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Human immunodeficiency virus (HIV) selectively targets and destroys the infection-fighting
CD4+ T-lymphocytes of the human immune system, and has a life cycle that
encompasses binding to certain cells, fusion to that cell, reverse transcription of its
genome, integration of its genome into the host cell DNA, replication of the HIV genome,
assembly of the HIV virion, and budding and subsequent release of free HIV virions. Once
a host is infected with HIV, the host’s ability to competently orchestrate effective and
efficient immune responses against various microorganisms, such as viral infections, is
significantly disrupted. Without modern antiretroviral therapy (ART), HIV is likely to
gradually destroy the cellular immune system, and thus the initial HIV infection will
inexorably evolve into acquired immunodeficiency syndrome (AIDS). Generally, HIV
infection in a patient has an acute phase, a chronic phase, and an AIDS phase. During
these three clinical stages, patients are found with relatively specific levels of viral RNA,
develop rather distinctive immune conditions, and display unique clinical manifestations.
Convergent research evidence has shown that hepatitis B virus (HBV) co-infection, a
common cause of chronic liver disease, is fairly common in HIV-infected individuals. HBV
invasion of the liver can be facilitated by HIV infection at each clinical stage of the infection
due to a number of contributing factors, including having identical transmission routes,
immunological suppression, gut microbiota dysbiosis, poor vaccination immune response
to hepatitis B immunization, and drug hepatotoxicity. However, there remains a paucity of
research investigation which critically describes the influence of the different HIV clinical
stages and their consequences which tend to favor HBV entrenchment in the liver. Herein,
we review advances in the understanding of the mechanisms favoring HBV infection at
each clinical stage of HIV infection, thus paving the way toward development of potential
strategies to reduce the prevalence of HBV co-infection in the HIV-infected population.
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INTRODUCTION

Human immunodeficiency virus (HIV) infection has been a
major public health issue for the past four decades. Despite
extensive global research and study (1–3), a cure for HIV
infection has, thus far, proven elusive. Recently, our research
group has proposed novel potential therapeutic options for HIV
infection (4, 5) which, we believe, could inspire future clinical
trials into curative therapeutic options for HIV. Our first
proposition concerns the promotion of P-selectin glycoprotein
ligand 1 (PSGL-1), an important receptor from innate immunity,
which (i) induces the production of membrane defective virions
that are unable to attach to or infect new target cells, and (ii)
blocks the HIV reverse transcription process. Our second
proposition involves the selective elimination of host cells
capable of producing HIV virions via the use of a therapeutic
cocktail of drugs (latency reversal agents, autophagy inhibitors,
apoptosis activators, and antiretroviral drugs).

The World Health Organization (WHO) has proposed that
HIV infection may be divided into four clinical stages in adults
and adolescents 15 years-of-age and above (6). HIV-positive
patients who are asymptomatic or have persistent generalized
lymphadenopathy (lymphadenopathy of at least two sites [not
including inguinal] for longer than 6 months) are categorized as
being in stage 1. Clinical findings included in stage 2 (mildly
symptomatic stage) are unexplained weight loss of less than 10
percent of total body weight and recurrent respiratory infections
(such as sinusitis, bronchitis, otitis media, and pharyngitis), as
well as a range of dermatological conditions including herpes
zoster flares, angular cheilitis, recurrent oral ulcerations, papular
pruritic eruptions, seborrhoeic dermatitis, and fungal nail
infections. Manifestations included in clinical stage 3 (the
moderately symptomatic stage) are weight loss of greater than
10 percent of total body weight, prolonged (more than 1 month)
unexplained diarrhea, pulmonary tuberculosis, and severe
systemic bacterial infections including pneumonia,
pyelonephritis, empyema, pyomyositis, meningitis, bone and
joint infections, and bacteremia. Stage 4 (the severely
symptomatic stage) includes all of the AIDS-defining illnesses,
e.g., HIV wasting syndrome, Pneumocystis pneumonia (PCP),
recurrent severe or radiological bacterial pneumonia,
extrapulmonary tuberculosis, HIV encephalopathy, CNS
toxoplasmosis, chronic (more than 1 month) or orolabial
herpes simplex infection, esophageal candidiasis, and Kaposi’s
sarcoma. WHOHIV clinical staging utilizes standardized clinical
parameters to direct medical decision making for patients with
HIV/AIDS, and can be used based solely on patient clinical
features, thus accommodating treatment facilities that may have
limited or no access to sophisticated laboratory testing, such as
those in low- and middle-income countries and regions (7).
There is, also, the existence of the Fiebig staging system of HIV
infection (first published in 2003, and comprising 6 stages),
which descr ibes the emergence of virologica l and
immunological markers following infection by HIV. Several
discrete clinical phases can thus be recognized for HIV
infection; however, it has been generally accepted that HIV
Frontiers in Immunology | www.frontiersin.org 2
infection exhibits an acute phase, a chronic phase, and the
acquired immunodeficiency syndrome (AIDS) phase (8).

