sp., E. coli, L. monocytogenes and P.
aeruginosa have been reported to colonize and replicate in the
hypoxic region of tumors (10). Of note, the bacteria used in
cancer treatment are required to be attenuated or genetically
modified to reduce their toxicity and the ability to replicate
before applying in treatment.

Pseudomonas aeruginosa-mannose sensitive hemagglutinin
(PA-MSHA) is a genetically engineered P. aeruginosa strain
characterized by high expression of mannose-sensitive
hemagglutination (MSHA) fimbriae on its surface, which
lowers toxicity by minimizing the exposure of other surface
virulence factors such as LPS and flagella (38). Moreover, the
MSHA fimbriae has been recognized as a novel ligand of Toll-
like receptor 4 (TLR4) (39). Previous studies have shown that
PA-MSHA suppressed tumor progression by induction of
apoptosis through activating caspase-3, -8 or -9 (18, 19, 40),
inhibition of cancer proliferative signaling such as EGFR, NRF2/
KEAP1 and hedgehog signaling (22–24), and modulation of host
immune responses through enhancing T cell responses, dendritic
cell (DC) maturation and M1 macrophage polarization (25, 26,
41). Generally, the live or inactivated PA-MSHA was
administered by subcutaneous injection in clinical trials or
mouse models, which enhanced host anti-tumor immune
responses systemically (19, 26, 42, 43). Moreover, the live PA-
MSHA may enter the tumor tissues from blood circulation via
passive entrapment in the leaky tumor vasculature or chemotaxis
toward the chemicals released by the dying tumor tissue (44, 45).
The heat-inactivated PA-MSHA combined with chemotherapy
has been applied in clinical trials for treatment of breast cancer,
lung cancer and lymphoma in China (42, 43, 46, 47). Most of the
clinical studies suggested that the combination of inactivated PA-
MSHA and chemotherapy drugs could improve the clinical
efficacy of chemotherapy without increasing toxicity to cancer
patients. Furthermore, the patients who were more responsive to
PA-MSHA stimulation may receive better treatment outcomes.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Pang et al. Pseudomonas aeruginosa in Cancer Therapy
Lv et al. carried out a phase II clinical trial of inactivated PA-
MSHA combined with capecitabine for treatment of HER2-
negative metastatic breast cancer, and found that the patients
with moderate immune-related adverse events (IRAEs) such as
fever or skin induration caused by PA-MSHA injection
manifested higher survival (25.4 months vs. 16.4 months) and
longer progression-free survival (8.2 months vs. 3.1 months)
compared to the patients who had no or mild IRAEs (43). One of
the challenges for P. aeruginosa-based cancer treatment is that P.
aeruginosa is able to induce a self-degradative and recycling
process termed autophagy (48–50), which increases the
resistance of cancer cells to chemotherapy and radiotherapy
(51, 52). Xu et al. identified that PA-MSHA induced autophagy
in human breast cancer cells through upregulation the
endoplasmic reticulum (ER) stress-activated IRE1 signaling,
and treatment of an autophagy inhibitor 3-methyladenosine
(3-MA) enhanced the PA-MSHA-induced apoptosis of breast
cancer cells in vitro and tumor regression in vivo (53). This study
suggests that inhibition of autophagy can increase the
effectiveness of P. aeruginosa-induced tumor regression.

In addition to PA-MSHA, the anti-tumor effects of a clinical
isolate of P. aeruginosa strain 1409 were examined in vitro and
in vivo by Qi et al. (20). The authors demonstrated that P.
aeruginosa 1409 induced a programmed necrosis (necroptosis)
of TC-1 tumor cells through activation of TLR4-RIP3-MLKL,
and the HMGB1 released by the dying tumor cells further
induced DC maturation and migration to tumor sites.
Frontiers in Oncology | www.frontiersin.org 3
Subsequently, the mature DC promoted T-cell responses by
presenting tumor-associated antigens, thus resulting in
remarkable tumor suppression in a TC-1 grafted tumor
mouse model (20). This study indicates that the pathogenic
clinical strains of P. aeruginosa could induce a potent anti-
tumor response by reshaping tumor microenvironment.
However, the live pathogenic P. aeruginosa strains must be
attenuated or modified to reduce toxicity prior to clinical use
due to the weakened immune system of cancer patients, which
increases the prevalence of P. aeruginosa infections (54).
Furthermore, this bacterial pathogen is resistant to many of
the currently available antibiotics such as aminoglycosides,
quinolones and b-lactams (55). Thus, clearance of the
pathogenic P. aeruginosa strains after treatment is more
difficult compared to other therapeutic bacteria.
PSEUDOMONAS AERUGINOSA AS
VACCINE VECTORS FOR TUMOR
ANTIGEN DELIVERY

