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Abstract: Recent advances in our understanding of the mechanisms in the cascade of events resulting in retinal cell death 

in ocular pathologies like glaucoma, diabetic retinopathy and age-related macular degeneration led to the common de-

scriptive term of neurodegenerative diseases of the retina. The final common pathophysiologic pathway of these diseases 

includes a particular form of metabolic stress, resulting in an insufficient supply of nutrients to the respective target struc-

tures (optic nerve head, retina). During metabolic stress, glutamate is released initiating the death of neurones containing 

ionotropic glutamate (N-methyl-D-aspartat, NMDA) receptors present on ganglion cells and a specific type of amacrine 

cells. Experimental studies demonstrate that several drugs reduce or prevent the death of retinal neurones deficient of nu-

trients. These agents generally block NMDA receptors to prevent the action of glutamate or halt the subsequent patho-

physiologic cycle resulting in cell death. The major causes for cell death following activation of NMDA receptors are the 

influx of calcium and sodium into cells, the generation of free radicals linked to the formation of advanced glycation end-

products (AGEs) and/or advanced lipoxidation endproducts (ALEs) as well as defects in the mitochondrial respiratory 

chain. Substances preventing these cytotoxic events are considered to be potentially neuroprotective.  
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INTRODUCTION 

 Neuroprotection is a topic of a growing number of stud-
ies [8, 20, 23, 36, 44, 69, 96, 102, 113, 125 - 128, 130 - 132, 
152, 158, 181] as several ocular pathologies (e.g. special 
forms of glaucoma [126-128], diabetic retinopathy [75, 120] 
and age-related macular degeneration (AMD) [107, 127] 
result in neurodegeneration especially of the retinal ganglion 
cells (RGCs). Consequently, it seems a promising goal to 
rescue e.g. RGCs or the retinal pigment epithelium (RPE). 
Indeed, a functional injury of the RGCs (which, in this re-
spect a very vulnerable cell population) preceeds the onset of 
a structural damage [39, 126, 127, 130]. Therefore, a recov-
ery would possibly restore their function. However, till now 
only few substances have been demonstrated to have a neu-
roprotective capacity and which can be pinpointed to a de-
fined causal mechanism. In addition, such substances should 
be safe and easily applicable to the eye. 

 In this review we will concentrate on critical sites of reti-
nal neurodegenerative diseases and possible ways of protec-
tion and ways leading to recovery. Critical sites are the 
RGCs (involved in the progress of glaucoma) the retinal mi-
crovessels (additionally damaged in diabetic retinopathy) 
and the RPE (together with vascular and RGC damages in 
AMD). 

RGCs have a very high metabolic rate - this becomes 
obvious when considering that the length of an RGC axon 
would measure about half a mile if the cell body would have  
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the size of an apple. These long axons increase RGC vulner-
ability to various disorders: during the course of their axons 
they are likely to encounter metabolic stress like hypoxia, 
exposure to increased free radicals, mechanical compression 
(e.g. in the lamina cribrosa - LC) and specifically photooxi-
dative damage by (mainly blue) light passing through the 
retina and thus potentially damaging the retina and the retinal 
pigmented epithelium [171].  

 RGCs need to compensate for another unique functional 
situation when compared to other neurons: their axons are 
non-myelinated from the retina to the LC and are myelinated 
after passing this structure (Fig. 1). Normally, large myeli-
nated neurons are in the opposite situation: they lose their 
myelin sheets only at their very peripheral end. This special 
RGC feature leads to an “impedance mismatch” [192] which 
requires a lot of energy. Therefore, RGCs have plenty of 
protrusions in their axons which are filled with numerous 
mitochondria [192]. Furthermore, the distribution of the mi-
tochondria (high numbers in retina, in the peripapillar and 
papillar zone down to the LC and much reduced in the mye-
linated nerve) reflects the functional requirements of differ-
ent RGC axon regions [13]. 

 Although RGCs have a high energy demand, the retinal 
microvasculature cannot be formed as dense as in the brain 
because the inner retinal layer is required to remain transpar-
ent to enable its biological function and let photons pass to 
the photoreceptors in the outer retinal layer. Thus, nature 
made a compromise between the metabolic demand of the 
neurons and a sufficient vascular supply [41]. Indeed, com-
pared to capillaries in other organs, the retinal capillaries are 
very thin, have a high blood flow velocity, and a relative 
sparse network [41]. A detailed analysis of the vessel archi-
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tecture reveals that on the arteriolar side of capillary network 
(where more oxygen is available) the mesh is wider than on 
the venular side (Figs. 2a, b). Thus, the minimum of oxygen 
supply for neurons and glial cells appears to determine the 
vessel density in the retina. 

 As other big ganglion cells like the cells in the substantia 
nigra (which die during the development of M. Parkinson) 
the RGCs are relatively more prone to accumulation of 
metabolic end (“waste”) products which cannot be removed 
from the cell. In phases of increased IOP as in phases of oli-
gemia and hypoxia followed by reperfusion, the production 
of free radicals and reactive oxygen species (ROS) dramati-
cally increases [113].  

 As effective antioxidant capacities are generally low in 
most neurons and nucleic acid repair mechanisms are insuf-
ficient (especially in mitochondria) these stressors would 
induce RGC death. To compensate for these stressors RGCs 
have a high antioxidant capacity (due to endogenous peroxi-
dases) when compared to other neurons – [85], but RGCs are 
still more vulnerable than e.g. Müller or vascular cells. 

 The same is true for the RPE which has the burden of 
steadily ingesting the damaged (e.g. via radicals by high en-

ergetic-, short wavelength light- and chemical – metabolic- 
“attack”) membrane disks of the photoreceptors (see below).  

Fig. (2b). Differential interference contrast microscopy (DIC) of an 

unstained retina whole mount of a freshly enucleated rat eye. RGCs 

(thin arrows), even mitochondria are visible: (arrowhead) and capil-

laries (thick arrows) can be kept well alive up to 9 hours (see 143, 

145 and 164).