In 2020, it was estimated that 36.7 million people globally were
infected by HIV (9), and thus, the global HIV pandemic continues
to pose a material threat to the health of mankind. The large
majority of new HIV infections occur in low- and middle-income
countries (10). Poverty, stigma associated with HIV disease,
cultural and social barriers to appropriate testing and treatment,
insufficient and inadequate health care infrastructure to support
the large patient pool, poor health literacy, limited provider
training, inadequate and inappropriate medical equipment,
scarcity of appropriately-trained medical manpower to distribute
health care throughout specific regions, and an inadequately low
number of accredited medical laboratory facilities are some of the
numerous factors that contribute to the almost inexorable global
propagation of HIV (11).

At the same time, hepatitis B virus (HBV) is also silently
spreading amongst the global population, especially in low- and
middle-income countries (12). In 2019, the WHO estimated that
296 million people were living with chronic HBV (with 1.5
million new infections each year). More specifically, the WHO
Western Pacific Region and the WHO African Region presents
the highest chronic hepatitis B infection rates, with 116 million
and 81 million people infected, respectively. Lower proportions
occur in (i) the WHO Eastern Mediterranean Region (with 60
million people infected), (ii) the WHO South-East Asia Region
(with 18 million people infected), (iii) the WHO European
Region (with 14 million people infected), and (iv) the WHO
Americas Region (with 5 million people infected) (13). Thus,
HBV affects hundreds of millions of people worldwide, and is
responsible for progressive liver fibrosis and hepatocellular
carcinoma, amongst other chronic health sequelae (14, 15)
during the chronic phase of HBV disease. Most cases of HBV
infection in adults are arrested early, and are defined as an acute
infection that is generally successfully limited by the patient’s
own immune system. Only adults with an immunocompromised
immune system tend to progress to chronic HBV (16–18).
Unfortunately, most cases of HBV infection acquired in
infancy or early childhood however, do become chronic (16–
18). According to WHO, around one third of the world’s
population has been infected by HBV at some point of their
lives (16–18). Thus, HIV-HBV coinfection is relatively common
(19). Estimations suggest that 10 to 28% of HIV-infected
individuals are chronically infected with HBV (20–25). Indeed,
the rates of HIV-HBV coinfection vary significantly between
regions and risk-based groups. For instance, a study in Vietnam
has shown that HIV-HBV coinfection is significantly higher
among people who inject drugs (28%) or who are sex workers
(15%) (23). Similarly, Xie et al. (26), have reported an estimation
of 10% with respect to the existing HIV-HBV coinfection rate in
China in general; however, they also state that the prevalence of
such HIV-HBV coinfection in China varies between regions
from 5% to 15%. In an extensive review on HIV-HBV
coinfection, Singh et al. (27), suggested that West Africa and
South Africa possess the highest prevalence of HIV-HBV
coinfection in the world.
April 2022 | Volume 13 | Article 853346
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Several past studies have explored the impact of HIV-HBV
coinfection on patients’ health, and have found that this comorbid
association accelerates HBV progression (higher levels of hepatitis
B viremia, higher risk of developing cirrhosis and hepatocellular
carcinoma) (28), and materially amplifies the complexities related
to treatment (27, 29–31). Among the mechanisms triggered by
HIV infection which accelerate the progression of HBV infection,
we can list (i) HIV replication in the liver, (ii) HIV-associated
microbial translocation and immune activation, and (iii) immune
exhaustion and tolerance. Each of these mechanisms mediated by
HIV pathogenesis has significant effects on liver disease, as noted
by Singh et al. (27). However, to the best of our knowledge, there
remains a paucity of published research investigation in the
literature which critically describes the influence and
consequences of HIV clinical staging that potentially favor HBV
establishment in HIV-infected individuals.

We therefore propose, herein, to review the appropriate
literature to elucidate the potential mechanisms favoring HBV
infection at each clinical stage of HIV infection. In the first part,
we discuss the transmission routes of both HIV and HBV, and
their subsequent life cycles once they have entered the human
body. In the second part, we critically discuss the potential
influence of each of the HIV acute, chronic, and AIDS phases
that either lead to or may potentially lead to HBV infection.
HIV AND HBV: TRANSMISSION ROUTES
AND LIFE CYCLE

It is well-established that HIV and HBV share the same
transmission routes. Indeed, both viruses are known to be
transmitted from person to person through sexual intercourse,
via contaminated needles used for intravenous drug delivery,
frommother to child, and by the therapeutic use of HIV or HBV-
infected blood or blood products (32). Thus, individuals who
have casual sex in the absence of a condom and those who inject
recreational drugs are at a particularly high risk for acquiring not
only HIV infection, but also HBV infection (29). Once a person
Frontiers in Immunology | www.frontiersin.org 3
is infected by either HIV or HBV, these viruses exhibit two
distinct life cycles within the infected persons body (Figure 1).