Many anaerobic bacteria are recognized as the attractive vectors
for the delivery of therapeutic genes to tumors for their ability to
internalize and replicate inside tumor cells or grow in the
hypoxic tumor microenvironment (56). The therapeutic genes
encode anti-tumor agents, cytotoxic peptides, therapeutic
FIGURE 1 | Schematic illustration of P. aeruginosa-based cancer therapies. The P. aeruginosa-based therapeutic strategies for cancer treatment include live
attenuated or inactivated P. aeruginosa as anti-cancer agents (1), P. aeruginosa as vaccine vectors for tumor antigen delivery (2), and P. aeruginosa ExoA-based
immunotoxins (3).
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molecules or prodrug-converting enzymes (57). The ideal
bacterial vectors would be administered systemically, and
selectively deliver the therapeutic genes to tumor cells with less
toxicity and immunogenicity. Once invading into tumors, the
bacteria spread throughout the whole tumor tissues and produce
therapeutic agents to inhibit tumor cells (12). Additionally, other
than the therapeutic agents, some bacteria capable of surviving in
antigen-presenting cells (APCs) or utilizing type III secretion
system (T3SS) can be engineered as vaccine vectors that deliver
tumor antigens to APCs and induce durable tumor-specific CD8
+ T cell responses (58, 59). To date, many bacterial species
including Clostridium sporogenes, Salmonella typhimurium,
Bifidobacterium longum, E. coli, L. monocytogenes and P.
aeruginosa have been genetically modified as vectors for
delivery of tumoricidal agents, immunomodulatory proteins or
tumor antigens, which showed success in a variety of animal
tumor models (60–65).

Gram-negative bacteria utilize T3SS to inject bacterial
effectors into host cell cytoplasm (66). In the past decade, the
delivery tools based on bacterial T3SS have attracted a lot of
research attentions for development of therapeutic cancer
vaccines (67). A French research group genetically modified
the live attenuated P. aeruginosa strains as vaccine vectors that
directly deliver tumor antigens to APCs via T3SS injection and
trigger antigen-specific CD8+ T cell responses systemically,
leading to long-lasting anti-tumor immune responses (59, 60,
68, 69). For instance, Epaulard et al. generated an attenuated P.
aeruginosa strain CHA-OST S54-Ova with deletion of two T3SS
toxins, exoenzyme S (ExoS) and ExoT, which were able to induce
apoptosis, block production of reactive oxygen species and
inhibit the phagocytic activity of host cells (70–73), and this P.
aeruginosa strain was genetically modified to express a fusion
gene encoding the N-terminal 54 amino acids of ExoS for T3SS-
mediated translocation and the C-terminus of ovalbumin (OVA)
for immunogenicity (60). Furthermore, the strain CHA-OST
S54-Ova was able to elevate the number of OVA-specific CD8+ T
cells in vivo, and the mice inoculated with CHA-OST S54-Ova
were resistant to the challenge of OVA-expressing mouse
melanoma cell line B16 (60). In a separated study, the authors
developed another P. aeruginosa strain CHA-OAL by deleting
four virulence genes, including exoS, exoT, aroA and lasI, which
displayed reduced toxicity and enhanced efficiency for delivering
tumor antigens (74). The P. aeruginosa aroA gene encodes an
enzyme called 5-enolpyruvylshikimate 3-phosphate synthase,
which is essential for synthesis of aromatic amino acids, and
deletion of this gene was found to promote the intracellular
growth of P. aeruginosa and elicit an increased level of opsonic
antibodies in host against P. aeruginosa (75, 76). LasI is an acyl-
homoserine lactone synthase that catalyzes the synthesis of N-(3-
oxododecanoyl)-L-homoserine lactone (3O-C12-HSL), a
quorum sensing signal molecule critical for regulating
expression of many P. aeruginosa virulence factors, including
ExoA, LasA protease, LasB elastase and alkaline protease (77, 78).
Derouazi et al. engineered the P. aeruginosa CHA-OST to
express a fusion protein comprising of the N-terminal 54
amino acids of ExoS and a tumor antigen TRP2 epitope, and
Frontiers in Oncology | www.frontiersin.org 4
identified that the TRP2 epitope (125-376) could activate the
TRP2-specific CD8+ T cell response, leading to a significant
protection of mice against glioma (69). In addition, a killed but
metabolically active (KBMA) P. aeruginosa strain OSTAB was
created by deletion of ExoS, ExoT and the two subunits of the
exonuclease UvrABC, UvrA and UvrB, important for bacterial
nucleotide excision repair, and it was subsequently photo-
inactivated (79). This KBMA P. aeruginosa strain was
incapable of replicating in host but still immunologically active
with functional T3SS, which has been suggested to be a
promising and safe antigen delivery vector for anti-tumor
immunotherapy (68).
P. AERUGINOSA EXOA-BASED
IMMUNOTOXINS FOR
CANCER TREATMENT