FACTORS COMPROMISING RETINAL CELL 

FUNCTION 

Advanced Glycation Endproducts (AGEs) 

 Another chemical “attack” -linked with the production of 
radicals- is the formation of advanced glycation endproducts 
(AGEs) and/or advanced lipoxidation endproducts (ALEs). 
The accumulation of AGEs during the Maillard reaction is 
associated with the risk of diabetic neuropathy, diabetic reti-
nopathy (the RGCs being the most vulnerable cell popula-
tion, 44], AMD [77, 172 - 175] and M. Alzheimer [1]. Ex-
tracellular effects of the AGEs, like crosslinking of proteins, 
are known since the 80ties, whereas the effects of AGEs on 
the cellular function are still under investigation. 

 AGEs/ALEs can form on the amino groups of proteins, 
lipids and DNA through a number of complex pathways in-
cluding non-enzymatic glycation by glucose and reaction 
with metabolic intermediates and reactive dicarbonyl inter-
mediates (Fig. 3). These reactions not only modify the struc-
ture and function of proteins, but also cause intra-molecular 
and intermolecular cross-link formation. AGEs/ALEs are 
known to accumulate in the diabetic retina where they may 
have important effects on retinal vascular cell function, as 
determined by a growing number of in vitro and in vivo stud-
ies.  

 Since AGEs are constantly forming under physiological 
conditions, complex receptor systems have evolved to re-
move senescent, glycation modified molecules and/or de-
grade existing AGE crosslinks from tissues thereby limiting 
their deleterious effects. Such receptors play a critical part in 
AGE related biology and the pathology associated with dia-
betes and ageing. Several AGE binding molecules have been 

Fig. (1). Schematic drawing of a retinal ganglion cell (RGC) axon 

being non-myelinated from the retina to the lamina cribrosa (LC) 

and being myelinated after passing this structure (Fig. 1).

Fig. (2a). Retinal microvessels (scanning electron micrograph of a 

vascular resin cast) showing the capillary meshwork between arte-

riole (arrow) and venule (arrowhead), being tighter on the venular 

side and wider on the arteriolar side reflecting different oxygen 

tension in these vessels and thus altered supply. 
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described and it has been established that many of the ad-
verse effects caused by advanced glycation are mediated via
AGE receptors such as RAGE [151] the AGE receptor com-
plex (AGE-RC) [101, 175] and the type I and II scavenger 
receptor [63, 174]. Some or all AGE receptors serve to pro-
mote or limit AGE mediated cell and tissue dysfunction. 
AGE receptor binding can initiate important signalling path-
ways involving activation of protein kinase C [108, 165], 
tyrosine phosphorylation of Janus kinase (JAK)/signal trans-
ducers and activators of transcription (STAT) [66], recruit-
ment of phosphotidylinositol 3' kinase to Ras, [30] and in-
duction of oxidative stress cascades which lead to NF B and 
AP-1 transcription [112, 167].  

 The chronic cellular activation is induced by the AGE 
receptor (RAGE) [9]. Sustained RAGE-mediated cellular 
activation has been shown to contribute to disease progres-
sion in diabetes, Alzheimer’s disease, rheumatoid arthritis, 
elastosis, pulmonary fibrosis, and various cancers [18, 82, 
135, 180, 188] AGE and other RAGE ligands activate 
p21ras, MAP ERK1/2 kinases, and NFB nuclear transloca-
tion, altering expression of genes involved with cellular 
stress [172, 188]. 

AGEs in Retinal Neurodegeneration 

 Like in other vascular beds AGEs and/or late Amadori 
products have been localised to retinal vessels and neuroglia 
of diabetics [15, 54, 117, 150, 175]. In diabetic rats, AGEs 
are not only localised to vascular basement membranes 
(BMs), but also appear to accumulate in the retinal pericytes 
after 8 months of diabetes [174]. Moreover, when non-
diabetic animals are infused with preformed AGE albumin, 
these adducts accumulate around and within the pericytes, 
co-localise with AGE receptors, induce BM thickening, and 
cause breakdown of the inner blood-retinal barrier [25, 173, 
174]. In clinical studies it has been reported that the levels of 

serum AGEs, and also the glycoxidation product CML, cor-
relate with the degree of diabetic retinopathy [22, 123]. In 
hyperglycemic mice, AGEs lead to early inner retinal neu-
ronal dysfunction. Here, AGEs were also localized to the 
vitreous cavity and internal limiting membrane (ILM) of the 
retina, where they were intimately associated with the foot-
plates of RAGE-expressing Muller cells. Furthermore, AGE 
accumulation was increased within the retinal extracellular 
matrix and attenuation of the RAGE axis with soluble RAGE 
ameliorated neuronal dysfunction and reduced the develop-
ment of capillary lesions in these mice [7]. 

 AGE deposits were found in AMD retinas. Furthermore, 
AGE stimulated RAGE-mediated activation of cultured RPE 
cells in a dose-dependent manner. Thus, AGE accumulation 
may induce receptor-mediated activation of RPE/photore-
ceptor cells, contributing to disease progression in the aging 
human retinas.  

 AGEs have been reported to accumulate in aging eyes in 
Bruch’s membrane, drusen, subfoveal neovascular mem-
branes, and RPE cells [65]. 

RPE cells are radically influenced by exposure to AGEs 
in vitro where they express abnormal levels of vascular en-
dothelial growth factor (VEGF) and platelet derived growth 
factor B (PDGF-B) [56, 98]. This may have a bearing on 
RPE cell function, maintenance of the choriocapillaris, and 
integrity of the RPE/photoreceptor complex. The accumula-
tion of lipofuscin and reduction of lysosomal degradative
capacity in RPE cells may reflect AGE formation and recep-
tor mediated transport of these adducts to the lysosomal 
compartment. Significantly, intracellular sequestration of 
these highly reactive adducts can markedly reduce lysosomal 
enzymatic activity in other epithelial cell types and lead to 
lipofuscin in RPE cells [11, 175].

 Also a significant reduction of the velocity of intracellu-
lar microvesicles was induced by AGEs, the reason for this is 
unclear [146]. It could be due to disturbed calcium metabo-
lism or caused by microtubuli-changes. The aggregation of 
intracellular microvesicles could be the result of an altered 
binding-behaviour of the vesicles or the destruction of the 
transport apparatus. The proteins dynamin 2 and clathrin, 
which are involved in transport apparatus, show changes in 
intracellular distribution indicating a breakdown of the nor-
mal cellular distribution system [146]. 