HIV targets immune cells, preferentially CD4+ T-lymphocytes.
Then, a viral envelope glycoprotein molecule (gp120) binds to a
host cell receptor or co-receptor, such as CCR5 or CXCR4,
responsible for HIV entry into lymphocytes and macrophages.
The binding of gp120 to these receptors results in a cascade of
molecular conformational changes and the exposure of gp41,
bringing the HIV virion in much closer proximity to the target
cell. Subsequent fusion of the viral envelope with the host cell
membrane is essential for the entry of the inner matrix core of the
virus into the intracytoplasmic realm of the host cell (33). Within
the viral inner core are two strands of viral RNA held together by
two small proteins (P6 and P7), and three of the enzymes essential
for viral replication, viz., integrase, protease, and reverse
transcriptase. Accessory proteins such as Nef, Vpr, and Vif are
also found in the core matrix of the virus. Although these
accessory proteins are not essential for viral replication, they
play crucial roles in counteracting defensive mechanisms
activated by the host cell (34, 35). Once within the host cell
cytoplasm, the core matrix of the virion disintegrates, releasing the
viral capsid as well as the genome of the virus. The viral RNA,
together with the essential viral enzymes, is thus exposed to the
host cell cytoplasm. The viral RNA then undergoes reverse
transcription into viral DNA through a process mediated by the
viral reverse transcriptase. Earlier investigations have revealed that
the viral DNA generated by the reverse transcription process
within the host cytoplasm is part of a broad nucleoprotein
complex known as the pre-integration complex (PIC) (36),
which also comprises Vpr and the integrase enzyme. Subsequent
migration and entry of the PIC into the nucleus is followed by the
process termed integration, which is mediated by the integrase
enzyme. The preceding view, that conversion of the HIV RNA
genome into DNA occurs in the cytoplasm before nuclear entry
has, however, been challenged recently. Indeed, Dharan et al., have
provided evidence to support the hypothesis that reverse
transcription and uncoating can occur in the nucleus of non-
dividing cells, such as macrophages or cells treated with the
A B

FIGURE 1 | Life cycles of HIV and HBV. (A) represents HIV life cycle once in contact with CD4+ T-cells. Although HIV preferentially infects CD4+ T-cells, HIV
tropism is not limited to CD4+ T-cells only. Conversely, HBV [the life cycle of which is depicted in (B)] infects hepatocytes exclusively.
April 2022 | Volume 13 | Article 853346
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tetracyclic antibiotic, aphidicolin (37). For integration to occur, the
integrase within the PIC acts by slicing through the DNA of the
host cell, and thus allowing viral DNA to be inserted at a variety of
sites on the host DNA, i.e., integrase catalyzes the insertion of viral
dsDNA into the host chromosome (38, 39). For HIV, and most
viruses that integrate into the host genome (e.g., murine leukemia
virus, Herpes simplex virus-1, Ebola virus), observations from past
studies (40, 41) reveal evidence of the DNA splicing and joining
steps. It is critical to keep inmind that, usually, two nucleotides are
removed from 3’ end of the viral DNA. Then, these 3’ ends attack a
pair of phosphodiester bonds on opposite strands of the target
DNA, across the major groove, leading to a bonding of the
covalent 3’ ends of the viral DNA to the target DNA. Finally,
the single-strand gaps and the two-nucleotide overhang at the viral
DNA’s 5’ ends are repaired by cellular enzymes, in order for
integration to be complete. For HIV, the sites are five base pairs
apart instead of two, resulting in a five base-pair duplication (42).
Once HIV DNA is integrated into the host cell genome in this
manner, the host cell is considered to be infected for life. Thus, the
integrated viral DNA, referred to as provirus, can be used to
generate genomic RNA, which can serve as messenger RNA
(mRNA) for the synthesis of viral proteins in the host
cytoplasm (Figure 1A).