Bacterial toxins in cancer therapy have been extensively studied
in the past decade, which effectively change the cellular functions
and processes by influencing cell proliferation, differentiation
and apoptosis, and eventually kill the tumor cells (57). The
theory behinds the bacterial toxin-mediated cancer therapy is
creation of chimeric proteins consisting of the catalytic part of a
toxin responsible for killing tumor cells and a receptor-binding
part such as an antibody or a receptor ligand for specific tumor
targeting, and these chimeric proteins are termed as
immunotoxins (80). Monoclonal antibodies are commonly
used in generation of the tumor cell binding parts in
immunotoxin, which bind to the specific molecules that are
highly expressed on tumor cell membrane. Upon binding to the
target molecules, the immunotoxins are endocytosed and
released to host cytosol, ultimately inducing toxin-mediated
cell death (81). Moreover, the antigen-binding domain of the
antibody part in immunotoxins is usually shortened or modified
to reduce immunogenicity (80). The most commonly used
bacterial toxins for generation of immunotoxins include
Diphtheria toxin and Pseudomonas exotoxin A (PE), which
have showed great anti-tumor efficiency both in vivo and in
vitro, and some of them are currently under clinical investigation
(82, 83).

PE is the most toxic virulence factor in P. aeruginosa which
inhibits protein synthesis through ADP-ribosylation of
eukaryotic elongation factor 2 (84). It is a single polypeptide
chain that can be divided into three functional domains,
including receptor binding domain (I), translocation domain
(II) and catalytic domain (III) (85). Moreover, the binding of PE
receptor binding domain to the low density lipoprotein receptor
related protein (LRP1), also known as CD91, on host cell surface
mediates uptake of PE via receptor-mediated endocytosis (84).
The PE-based immunotoxins were generated by replacing the PE
receptor binding domain with the variable fragment (Fv) of a
monoclonal antibody or a receptor ligand such as a growth factor
or a cytokine, which targets a tumor-specific antigen or a
receptor molecule overexpressed on tumor cell surface (86).
April 2022 | Volume 12 | Article 891187
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TABLE 1 | A summary of PE-based immunotoxins discovered and evaluated in the past decade for cancer treatment.

Target Research type Reference

ellular carcinoma cells In vitro and in vivo (87)
cancer cells In vitro and in vivo (88)

nt brain tumor cells In vitro and in vivo (89)
ute lymphoblastic leukemia In vitro and in vivo (90)
ory T cells In vivo (91)
a cells In vitro and in vivo (92)

cancer cells In vitro (93)
cancer cells In vitro (94)

toma Phase I/II clinical trial (95)
cancer cells In vitro and in vivo (96)

cancer cells In vitro (97)
cancer cells In vitro and in vivo (98)

leukemia cells In vitro (99)
xpressing breast cancer cells In vitro (100)
xpressing cancer cells In vitro and in vivo (101)
xpressing breast cancer cells In vitro (102)
cancer cells In vitro and in vivo (103)
a cells In vitro and in vivo (104)

lioma Phase I clinical trial (105)
cancer cells In vitro and in vivo (106)
cancer cells In vitro (107)
ositive B-cell lymphoma cells In vitro (108)