 In AGE-loaded RGCs, “breaks” in the tracks of axonal 
vesicle transport occur which subsequently lead to protru-
sions of the axons and to accumulation of the transported 
material. Possibly, AGEs may affect the axonal transport 
either directly by cross-linking the proteins or by enhanced 
production of ROS (Fig. 4).  

 On the other hand all other systemic metabolic problems 
of the organism like diabetes mellitus, hyperlipidemia, hy-
percholesterolemia, hyperuricemia, high systemic blood 
pressure and periods of very low perfusion pressure due to 
vasospasm also affect the microenvironment of the RGCs 
and RPE – from the capillaries via the extracellular space via
the glial cells down to the intracellular “milieu” of these neu-
rons. Furthermore, the above mentioned metabolic stressors 
often combine (“metabolic syndrome”) and can damage the 

Fig. (3). Schematic drawing indicating the reactions leading to ad-

vanced glycation endproducts (AGEs), cross-linking of protein- 

(lysil-residue) and reducing sugar groups (Maillard reaction). AGEs 

impair intracellular functional proteins and crosslink extracellular 

material. The time frame of the reversibility of these reactions de-

pends on the toxicity of respective intermediary metabolic products 

(e.g. glyoxal). 
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RGC microenvironment via thickening of the basement 
membranes, e.g. due to AGEs/ALEs. In this respect it is of 
considerable interest that some types of M. Alzheimer’s dis-
ease (AD) are very similar to dementia caused by arterioscle-
rosis [86]. Here, it is also unclear why many diabetic dam-
ages leave the glia cells of the brain unaffected (despite AGE 
and lipid peroxide formation) for a long time whereas in cer-
tain forms of arteriosclerosis the glial cells become “aggres-
sive” and attack the nerve cells and axons with ROS (e.g. as 
in “white matter lesions” of the brain). 

 A study in a mouse model showed that the combination 
of deleterious factors such as apolipoprotein (APOE) allelic 
expression, advanced age and diet contribute to atrophic de-
generative changes in RGCs and the optic nerve [191]. An-
other study, also in an animal model demonstrated that the 
cleavage product of the amyloid precursor protein (APP) 
(major indicator of AD) is enhanced in ocular hypertension 
[47] and axonal damage. High IOP, induced hypoxia, lipid 
peroxides and AGEs per se lead to increased production of 
free radical species which again initiate periods of cell dam-
age and attempts to regenerate parts of the cell, especially the 
RGC - axon. Here, the pathogenetic processes in the RGCs 

are analogue to those in brain neurons during AD: 

 The repeated stimuli for regeneration of RGCs and neu-
rons in general are characterized by the production of an 
enormous amount of newly synthesized proteins (like APP) 
needed for the realignment and restoration of the axon. 
Therefore, the cell tries to transport all proteins needed to the 
(peripheral) damaged area (e.g. sAPP which is required dur-
ing migration and proliferation – 138; and APP as membrane 
protein which binds kinesin to vesicles which are transported 
with the fast axonal transport, 74, 166). 

 On the other hand, APP plays an important physiological 
role in protecting neurons from the consequences of pro-
longed endoplasmic reticulum stress which is found particu-
larly in AD [83]. Furthermore, the microtubule associated 
protein tau inhibits kinesin-dependent transport of perox-
isomes, neurofilaments, and Golgi-derived vesicles into neu-
rites (axons). Loss of peroxisomes on the other hand, makes 
cells vulnerable to oxidative stress and this leads to degen-
eration. Again, tau inhibits the transport of APP into axons 
and dendrites, causing its accumulation in the cell and thus 
initiates apoptosis - also mediated by caspases 8 and 3 [106, 
187]. These factors facilitate degenerative processes as men-
tioned above. 

RADICALS IN OXIDATIVE STRESS AND RPE DYS-

FUNCTION 

 Although oxidative stress and RPE dysfunction are gen-
erally believed to promote disease progression in AMD, the 
underlying mechanisms governing these events are poorly 
understood. The inherently high arterial O2 tension environ-
ment, production of radicals in phototransduction, blue light 
damage, accumulation of photooxidative lipofuscin contain-
ing A2E in the RPE, and loss of cellular antioxidant capabili-
ties collectively contribute to oxidative stress in the aging 
eye [10, 103, 171, 177, 195]. Correspondingly, RPE and 
choroidal cells alter the expression of genes for cytokines, 
matrix organization, cell adhesion, and apoptosis [2, 34, 48, 
49, 53, 61, 116, 183]. Chronic cellular activation perturbs 
normal structural and physiological integrity and may induce 
focal inflammatory responses at the RPE–Bruch’s membrane 
border [65]. 

 Furthermore, the formation of AGE, such as CML and 
pentosidine, is accelerated in regions of oxidative stress.  

Fig. (4). Differential interference contrast microscopy (DIC) of living astrocytes treated with glyoxal, a reactive intermediate of AGE-

production. This leads to accumulation of isolated and aggregated intracellular vesicles (arrows, a-c) in the axons of a neuron and to blockade 

of the axonal transport (arrowheads, c,d). 
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 Recent papers also report ROS attack of neurons and a 
loss of antioxidant capacity within the neurons in the course 
of some forms of glaucoma via aggressive glial cells [122]. 
In addition, ROS, induced e.g. by hypoxia are further in-
creased in the presence of AGEs [112]. 

CELL STRESS AND APOPTOSIS 

 For early detection of cell stress preceding apoptosis our 
own group monitored the course of the alteration of pHi and 
mitochondrial membrane potential in a retinal ganglion cell 
line [80]. Changes in pH are early events in the progression 
of cell stress long before the way to apoptosis is irreversible. 
The efficiency of activation of caspase by cytochrome c has 
been found to be pH sensitive, with a pH optimum of 6.3-6.8 
in vitro [70]. Alterations in cytosolic pHi may be caused by 
changes in mitochondria (Fig. 5), such as the deleterious 
opening of the mitochondrial permeability transition pore. 
Mitochondrial permeability transition is a non-selective in-
crease in the permeability of the inner membrane (presuma-
bly involving a multi-protein complex known as the perme-
ability transition pore whose opening commonly occurs dur-
ing apoptosis) and results in depolarization of mitochondria 
and loss of the H

+
 gradient normally present across the inner 

membrane (Fig. 6). Non-selective entry of ions and water 
into the solute-rich matrix then leads to an increase in the 
volume of the mitochondrium [42]. Caspase activation can 
be a result of mitochondrial-matrix alkalinization and cytoso-
lic acidification [105]. Cytochrome c, normally stored be-
tween the inner and outer membranes of mitochondria, is 
commonly released into the cytosol following exposure of 
cells to apoptotic stimuli. Once it is in the cytosol, cyto-
chrome c binds to the caspase-activating protein Apaf-1, 
inducing formation of an oligomeric complex that recruits 
and proteolytically activates procaspase-9, an activated 
caspase-9 that then cleaves and activates caspases further 
downstream, ultimately inducing apoptosis [92]. 