HBV targets and replicates solely in the parenchymal cells of
the liver (the hepatocytes) (43–46) (Figure 1B). Moreover, it has
been established that HBV infects only humans, chimpanzees,
and to a lesser extent, tree shrews (Tupaia belangeri) (47, 48).
Once in contact with the liver, the circulating virion initially
attaches to heparan sulfate proteoglycans (HSPGs) (49, 50).
Then, the interaction of a specific domain of the HBV L
envelope protein with the sodium taurocholate co-transporting
polypeptide [NTCP, a hepatocyte-specific transporter of bile
acids that is predominantly localized in the basolateral
membrane that faces the sinusoidal lumen (51)] on the surface
of the hepatocytes contributes to viral entry into the hepatocyte
(52). Following entry and uncoating, the nucleocapsid carrying
the HBV genome is transported into the nucleus, where it is
released as relaxed circular (rc) DNA. There, the rcDNA is
converted into an episomal covalently closed circular (ccc)
DNA minichromosome by host enzymes (46, 53). Reports
suggest that cccDNA is very stable, persisting indefinitely, and
is one of the main barriers to cure for hepatitis B disease (46), as
it is the template for all HBV RNA transcripts (27, 54) that leave
the nucleus unspliced, and produces the viral structural and non-
structural proteins (53). Thus, HBV can initiate viral replication
with an estimated doubling time of 2-4 days (55, 56).
Interestingly, HBV polymerase can encode the pre-genomic
RNA (pgRNA) and the reverse transcription of pgRNA can
also lead to the formation of double stranded linear HBV DNA
(dslDNA). Once in the nucleus, the dslDNA, in a similar manner
to HIV, can integrate into the host genome (27). In contrast to
HIV, the integrated dslDNA cannot enable viral replication, but
it does allow the expression of certain gene products, like the
envelope proteins (Env), which are dissimilar to the envelope
proteins generated from cccDNA, which coat filamentous and
spherical subviral particles (SVPs) (54). In general, acute
Frontiers in Immunology | www.frontiersin.org 4
manifestation of HBV infection occurs within 6 months after a
person is exposed to HBV (57). From an acute infection, it can
subsequently progress into a chronic infection. Indeed, although
most people with healthy immune systems are able to clear the
virus at the acute stage, immature immune systems and/or
impaired immunity can lead to the establishment of chronic
HBV infection in infants and/or adults (58, 59). Once the disease
becomes chronic, it becomes a lifelong infection which, in the
absence of effective treatment, can cause liver cancer or
significant liver damage and scarring, leading to eventual
liver failure.

In vitro and in vivo reports suggest that HIV can also infect
hepatic stellate cells, sinusoidal endothelial cells, Kupffer cells,
and the resident macrophages of the liver [as reported by
Chamroonkul and Bansal (60), Housset et al. (61) and Cao
et al. (62)]. HIV RNA sequences from the livers of untreated
HIV-positive individuals show distinct compartmentalized
sequences when compared to RNA sequences from other tissue
sites (63). Further studies have demonstrated that HIV can
persist in the liver even in patients on antiretroviral therapy
(ART), primarily in Kupffer cells (64–66). In this review,
therefore, we explore and discuss the influence of HIV
infection on the establishment of HBV infection, especially
being cognizant of the fact that HIV is known to provoke the
fundamentally profound immune system impairment necessary
for the onset of chronic HBV. Normally, most people with
healthy immune systems are able to clear HBV during the
acute phase. Utilizing the combined actions of HBV-specific
CD4+ T-cells [essential for the induction and the maintenance of
both CD8+ T-cells and antibody responses (67, 68)] and HBV-
specific CD8+ T-cells [which kill infected hepatocytes and induce
local production of proinflammatory cytokines (69–71)], a
healthy person can easily overcome acute HBV infection, and
thus avoid the chronic and life-threatening phase of the
infection. Subsequently, our discussions will consider HIV as
the primary infection, and we reflect further on the
immunological consequences of HIV infection that favor
HBV infection.

The various mechanisms through which liver injury may
occur in patients with HIV infection are numerous; a general
breakdown of these mechanisms is presented in Table 1. A
reasonable understanding of these mechanisms is of significant
importance to the comprehension of HIV/HBV pathological
processes, and any liver injury may further represent an ‘open
door’ for HBV to enter hepatocytes and subsequently establish
infection. This preceding assertion is speculative at this stage,
and further investigation is required to establish precisely how
liver injury induced by HIV infection could facilitate HBV
invasion of hepatocytes.
ACUTE AND EARLY HIV INFECTION

Innate Immune Defense Subversion
Acute HIV infection (AHI) is the first stage of HIV infection,
occurring soon after viral acquisition and before seroconversion.
April 2022 | Volume 13 | Article 853346
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AHI typically lasts 3–4 weeks (Figure 2), and is characterized by
the presence of HIV RNA and p24 antigen (Ag) (85) in the
circulation. During this short period, HIV concentrations in blood
and other body fluids (vaginal secretions and semen) are
exceptionally high, increasing the likelihood of HIV
transmission (85–92). To reach the high levels of HIV observed,
HIV-1 subverts dendritic cell and macrophage activities
(preferentially CD4+ T-cells) to increase its replication at
Frontiers in Immunology | www.frontiersin.org 5
mucosal locations (93, 94). This strategy also favors HBV, which
does not need to use any specific mechanisms to avoid such
immune cells (dendritic cells, macrophages, and T-cells) in an
HIV-positive individual. Moreover, HIV adopts a variety of
strategies to avoid type 1 interferon (IFN-1) control [repression
of HIV restriction factors (95–101) and/or blocking of IFN-1
expression by infected cells (102–105)] via the infected-cells
(dendritic cells, macrophages, and T-cells). Indeed, IFN-1 is an
FIGURE 2 | Stages of HIV infection and factors potentially favoring HBV infection at each clinical stage of HIV infection. ↓: depletion; ↑: augmentation; VL, viral RNA
load; OI, opportunistic infection; +: Mild; ++: Moderate; +++: Severe.
TABLE 1 | Summary of reported mechanisms responsible for liver injury in patients with HIV.