-expressing cancer cells In vitro (109)

ll lung cancer cells In vitro (110)
al surface malignancies In vitro and in vivo (111)
gative breast cancer cells In vitro and in vivo (112)
-positive human
ellular carcinoma cells

In vitro (113)

ellular carcinoma cells In vitro and in vivo (114)
tal cancer cells In vitro and in vivo (115)

-expressing colorectal cancer In vitro and in vivo (116)

cancer cells In vitro and in vivo (117)
positive diffuse large B-cell
a cells

In vitro and in vivo (118)
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Immunotoxin names Toxin part Receptor-binding part

HN3-ABD-T20 Truncated PE lacking domain II attached to ABD Anti-GPC3 (HN3 nanobody) Hepatoc
D7(VL-VH)-PE40 PE40 Anti-PSMA scFV Prostate
NZ-1-(scdsFv)-PE38KDEL PE38KDEL Anti-podoplanin (NZ-1) scdsFv Maligna
dhuVHH6-PE38 PE38 CD7 nanobody T-cell ac
2E4-PE38 PE38 Anti-CD25 scFv Regulat
HM1.24-ETA′ ETA′

(Truncated PE lacking domain I)
Anti-CD317 scFv Myelom

scFv13-ETA′ ETA′ Anti-CD13 scFv Various
CPE−ETA’ ETA′ Claudin−4−binding domain of Clostridium perfringens

enterotoxin
Various

D2C7-(scdsFv)-PE38KDEL PE38KDEL Anti-EGFR scdsFv Glioblas
DARPin-LoPE LoPE (Truncated PE lacking domain I, II and B

cell epitopes)
HER2-specific DARPin Ovarian

EGF-PE40 PE40 EGF Bladder
EGF-PE40, EGF-PE24mut PE40

mPE24
EGF Prostate

CD89(scFv)-ETA′ ETA′ Anti-CD89 scFv Myeloid
HER2(scFv)-PE24 PE24 Anti-HER2 scFv HER2-e
HER2-PE25-X7 PE25 with 7 point mutations in domain III HER2-specific affibody molecule (ZHER2:2891) HER2-e
ADAPT6-ABD-PE25 PE25 ADAPT6 HER2-e
IL-4-PE PE38KDEL IL-4 Ovarian
MSH-PE38KDEL PE38KDEL Melanophore-stimulating

hormone
Melanom

SS1(dsFv)PE38 (SS1P) PE38 Anti-mesothelin scFv Mesothe
J591scFvPE38QQR PE38QQR Anti-PSMA (J591) scFv Prostate
D7(VL-VH)-PE40 PE40 Anti-PSMA (D7) scFv Prostate
BPC-Neu5Ac-Dimer-LL-
ETA-RDEL

ETA′ Synthetic sialosides (BPC-Neu5Ac-dimers) CD22-p

VGRNb-PE PE38 VEGFR2-specific Nanobody
(3VGR19)

VEGFR2

hGC33−PE38 PE38 Anti-GPC3 (hGC33) scFv Small ce
MOC31PE PE Anti- EpCAM (MOC31) scFv Peritone
806-PE38 PE38 Anti-EGFR (m806) antibody scFv Triple-ne
scFv2A9-PE PE38KDEL Anti-EpCAM scFV EpCAM

hepatoc
HN3-PE38 PE38 Anti-GPC3 (HN3) scFv Hepatoc
LMB-12
LMB-100
LMB-164

PE domain III
PE24
PE domain III attached to ABD

Anti-mesothelin scFv
Anti-mesothelin Fab
Anti-mesothelin scFv

Colorec

GD9P PE38 GD9 CCK2R
cells

TGFa-PE38 PE38 TGFa Various
T22-PE24-H6 PE24 T22 (CXCR4 ligand) CXCR4-

lymphom
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The representative PE-based immunotoxins discovered and
evaluated in the past decade for cancer treatment were
summarized in Table 1.