Fig. (5). Differential interference contrast microscopy (DIC) of a 

cultured astrocyte, the mitochondria are clearly outlined (thin ar-

rows). Arrowhead: membrane of the nucleus, thick arrows: nucle-

oli.

 Mittag et al. 2000 [111] showed that the mitochondrial 
membrane potential is a good marker for apoptosis of retinal 
cells in vivo after intravitreal injection of an indicator dye. In 

the retinal ganglion cell layer of eyes with elevated pressure, 
mitochondrial membrane potential was reduced by 17.5%. 
After 3.5 months of elevated IOP the retinas showed cell 
nuclei at various stages of apoptosis, from the initial DNA 
condensation to fragmentation. 

 If glutamate (the major excitatory transmitter in the ret-
ina) accumulates as a further consequence of cell stress, up-
take of cystine is inhibited which is essential for glutathione 
(GSH, the most important intracellular antioxidant) biosyn-
thesis, resulting in a depletion of GSH from the cells. This, 
again, causes an increase of ROS levels [100] which leads to 
a Ca2+ influx which is mediated by a cobalt sensitive, cyclic 
guanosine monophosphate (cGMP) – gated Ca2+ channel 
[92]. 

 All the processes described above are able to reduce cell 
functions and can lead to apoptosis. In this respect a special 
form of prolonged apoptosis has recently been found in neu-
rons of the brain. In the RGCs this prolonged apoptosis can 
last for many years [206]. 

Summary of the Pathogenetic Processes 

 For the mentioned neurodegenerative diseases (special 
forms of glaucoma, diabetic retinopathy and AMD) many 
findings converge to an age – and metabolic disorder - de-
pendent damage of cellular energy - (mitochondria) and 
transport processes (e.g. endo – lysosomal pathway and ax-
onal transport). These damages are mostly caused by ROS 
and all other processes which are linked to radical produc-
tion: AGEs, ALEs and oxysteroles. A changed metabolic 
situation can also lead to aggressive glial cells which by 
themselves produce radicals which vice versa crosslink pro-
teins and lipids to AGEs and ALEs. 

 The other hot spot in the pathomechanisms of neuode-
generative diseases (like also AD and PD) is the mitochon-
drium. Defects in the respiratory chain (like in LHON) are 
similar in age – and metabolic disorders (electrons deviate 
from the respiratory chain and represent additional radicals). 
In addition, other factors like AGEs in the endfeet of Müller 
cells accumulate and damage the mitochondria which are not 
only in the cell bodies but also in protrusions of the RGC 
nerve fibers (Fig. 7) [192]. 

Therapeutic Strategies 

 Such strategies should focus on the above mentioned "hot 
spots" and restore or provide the following features by ame-
lioration of the following parameters:  

A) microcirculation 

B) route from the capillary to the cell and back  

C) metabolic situation within the cell 

D) balance of oxidative and antioxidative parameters 

E) Reduction of AGEs/ALEs and ROS 

Prevention or amelioration of AGE mediated cell toxicity 
has been a key strategy in the prevention of diabetic compli-
cations and some age related pathology. To date there have 
been a range of approaches which seek to either prevent 
AGE formation, reduce AGE effects on cells, or even break 
established AGE crosslinks.  
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 Amadori product formation is the basis of advanced gly-
cation biochemistry because progression to protein crosslinks 
requires slow chemical rearrangement to create reactive in-
termediates before the formation of irreversible AGEs. An 
important pharmacological strategy for the inhibition of this 
process utilises the small nucleophilic hydrazine compound 
aminoguanidine, which is a potent inhibitor of AGE medi-
ated crosslinking [15]. This drug can prevent some diabetic 
vascular complications in experimental animals, [24, 55, 

133] while clinical trials of aminoguanidine were shown to 
effectively reduce AGE-Hb while leaving HbA1c unaffected 
[17]. Such optimism has been tempered by the gradual reali-
sation that aminoguanidine also inhibits a range of other im-
portant pathways, most notably generation of nitric oxide by 
eNOS, [72] which may increase non-specific and unwanted 
side effects of the drug. Other AGE inhibiting drugs have 
been recently developed, such as the thiazolidine derivative 
OPB-9195, [120] pyridoxamine, [124] and 2,3 diamino-

phenazine (2,3 DAP) [170].  

 Prevention of AGEs interacting with their receptors or 
other body proteins is a valid therapeutic approach. The use 
of neutralising antibodies against glycated albumin has been 
shown to prevent BM thickening in diabetic (db/db) mice 
despite the fact that the antibodies did not alter the glycaemic 
status of the animals [25]. Likewise, the use of the AGE 
binding properties of lysozyme has succeeded in reducing 
AGE levels in dialysate from diabetic patients with kidney 
disease [110] and presents a real possibility for reduction of 
toxic AGE groups in the body fluids of patients with renal
failure. Furthermore, elucidation of AGE receptor signal 
transduction pathways may also offer intracellular strategies 
to control receptor mediated sequelae.  

 In the experimental animal, AGE effects could be signifi-
cantly reversed by the pharmacological AGE inhibitor ami-
noguanidine [189].  

 Recently, a novel therapeutic strategy has been to attack 
the AGE crosslinks formed in biological systems. This is an 
exciting approach since it would "break" pre-accumulated 
AGEs and subsequently allow clearance via the kidney. Such 
an AGE crosslink "breaker" prototype has been described to 
attack dicarbonyl derived crosslinks in vitro [185]. There are 

Fig. (7). Schematic drawing and localization of the factors leading to neurodegenerative diseases in the retina (GFAP = glial fibrillary pro-

tein, APP = amyloid precursor protein, MMPs = matrix metallo-proteinases). Please see text for details. 