Mechanism Contribution Details References

Oxidative
stress

Moderate This is a process whereby free reactive oxygen species (ROS) provoke increased activation of Kupffer cells in the liver. In
turn, these activated immune cells promote stellate cell activation via nuclear factor kappa-beta (NF-kB) and activator
protein 1, leading to increased production of proinflammatory and profibrotic cytokines, resulting in liver damage, fibrosis,
and cirrhosis. Nucleoside reverse transcriptase inhibitors (NRTIs) such as didanosine can cause oxidative stress and
mitochondrial toxicity.

(21)

Mitochondrial
injury

Moderate As the primary source of energy in the hepatocyte, any process that impairs mitochondrial function may lead to hepatic
injury. During HIV, mitochondrial injury can occur through increased stress on the endoplasmic reticulum (ER), initiated by
activation of the IRE1/TRAF 2 (Inositol Requiring 1/TNF receptor-associated factor 2) pathway. NRTIs and protease
inhibitors (PIs) can directly cause mitochondrial toxicity.

(21, 72, 73)

Immune-
mediated
injury

Moderate HIV can interact with hepatic stellate cells (HSCs) via gp120, producing inappropriate activation and increased HSC
production of collagen and monocyte chemoattractant protein (MCP-1) (a macrophage chemoattractant).
HIV decreases the number of Kupffer cells in the liver, decreasing the ability of the liver to clear products of microbial
translocation.
HIV provokes alterations in cytokine profiles resulting from imbalance between CD4+ and CD8+ T-cells

(21, 74, 75)

Cytotoxicity Mild HIV triggers apoptosis via the HIV gp120 protein-receptor signaling pathway. (76)
Systematic
inflammation

Significant The systematic inflammation resulting from HIV infection may induce fibrosis via a number of mechanisms, including
oxidative stress and mitochondrial dysfunction as a result of ER stress. CD4/CD8 imbalances seen in HIV can lead to
underexpression of IFN-gamma (an antifibrotic cytokine), thus favoring induction of apoptosis of activated HSCs, and
hepatic progression into a profibrotic state.

(21, 77, 78)

Gut microbial
translocation

Significant This leads to hepatic injury primarily via increased hepatic levels of bacterial lipopolysaccharides (LPS), causing hepatic
inflammation. More specifically, hepatic inflammation may result from (i) recruitment and activation of inflammatory cells
(Kupffer cells and HSCs), (ii) systemic immune responses promoting hepatocyte cell death, or (iii) production of
proinflammatory cytokines and acute phase reactants such as transforming growth factor beta 1 (TGFB1), IL-6, and IL-10

(79–81)

Nodular
regenerative
hyperplasia

Significant This is a rare condition in which diffuse transformation of the liver parenchyma into micronodules without intervening
fibrosis leads to non-cirrhotic portal hypertension in patients with HIV. Pathophysiologically, it is thought that gut bacterial
translocation may be responsible for vascular endothelial disruption, vascular and peri-vascular fibrosis and stenosis, and
portal hypertension. The epithelial damage observed in the liver isare thought to either be immune-mediated or possibly
related to direct viral damage by HIV.

(82–84)
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innate antiviral defense cytokine, and is known as a pleiotropic
cytokine that acts by up-regulating transcription of hundreds of
IFN-stimulated genes, including HIV restriction factors (106). To
illustrate this point, Gondim et al. (107), for instance, have
investigated how IFN-1 can control HIV infection and they
have shown that IFN-1 (including IFNa2 and IFNb)
administration can reduce viral replication in CD4+ T-cells and
macrophages. Furthermore, three major points depicting the
interplay between HIV infection and IFN-I are of particular
interest, viz., (i) the sensitivity of HIV-1 isolates to IFN-I
inhibition consistently changes over time, (ii) HIV-1 isolates
obtained during ART therapy were relatively IFN-I sensitive,
and (iii) the viruses that rebounded after treatment interruption
displayed the highest degree of IFNa2 and IFNb resistance. Thus,
IFN-1 plays an essential role in inflammation, immunoregulation,
tumor cell recognition, and T-cell responses. In the absence of
effective expression of IFN-1, or in the absence of response
resulting from its expression, the immune system becomes
vulnerable to viral infections, such as infections by HBV. In
addition to IFN-1, HIV avoids INF-gamma (IFN-g, a type II
interferon) control by (i) destroying CD4+ T-cells [also
responsible for IFN-g secretion (67)] or (ii) repressing, for
instance, PSGL-1 (an HIV restriction factor) activities, which
has been extensively reviewed by our research group (4).
Besides, in order to reduce the protective benefits of innate
responses, HIV-1 resists well-demonstrated control by natural
killer cell (108–113) [stimulated by innate cytokines including
IFN-1, IL-15, IL-18 and receptor-ligand interactions (93)], and
may disrupt innate regulation of adaptive responses, as suggested
by Borrow (93). By utilizing these mechanisms, HIV infection
contributes to HBV evasion of immune cells (particularly effector
cells) to establish chronic HBV disease, as described by Lannacone
and Guidotti (54).