The naming of the truncated PE used in construction of the
recombinant immunotoxins is usually based on their molecular
weight. PE38 and PE40, two truncated forms of PE (38 kDa and
40 kDa, respectively), are most commonly used for immunotoxin
construction, and both of them lack the receptor-binding
domain (I) (119). Furthermore, as a foreign protein, the
immunogenicity of immunotoxins is able to induce production
of anti-drug antibodies in host, which neutralize and decrease the
efficiency of the immunotoxins (82). Alteration of immunotoxin
structure is a feasible strategy to reduce immunogenicity (120).
Previous studies have reported that removal of the B cell or T cell
epitopes from the PE-based immunotoxins could significantly
reduce the immunogenicity and enhanced the anti-tumor
efficiency both in vitro and in vivo (121–124). The B cell
epitopes in PE38 were mapped by measuring the reactivity of
PE38 to the monoclonal antibodies isolated from the mice or
patients treated with the PE38-based immunotoxins (125), and
they were removed by point mutations of the large hydrophilic
amino acids such as arginine, glutamine, glutamic acid and lysine
to alanine, serine or glycine, which prevents PE38 from binding
to the B cell antigen receptors (124). The T cell epitopes were
identified by incubating human peripheral blood mononuclear
cells (PBMCs) or mouse splenocytes with whole PE38, and the
reacting T-cells were subsequently stimulated with various PE38
peptides (122). Furthermore, the peptides capable of triggering T
cell response were determined to contain the T cell epitopes, and
the removal of T cell epitopes in PE38 could be achieved by
deletion or point mutations (120). To date, many PE-based
immunotoxins have been applied in clinical treatment of B-cell
lymphoma (126), ovarian cancer (127), mesothelioma (105),
breast cancer (128), esophageal cancer (128), brain cancer (95,
129, 130), and pancreatic adenocarcinoma (131). However, most
of them are still in the early stage (phase I or II) of clinical trials,
and the preliminary data indicated that toxicity and limited
efficacy were the major challenges. In addition, the synergistic
antitumor activity of PE-based immunotoxins combined with
chemotherapeutic agents has been observed in vitro and in
mouse tumor models (132–134). However, the combination of
PE-based immunotoxins and chemotherapy lacks the clinical
evidence for safe use in cancer patients. Alewine et al.
demonstrated that the combination of immunotoxin LMB-100
and nab-paclitaxel could amplify the toxic side effects of LMB-
100 (131).
CONCLUSION AND
FUTURE PERSPECTIVES

Tumor resistance to the conventional cancer therapies such as
radiotherapy and chemotherapy is major cause of cancer relapse,
and has led to a significant barrier in cancer treatment. The
bacteria-based cancer therapy has emerged as a promising
alternative or complementary strategy for cancer treatment,
Frontiers in Oncology | www.frontiersin.org 6
which exhibited great anti-tumor effects both in vitro and in
animal tumor models. Among the therapeutic bacteria, P.
aeruginosa takes advantages of large accessible genome,
production of virulence factors with potent anti-tumor
activities, and expression of various immunogenic molecules
on membrane. The peritrichous P. aeruginosa strain PA-
MSHA with MSHA fimbriae and low toxicity has been directly
used as a therapeutic agent to destroy tumors by inducing tumor
cell apoptosis, inhibiting tumor growth, and activating host
immune responses. Moreover, the inactivated PA-MSHA
combined with chemotherapy has proceeded to clinical trials.
However, the PA-MSAH treatment seems to be ineffective to the
patients who were tolerant to PA-MSHA stimulation. Therefore,
a pre-test of the tolerance to PA-MSHA on cancer patients is
recommended, and the patients with moderate adverse reactions
will be proceeded for further treatment. The genetically
engineered P. aeruginosa strain is able to activate tumor-
specific CD8+ T cells by delivering tumor antigens to DCs,
inducing long-lasting anti-tumor immunity. Moreover, for safety
concern, the live attenuated P. aeruginosa strains should be
unable to replicate, and are easily eliminated after treatment.
PE is the most widely used P. aeruginosa toxin for construction
of recombinant immunotoxins. Although the PE-based
immunotoxins have shown significant in vitro and in vivo anti-
tumor effects on nearly all types of tumors. However, only a few
of them has proceeded to clinical practice, and the low efficiency
and unanticipated toxicity to patients remain a big challenge that
must be overcome in clinical applications. In future,
development of new PE-based immunotoxins with high
specificity and less immunogenicity should be one of the major
tasks in bacteria-based cancer therapy, which is challenging but
rewarding. Overall, the P. aeruginosa-based cancer therapies are
promising strategies for cancer treatment, and they are
particularly more effective in combination with conventional
cancer therapies.
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