Fig. (6). Cross section of single mitochondria (width: 0.5 m) in an 

astrocyte: the function of the mitochondrial membrane is clearly 

indicated by the colour of a dye (JC1) indicating the degree of the 

membrane potential: red still intact; green compromised. 
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now at least two such chemical agents which have the ability 
to reduce the tissue content of AGEs in experimental diabe-
tes, [26, 199] reverse hyperglycaemia related arterial disten-
sibility, [120] and ameliorate age related myocardial stiffness 
[6]. 

REDUCTION OF APOPTOSIS BY STABILIZING THE 

INTRACELLULAR PH VIA CARBONIC ANHY-
DRASE BLOCKERS  

 While testing the vasodilating capacity of carbonic anhy-
drase blockers in post vivo whole mounts of the rat retina 
(the cells were held viable in a special observation chamber 
[80, 164], the group of Funk [80] found a surprising phe-
nomenon: in the extracellular space (adjoining to the peri-
cytes or smooth muscle cells) a decrease of the pH took 
place (leading also to vasodilation). However, the intracellu-
lar pH (pHi) of the neurons in the retinal whole mounts re-
mained at higher levels in the carbonic anhydrase blocker 
treated cells compared to the untreated retina cells. This ob-
servation was the starting point to the idea that holding the 
pHi at normal levels would have an anti – apoptotic effect. 
Due to these results carbonic anhydrase blockers should then 
have anti – apoptotic properties.: it is known that many cell 
types (including neurons possess the enzyme carbonic anhy-
drase and on the other hand, apoptosis is often associated 
with decreased cytosolic pH. In neurons ischemia or oxida-
tive stress leads to decreased pHi and this renders the cell 
susceptible to further damage [201, 203]. 

 Reduced pHi promotes apoptosis by favouring caspase 
activation (pH optimum for caspase-3 is 6.6 – 6.8, 39] and 
activation of DNase II, [62] but there is a controversial dis-
cussion whether low pH leads to enhanced production of free 
radicals (reactive oxygen species, ROS) [164] or vice versa 
[107]. There are also studies where acidification of cytosol 
was inhibited without altering the apoptotic response [44, 
126]. Taken these facts together, we conclude that decreased 
cytosolic pH is permissive of apoptosis but until now it is 
uncertain whether it plays a role in signalling cell death.  

 In retinal neurons, advanced glycation endproducts 
(AGEs) [1, 145] as well as hydrogen peroxide [137] lead to 
acidification of the cytoplasm, to elevated ROS production 
and finally to apoptotic cell death [68].  

Carbonic Anhydrase Blocker Dorzolamide 

 We studied E1A-NR3 cells which were incubated with 
varying concentrations of glyoxal, methylglyoxal and H2O2

for different periods of time. To a fraction of the assays dor-
zolamide was added. Apoptotic changes were determined by 
measuring cell fluorescence with a cytofluorimeter after in-
cubating the cells with appropriate dyes and antibodies. The 
following parameters were studied: DNA strand breaks 
(TUNEL assay), subdiploid DNA content (sub-G1 assay), 
binding of annexinV, production of reactive oxygen inter-
mediates (ROS), active caspase-3, the glycation product N -
(carboxymethyl)lysine (CML) and intracellular pH. Dorzo-
lamide proved to reduce the damage, which was inflicted on 
retinal ganglion cells by agents that induce apoptosis and 
therefore this carbonic anhydrase blocker can be considered 
a neuroprotectant as this effect was independent of its IOP-
lowering and its positive effect on ocular perfusion [163].  

 As mentioned above, defects in mitochondrial energy 
metabolism due to respiratory chain disorders lead to a de-
crease in mitochondrial membrane potential and induce 
apoptosis. Since coenzyme Q_{10} (CoQ_{10}) plays a dual 
role as an antioxidant and bioenergetic agent in the respira-
tory chain, it has attracted increasing attention concerning 
the prevention of apoptosis in mitochondrial diseases. In cell 
studies with rotenone as stressor, pre-treatment with 
CoQ_{10} (10 or 100 wM) for 48h led to a significant re-
duction of rotenone-induced loss of mitochondrial membrane 
potential [109]. These results suggest, that cytoprotection by 
CoQ_{10} may be mediated by raising cellular resistance 

against the initiating steps of apoptosis [109]. 

NEUROPROTECTION IN PRIMARY OPEN ANGLE 

GLAUCOMA 

 Studies from POAG patients with IOPs in the normal 
range (normal tension POAG) demonstrated localized insuf-
ficiency in the ocular vasculature [14, 38, 40, 41, 43, 52, 59, 
79, 153-157, 160-163]. Vascular risk factors (e.g. vaso-
spasm) and absolutely (high tension POAG) and relatively 
(normal tension POAG) elevated IOP seem to be connected 
[38]. An insufficient regulation of blood flow to the optic 
nerve head in response to IOP compressing the microvascu-
lature appears to increase the vulnerability of RGCs and glial 
cells and thus increase the risk for POAG while a sufficiently 
(auto)regulated optic nerve head blood flow may compensate 
for an increase in IOP and prevent oligemic RGC damage as 
e.g. in ocular hypertensive patients [156, 160, 163]. 

 Some degree of vascular insufficiency may be tolerated 
by RGCs but if metabolic stress is added e.g. by increased 
IOP or reduced systemic perfusion (reduced blood pressure, 
blood loss), glaucomatous pathology may result (as in high 
tension POAG), whereas insufficient vascular (auto)regu-
lation may be pathologic even with a “normal” IOP (as in 

normal tension POAG). 

 Failure to autoregulate against stressors (e.g. reduced 
blood pressure, increased IOP) in the vessels supplying the 
optic nerve head (e.g. in the perioptic short posterior ciliary 
arteries) or the optic nerve head microvasculature itself 
(compression theory) could lead to hypoperfusion and focal 
oligemia initiating autoregulatory mechanisms attempting to 
restore metabolic homeostasis, a mechanism which could 
result in repeated transient episodes of oligemia and - over 
an extended period of time - cause the gradual focal RGC 
loss of and thinning of the nerve fiber layer seen in POAG 

patients. 