High HIV Viral Load and CD4+
T-Cell Depletion
During AHI, the elevated concentration of viral particles in the
systemic circulation facilitates infection of the liver by HIV,
which in turn promotes multiple pathways that all converge on
activated hepatic stellate cells (HSCs), the primary source of
collagen synthesis in the injured liver, which encourages hepatic
inflammation and fibrosis (60). For instance, it is known that
HIV and its envelope gp120 (i) promote direct pro-fibrogenic
effects on HSCs, (ii) promote the production of pro-
inflammatory cytokines (such as MCP1, IL-8), and (iii) induce
apoptosis in hepatocytes (75, 114). Indeed, HIV glycoproteins
induce hepatocyte apoptosis via the expression of the TNF-
related apoptosis inducing ligand (TRAIL), by stimulation of
hepatocytes (115, 116). Furthermore, rapid fibrosis, in addition
to causing elevated plasma HIV levels, correlates with reduced
CD4+ T-cell counts.

During AHI, there is extensive CD4+ T-cell destruction
(HIV-induced CD4+ T-cell depletion) (93). On the one hand,
this HIV-induced depletion of CD4+ T-cells relative to CD8+ T-
cell recruitment alters the hepatic cytokine profile, establishing a
fibrogenic environment. Consequently, an injured liver becomes
Frontiers in Immunology | www.frontiersin.org 6
an ideal target for HBV to establish an acute phase, which
progressively metamorphoses into a chronic infection due to
the persistence of the systemic inflammation caused by HIV
infection. On the other hand, it is recognized that host CD4+ T-
cells are essential for the recognition of viral antigens presented
by Kupffer cells and the regulation of the activities of (i) CD8+
cytotoxic T-cells, (ii) antibody-producing B-cells, and (iii)
cytokine-secreting cells (19, 117–119). When the HIV acute
phase leads to drastic depletion of CD4+ T-cells, the immune
system is unable to adequately respond to HBV invasion, as HBV
antigens presented by Kupffer cells cannot thus be recognized.
Moreover, CD8+ T-cells, B-cells, and cytokine-secreting cellular
functions are overwhelmed by HIV subvertive activities, which
thus facilitates HBV infection establishment.
HIV SEROCONVERSION AND THE
CHRONIC PHASE

During the seroconversion phase, which occurs after the acute
phase (Figure 2), the body starts producing detectable levels of
HIV-specific antibodies. A seropositive individual may have flu-
like symptoms, such as fever and body aches during this phase.
The duration for HIV disease progression with clinical
symptoms varies widely across individuals, although it usually
progresses slowly (120). Most HIV-positive individuals are
diagnosed during or after the seroconversion phase [as HIV
diagnostic tests generally target HIV-specific antibodies (121)].
During this period, the earlier detection and earlier initiation of
appropriate treatment leads to a reduced risk of onward
transmission. Due to HIV-specific antibody production, HIV-
infection is stabilized at this stage of the infection, meaning that
the plasma viral RNA load, despite being high, remains stable,
CD4+ T-cells counts increase slightly, and the immune system
activation remains persistent. HIV causes several structural,
functional, and immunological impairments, resulting from a
persisting underlying chronic inflammatory state (122–124).
HBV establishment is likely to be favored by HIV infection
during the seroconversion and the chronic phases as HIV
infection sustains the immunological impairments present
during the acute phase, in conjunction with other mechanisms,
as described in the following paragraphs.