 The evidence for a vascular pathology in POAG [14, 38, 
40, 41, 43, 52, 59, 79, 153 - 157, 160-163] led to the use of 
ischemia/reperfusion models to investigate drugs for neuro-
protective properties [23, 112, 125, 127, 130-132, 152, 158, 
198].  

 Ischemia/reperfusion results in an energy deficit reflected 
in a lack of adenosine triphosphate (ATP) in mitochondria, 
required to satisfy the high energy demand for nerve conduc-
tion in unmyelinated neurons [99]. 

 This reduced bioenergetic state is further compromised 
by an increase in glutamate, the major neurotransmitter for 
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RGCs, to levels toxic to these neurons [23, 112, 125-132, 
152, 158, 198]. The prolonged activation of glutamate recep-
tor–coupled ion channels causes prolonged depolarization of 
the cell via Na

+
 influx and K

+
 efflux through the open gluta-

mate receptor-coupled channels, as well as excessive Ca
2+

influx into the cell. Among the glutamate receptors, the 
NMDA and kainate subtypes have increased glutamate affin-
ity, the highest Na

+
 and Ca

2+
 conductance, and prolonged 

open channel times. Each NMDA/kainate receptor has four 
to five subunits and multiple sites for binding of further 
ligands. Among these are accessory binding sites for glycine 
or d-serine acting as a coagonist, a modulatory site binding 
polyamines and binding sites within the channel for drugs 
such as MK801 or memantine. Besides these ligand-binding 
sites, the receptor/channel activity is controlled by cations 
(Mg

2+
, Zn

2+
), by the redox state or nitrosylation of sulfhydryl 

groups in proteins composing the channel and by phosphory-
lation/dephosphorylation sites regulated by protein kinase/ 
phosphoprotein phosphatase enzymes [112].  

 Progressively accumulating evidence suggests that RGC 
damage in POAG occurs primarily at the lamina cribrosa 
reflected in structural alterations due relatively or absolutely 
elevated IOP which seems to reduce axonal flow and com-
press the optic nerve head microvessels, reducing a poten-
tially compromised perfusion in this area even further and 
thus leading to oligemia, a process reducing cellular homeo-
stasis of unmyelinated nerve fibers directly or by causing 
stress to astrocytes and/or oligodendrocytes resulting in lib-
eration of toxic mediators, e.g. nitric oxide [122]. 

 As a consequence the axonal flow from and to the RGCs 
and their target neurons in the brain is compromised. A re-
duction in axoplasmic flow of neurotrophins to RGC somata 
appears to be a critical step in initiating the cascade of events 
resulting in apoptosis, the primary cell death mechanism in 
POAG.  

 The ischemia-reperfusion, optic nerve cut or crush mod-
els are based on these hypotheses, potential target sites for 
neuroprotective agents acting at the level of the lamina cri-
brosa could be RGC axons or glial cells (astrocytes, oli-
godendrocytes). 

 Based on the etiologic concepts for POAG discussed 
before, any therapy for POAG protecting RGCs from death, 
preventing or delaying this process and drugs which save 
already compromised neurons or which induce regrowth of 
axonal/dendritic connections and restore function may be 
termed neuroprotective. 

 To avoid confusion when discussing neuroprotection in 
POAG it may be worthwhile to differentiate indirect neuro-
protection (reducing risk factors, e.g. reducing IOP, increas-
ing perfusion) from direct neuroprotection, a direct interac-
tion with retinal structures preventing RGC damage.  

 A direct neuroprotectant would need to reach the retina to 
exert its pharmacologic effect which can only be proven if 
this drug is applied directly to the retina, an approach which 
is currently limited to cell culture and animal experiments 
(e.g. injection into the vitreous). A neuroprotective effect of 
a drug applied locally or systemically may be indirect due to 
an effect on e.g. IOP or perfusion.  

 A direct neuroprotective substance may reduce upregu-
lated stimulation of ionotrophic receptors e.g. by glutamate, 
aspartate, NMDA, kainic or domoic acids (excitotoxicity), 
reduce energy deficieny (lack of ATP), maintain cell mem-
brane ionic balance or axonal function or stop one or several 
of these cytotoxic processes which reinforce each other [23, 
112, 125-152, 152, 158, 198].  

 Neuroprotective concepts for POAG aim at protecting 
RGCs from the initiating, extracellular cell death signals, 
reduce increased Na

+
 and Ca

2+
 influx into the cell directly or 

to block specific NMDA receptors, and on agents which 
block the intracellular signal cascade for RGC apoptosis (e.g. 
inhibition of excessive free radical formation) [44, 112, 126, 
127, 132, 152, 158]. 

Na
+
 and Ca

2+

 In ischemia-/reperfusion damage Ca
2+

 overload is pre-
ceeded by an intracellular accumulation of Na

+
 as a result of 

a blockade of the Na
+
/K

+
-exchange, an increase in the 

Na
+
/H

+
 exchange and the Na

+
-HCO3 cotransport due to lack 

of ATP and acidosis and the reversal of Na
+
/Ca

2+
 exchange. 

Increased intracellular Ca
2+

 levels impede the various mes-
senger functions of this ion and lead to a liberation of trans-
mitters, which activate certain receptors (e.g. ionotrophic 
glutamate receptors) and thus further increase intracellular 
calcium. Na

+
 and Ca

2+
 can increase Ca

2+
 influx into the cell 

by activating voltage dependent canals. As a result a further 
increase in intracellular Ca

2+
 will disturb cellular homeosta-

sis e.g. by activating cytotoxic enzymes, apoptosis is initiated.  

 Ca
2+

 overload and metabolic stress caused by glutamate 
excitotoxicity e.g. due to ischemia trigger production of fur-
ther toxic mediators (e.g. nitric oxide - NO, free oxygen 
radicals) and activate mitochondrial apoptotic signal trans-
duction pathways. Ca

2+
 acts as a cosignal with PSD-95, a 

postsynaptic density protein for activation of neuronal NOS 
and thus couples NMDA receptor activation to NO, which, 
in excess, is toxic to RGCs [149]. Thus, substances which 
reduce Na

+
 and/or Ca

2+
 influx into the cell in pathologic 

conditions (i.e. in persistent depolarization) may reduce or 
even halt cell death.  

 Several clinically well known drugs e.g. lidocaine, flu-
narizine, diazepam, betaxolol carbamazepine and phenytoin 
are Na

+
 channel blockers and significantly reduce cell dam-

age [112, 126, 127, 152, 158, 198]. Carbamazepine and 
phenytoin used to treat epilepsy also reduce hypoxic damage 
in rat optic nerve culture [37]. Ca

2+
 channel blockers, such as 

flunarizine [35] and nifidipine [27], vasodilators used in sys-
temic antihypertensive therapy, demonstrated a cytoprotec-
tive effect in retinal cells after ischemia/reperfusion. 

 Furthermore calcium channel blockers (e.g. nimodipine, 
nifidipine) seem to have a positive effect on the visual field 
prognosis in normal tension POAG [28, 78, 161].  

 It is uncertain whether this clinical effect is a result of 
direct cytoprotection or due to improved microcirculation to
the optic nerve head [153, 161, 162] or a combination of both 
effects. 

 Following this concept, verapamil, a combined Ca
2+

 and 
Na

+
 channel blocker may have greater neuroprotective po-

tency. 
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 Further studies on the various neural Ca
2+

 and Na
+
 chan-

nel subtypes and the (state-dependent) binding at multiple 
sites of potential blockers may help to find channel type(s) 
specific for POAG and the drug(s) to selectively block these 
channels to a degree providing neuroprotection for POAG 
patients without compromising cell function. 

THE N-METHYL-D-ASPARTAT (NMDA)-RECEPTOR 

 Elevated IOP in POAG patients is associated with in-
creased glutamate levels [31], a similar increase of this neu-
rotransmitter was found in the vitreous of rabbits following 
retinal ischaemia [76] and in the aqueous humour following 
optic nerve crush in rats [204].  

 This mechanism seems to be similar in other neural tis-
sues, e.g. the central nervous system where primary ischemic 
damage is also associated with glutamate induced cell death. 

 Prolonged NMDA - receptor overactivation by increased 
levels of glutamate (excitotoxicity) due to e.g. increased IOP 
and/or oligemia [112, 127, 130, 131, 152, 158], leads to de-
polarisation - which in excess - initiates Na

+
 and Ca

2+
 influx 

into the cell, the first step in the cascade of events resulting 
in apoptosis. 

 So it seems conclusive that NMDA antagonists may de-
lay or halt ganglion cell death. Respective studies demon-
strate that NMDA antagonists such as MK801, ifenprodil, 
and memantine reduce the loss of RGCs in optic nerve crush, 
ischemia/reperfusion, and chronic high IOP experiments [46, 
152, 204].  

 However it remains unclear whether the small but sig-
nificant increase of glutamate in the vitreous of POAG pa-
tients reflects toxic concentrations of this neurotransmitter at 
the level of RGCs or whether this is a compensatory mecha-
nism of the glutamate/glutamine metabolism in the process 
of maintaining normal visual function.  

 While there is some evidence for the potential role of 
glutamate in the pathogenesis of POAG, its metabolism 
needs further investigation. 

 An excitotoxic increase in glutamate in the extracellular 
space initiates the death of neurones that express ionotropic 
glutamate (NMDA) receptors [12, 136], e.g. ganglion cells 
and a subtype of amacrine cells. 

 Glutamate could be released from retinal neurones as a 
reaction to ischemia or arise from a malfunction in the up-
take/turnover of this neurotransmitter e.g. in Müller cells.  

 Glutamate uptake and metabolizing glutamate to glu-
tamine is an energy (ATP) consuming process. ATP is pro-
vided by glycolysis. Thus, any impairment of glucose supply 
or metabolism that reduces ATP in Müller cells, such as oli-
gemia, may reduce glutamate uptake from the extracellular 
space, thus increase extracellular level of this neurotransmit-
ter, which reduces cellular homeostasis and increases the 
possibility of RGC apoptosis. 

 It is clear from a variety of studies that not all RGCs are 
equally sensitive to a change in cellular homeostasis. As dis-
cussed before, several studies suggest that M cells are more 
sensitive to destruction in POAG than P cells [139, 140], 

which is in keeping with the finding that the latter ganglion 
cells are less sensitive to intraocular injection of NMDA or 
glutamate than M cells [32] and thus supports a role for glu-
tamate in glaucomatous pathology. The variable sensitivity 
may be explained by the variable profile of excitatory (e.g. 
glutamate – depolarisation) and inhibitory (e.g. aminobutyric 
acid, GABA – hyperpolarisation) receptors expressed by a 
specific subset of RGCs.  

 Thus the degree of depolarisation (i.e. susceptibility to 
apoptosis) of any GC is determined by the ratio of excitatory 
vs. inhibitory receptors expressed by that cell, i.e. a cell that 
expresses more GABA receptors than glutamate receptors 
should be more resistant to excitatory damage than a cell 
with fewer GABA receptors.  

 The receptor profile of ganglion cells is not limited to 
GABA and glutamate receptors. Ganglion cell function is 
further influenced by nicotinic [176], adenosine [90] and 2-
adrenergic [73], both hyperpolarizing receptors. 

 A direct blockade of excitatory receptors to halt ganglion 
cell death in POAG seems an obvious therapeutic option. 

 Systemic [88] or intraocular [193] administration of MK-
801, an NMDA receptor antagonist can protect against many 
of the destructive effects of either NMDA or experimental 
retinal ischaemia in RGCs. Memantine, another NMDA re-
ceptor antagonist demonstrated a neuroprotective effect in 
RGCs when exposed to glutamate in a concentration other-
wise toxic to theses cells [190].  

 Currently, clinical use of NMDA blockers is limited by 
their side effect profile. As NMDA receptors are widely dis-
tributed in the central nervous system and involved in a 
number of vital functions, a large spectrum of side effects 
can be expected. E.g. patients who received MK-801 for 
stroke treatment showed neurotoxic reactions [84].  

 Interestingly, memantine acts similar to MK-801 but 
does not display the side effects noted with MK-801 [84], a 
low affinity for the NMDA receptor and a membrane stabi-
lising effect [134] may explain this effect. 

 Studies on NMDA receptor subtypes and their specific 
properties e.g. their ability to influence the activity of a re-
ceptor by allosteric change will help to find antagonists for 
specific NMDA receptors and may increase neuroprotective 
potency for a specific neurodegenerative disease (e.g. stroke, 
M. Alzheimer, POAG) and reduce (neuro)toxic side effects. 
This is crucial for any therapy of POAG, where drugs have 
to be applied prophylactically for life.  