HIV-Associated Gut Dysbiosis
It has been reported that the gastrointestinal tract (GI) represents
the primary site of HIV replication and reservoir persistence
(125). Once HIV infection is established, a rapid loss of GI
mucosal integrity is noted. Indeed, HIV disrupts the lymphatic
system of the gastrointestinal tract, causing a large loss of CD4+
T-lymphocytes in the gut-associated lymphoid tissue (GALT),
which disrupts the tight junctions of the intestinal epithelium.
Subsequently, this detrimentally alters the integrity of the
intestinal mucosal barrier, leading to intestinal microbiomic
disorders (126, 127), which manifest as a decrease in gut
microbiotic organism diversity, the augmentation of specific
species of potent ia l ly pathogenic gut microbiomic
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microorganisms (128), and the promotion of an increased
permeability (or “ leakiness”) of the intestinal tract.
Consequently, harmful bacteria and their products, such as
lipopolysaccharide (LPS), via their passage through the portal
vein into the liver, may activate the liver’s innate immune system
by recognition of Toll-like receptors (TLRs, especially TLR2 and
TLR4) (129). Some investigators believe that the levels of
translocated microbial products, such as LPS, in the portal vein
and/or in the liver (which are both difficult to measure) may be
more important than these microbial products being present in
the systemic circulation (27, 54). This innate immune response,
generated by pathogen-associated molecular patterns (PAMPs)
produced by intestinal microbes, may be responsible for
hepatocyte damage (130). To further illustrate this point, in a
study by Evans et al. (131), using SIV-infected macaques, it was
demonstrated that increased microbial load in the liver may also
trigger chemokine production and an increased infiltration of
CXCR6+ activated NK cells, known for their role in the
development of liver fibrosis. An HIV-positive individual
displaying an HIV-associated gut dysbiosis profile can, thus,
readily develop HBV infection, as HIV-associated microbial
translocation favors hepatocyte injury. Our group has recently
published an extensive review discussing mechanisms whereby
gastrointestinal microbiome dysbiosis and a “leaky” gut in
PLWH increases susceptibility to HBV infection (132).

Immune Cell Exhaustion
CD8+ T-cells (levels of which remain elevated in the bloodstream
during HIV infection), HIV-associated dysbiosis via microbial
translocation (128, 133), and TRAIL [a proapoptotic ligand with
an immune effector function promoting the eradication of
infected or malignant cells (134)], are some of the identified
factors responsible for CD4+ T-cell depletion. CD4+ T-cell
depletion is also responsible for liver injury, which facilitates
liver invasion by HBV (as described in the preceding section).
Since CD4+ T-cells are important for the recruitment of HBV-
specific CD8+ T-cells, a sustained CD4+ T-cell depletion restricts
the ability of the immune system to adequately and appropriately
respond to HBV invasion. Indeed, in such a context, it is difficult
for the immune system to locate and recruit HBV-specific CD4+
T-cells (55), which represents an essential facilitator for the
induction and maintenance of both CD8+ T-cells and for B-cell
antibody responses (68). Researchers have also noted exhaustion
signatures in HIV-infected innate immune cells, rendering them
less potent at responding not only to HIV, but also to HBV, which
is inherently highly efficient at avoiding recognition by the innate
immune system, as reported in several studies (135–138). For
example, Wang et al., have identified exhausted CD4+ T-cells and
CD8+ T-cells, and then, a closer look at the exhausted CD8+ T-
cells has indicated that they present less effector function
phenotypes than normal CD8+ T-cells (139). Indeed, Wang
et al., have identified key upregulated genes [killer cell lectin-
like receptor subfamily G member 1 (KLRG1), cluster
differentiation (CD160), and T-cell immunoreceptor with Ig
and ITIM domains (TIGIT)] that are associated with T-cell
exhaustion. Additionally, Nguyen et al. (140), have
demonstrated that HIV-specific CD8+ T-cells from the lymph
Frontiers in Immunology | www.frontiersin.org 7
nodes of HIV chronic progressors preferentially express
exhaustion signatures [TIGIT, lymphocyte-activation gene 3
(LAG3), CD244 (recognized as inhibitory receptors), KLRG1,
and the transcription factor EOMES (Eomesodermin, also known
as T-box brain protein 2, Tbr2)] (141–143). Thus, subsequent to
HIV infection, remaining CD4+ T-cells and circulating CD8+ T-
cells, should they be exhausted, are potentially less potent at
assuming essential protective functions compared to normal CD4
+ and CD8+ T-cells. A blockade of PD1 (144), CTL-4 (144),
KLRG1 (139), for example, may be potentially helpful in
effectively restoring the protective functions of exhausted
immune cells, which in turn could promptly respond to
HBV invasion.

Antiretroviral Treatment (ART)
Since most HIV-positive individuals are diagnosed during or
after the seroconversion phase, most HIV-infected patients often
initiate ART during or after this phase of the infection. ART
efficiently suppresses HIV-1 replication by targeting key
mechanisms in its life cycle (145), which in turn (i) reduces
HIV viral RNA load to below detectable levels (146, 147), (ii)
increases the circulating number of CD4+ T-cells (148, 149), (iii)
reduces the incidence of AIDS-related diseases and/or deaths
(148, 150), and (iv) effectively prevents the transmission of HIV
to the uninfected population (151). Compared to untreated
patients, ART reduces rates of hepatic fibrosis in treated
patients by effectively increasing CD4+ T-cell numbers.
However, active monitoring for ART-induced liver injury
should be considered as it has been reported that some ART
therapeutic drugs may be toxic to the liver (152, 153). Moreover,
it has also been reported that liver-related death is the leading
cause of non-AIDS death in patients whose HIV infection is well-
controlled by ART (154). Thus, in ART-treated patients, the risk
of liver injury does not originate solely from the prevalent HIV
RNA viral load or from CD4+ T-cell depletion, but may also
result from toxicity associated with ART drugs. This may also
represent a potent ia l addit ional factor faci l i tat ing
HBV establishment.