FREE RADICALS  

 Free radicals are formed as part of cellular processes 
[71]. Oxygen and free oxygen radicals can damage most 
macromolecular cellular structures, as a consequence an al-
teration in proteins, lipid peroxidation and destruction of 
nucleic acids may result [71]. 

 Certain stress conditions (hypoxia, ischemia/reperfusion) 
lead to excessive free oxygen radical formation which in-
creases e.g. p53 expression neurons [147].

 Upregulation of p53 increases expression glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH), which is the 
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major source of NADH for mitochondrial oxidative phos-
phorylation. An increase in the cytoplasmic NAD

+
/NADH 

ratio liberates the bound form of this proenzyme from its 
RNA binding site to active GAPDH. 

 SH oxidation or nitrosylation by NO also free GAPDH, 
but this process also inactivates GAPDH. Thus GAPDH in-
hibition by free oxygen radicals leads to a reduction in intra-
cellular NADH and thus may induce apoptosis.  

 The finding that mice deficient of p53 are resistant to 
excitotoxic neuronal damage [115] is consistent with this 
concept.  

 Cellular protective mechanisms can counteract this dam-
age with the support of specific enzymes (e.g. glutathione 
peroxidase, glutathione reductase, catalase, superoxid dismu-
tases) and antioxidants (e.g. -tocopherol, ascorbic acid, 
glutathion) seem to prevent apoptosis under certain condi-
tions [71].  

 While the ethiopathogenetic mechanisms of POAG re-
main unclear it is rather obvious that cell death in this form 
of progressive optic neuropathy occurs by apoptosis as well 
as by necrosis, in other words: apoptosis and necrosis could 
be different forms of the same death process determined by 
the degree of insult. 

 Free oxygen radicals and respective free radical scaven-
gers (antioxidants) seem to affect cell death in POAG inde-
pendent of its mechanism. This oxidative stress may be in-
duced by an elevation of nitric oxide due to oligemia eventu-
ally causing oxidative/nitrosative stress and lipid peroxida-
tion of retinal ganglion cells [158]. Studies in rabbits show 
increased formation of free oxygen radicals after ischemia 
[119] and reduced retinal function, an effect which could be 
reversed by antioxidants [119]. 

Consequently antioxidative capactivity, a marker of free 
radical formation is increased in the aqueous humour of ini-
tial POAG but not in a later stage, which may reflect a local 
mechanism to compensate for increased oxidative stress in 
this optic neuropathy exhausted with progression [159].

 Also a cytoprotective effect of various antioxidants (vi-
tamin E, 178), katalase [186] and ginkgo biloba [178] was 
shown in retinal cells following ischemia/reperfusion. Lipid-
peroxidation, a consequence of free radical formations was 
reduced by tririlazadmesylate, RGC death due to lack of 
ATP was reduced in cell culture experiments [91]. Osborne 
et al. [129] demonstrated that light damages isolated mito-
chondria which correlated to exposure and that light triggers 
apoptosis of cultured RGCs, an effect exacerbated in nutri-
tionally deprived cells and thus propose that reactive oxygen 
intermediates (ROI) generated in RGC axon mitochondria 
due to light (especially short blue wave light - (450 – 490 
nm) exposure may further compromise the survival of these 
neurons in POAG, where RGCs are in an bioenergetically 
low state (as discussed in detail before) and thus their ability 
to scavenge ROI is reduced, resulting in toxic ROI concen-
trations accelerating RGC death in POAG and mitochondrial 
optic neuropathies.  

 Antioxidants which counteract cell death independent of 
the exact mechanism (apoptosis or necrosis) may prove 
beneficial in the treatment of POAG.  

NEUROPROTECTIVE TREATMENT OF POAG 

 The ideal POAG drug is well tolerated orally, targets 
specific receptors of specific RGC subpopulations (e.g. M 
cells) or glial cells to reduce side effects and prevents cell 
death independent of the cell death mechanism. 

 As currently there are no drugs available which meet 
these criteria even in part, considerable side effects limit the 
use of drugs available for protection of neurons (see inhibi-
tion of the NMDA receptor).  

 As POAG drugs like for any drug that needs to be taken 
(prophylactically) for life, the side effect profile is an impor-
tant key to ensure patient compliance. 

 Our understanding of a current POAG drug is that it can 
be applied topically, reduces IOP, reaches the back of the 
eye in sufficient concentration to increase optic nerve head 
perfusion and to protect RGCs. 

 Two drugs used clinically, brimonidine an 2-adrenergic 
receptor agonist and betaxolol a -adrenergic receptor an-
tagonist were neuroprotective in animal model and cell cul-
ture experiments [44, 112, 128, 132, 152, 194, 197, 198].  

 Clinical evidence that this neuroprotective effect can also 
be elicited in human POAG and if so is not coupled to IOP 
reduction and/or altered perfusion (excluded for brimonidine, 
155) [60, 64] remains to be established and would include 
pharmacodynamic experiments which prove that both drugs, 
when applied topically, reach the back of the eye in suffi-
cient quantity to be pharmacologically active. 

 The clinical use of neuroprotective agents e.g. NMDA 
antagonists will largely depend on advances in pharmacoki-
netics i.e. if a drug with potentially excellent neuroprotective 
properties but unacceptable side effects when applied sys-
temically or does not reach the optic nerve head when ap-
plied topically can be designed to specifically reach their 
target cells without interacting with other organs, this drug 
may be used in the treatment of POAG and would increase 
our treatment options for a still potentially blinding illness.  

 Based on the fact that studies in humans proving direct 
neuroprotection without reducing IOP and / or improve optic 
nerve head microcirculation will be difficult to justify and 
the disappointingly slow progress in this field despite the 
enormous efforts in basic science and the pharmaceutical 
industry in the field of neuroprotection, for the near future, 
neuroprotective drugs for glaucoma therapy will most proba-
bly exert their effect in a combination of indirect and direct 
effects i.e. a reduction in IOP and / or improvement of optic 
nerve head microcirculation and direct neuroprotective ac-
tion (proven in animal model and cell culture experiments). 
These drugs will be topically active and need to be demon-
strated that they reach the optic nerve head in sufficient con-
centration to exert their neuroprotective effect(s).  
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