HBV Vaccinated Individuals
In people who have received the HBV immunization, the risk for
developing HBV remains, as memory B-cells and long-lived
plasma cells, recognized as pivotal for maintenance of
serological memory to vaccines and infections, have been shown
to be reduced in number during HIV-1 infection (155, 156).
Interestingly, their numerical decline correlates with reduction of
antibody (Ab) titers against childhood vaccinations (157, 158). It
is, therefore, reasonable to speculate on the reduction of HBV-
specific antibody titers subsequent to memory B-cell reduction,
even if it has been demonstrated that ART initiation shortly after
HIV infection may restore memory cell numbers to physiological
levels in HIV-1-infected children and adults (159, 160). Moreover,
exhausted memory B-cells [activated memory B (AM) and tissue-
like memory (TLM) B cells)] are expanded in the circulation
during HIV-1 infection (161, 162). From the investigations of
Wang et al. (139), and Nguyen et al. (140), it is now known that
HIV-related exhausted T-cells become less potent at
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accomplishing their full repertoire of immune functions. Although
some clarification remains to be elucidated in this specific subject
area, we may relatively confidently assume that due to HIV
infection, exhausted B-cells do become dysfunctional as well,
and are thus, not as immunologically competent as normal B-
cells at producing specific antibodies. Chiodi and Scarlatti (163)
have proposed that the B-cell dysfunctional profile (inhibition of
both B-cell proliferation and antibody production) due to cellular
exhaustion caused by HIV infection, could be explained by a
specific pathway engaged via the expression of inhibitory receptors
on the surface of TLM B-cells during HIV-1 infection, which
includes the inhibitory receptor Fc receptor-like-4 [FCRL4, which
is increased in B-cells during HIV-1 (164) infection, and acts by
dampening B-cell receptor (BCR) signaling]. Furthermore,
presence of IL-6, known to be increased in B-cells during HIV-1
infection, may lead to aberrant B-cell differentiation (164, 165). In
such contexts, the liver is vulnerable to HBV invasion, since the
expected specific antibody generation resulting from
administration of the HBV vaccine would have been somewhat
neutralized via B-cell destruction and secondary B-cell functional
impairment directly attributable to HIV infection.
ACQUIRED IMMUNODEFICIENCY
SYNDROME (AIDS) PHASE

The global success of ART in treating HIV infection and AIDS has
led some to some doubt whether a curative solution to AIDS is
necessary. Only patients not on ART or those who are infected with
HIV strains resistant to ART can progress to the AIDS phase of HIV
infection (166). In general, in untreated people or inadequately
treated people, it takes several years to gradually progress from
primary HIV infection to the AIDS phase, which is characterized by
the onset of symptoms and signs of severe HIV illnesses and
profound immunosuppression. The immunological and other
issues encountered during the acute and the chronic phases of
HIV infection are significantly exacerbated in the AIDS phase. A
patient at this stage of the infection may have a substantially high
viral load, which may, in addition to a very low CD4+ T-cell count
(Figure 2), lead to further liver injury, thus favoring HBV infection.
The overtly symptomatic stage of HIV illness denotes the late stage
of HIV disease (AIDS) in which patients (i) have a CD4+ T-cell
count of less than 200 cells/mm3 and (ii) are vulnerable to additional
opportunistic infections (OIs) (167) (such as infections by
Mycobacterium avium complex, Mycobacterium tuberculosis,
Pneumocystis jirovecii, Cytomegalovirus, Toxoplasma gondii, and
Candida species) or the occurrence of aggressive forms of Kaposi’s
sarcoma or B-cell lymphoma (32). Unfortunately, numerous OIs
are known to be associated with liver injury, which is a vital
facilitator for HBV invasion of the liver (168–173). The liver is
frequently affected by opportunistic infections, most commonly in
infections by mycobacteria and Cytomegalovirus (174). Compared
with non-TB HIV-infected patients, TB-HIV co-infected patients
present with more significantly aberrant liver function profiles, with
higher serum total bilirubin, alanine transaminase (ALT) and
alkaline phosphatase (ALK-P) levels (175). Dey et al., showed that
Frontiers in Immunology | www.frontiersin.org 8
Mycobacterium tuberculosis can be an etiological factor for liver
abscesses in HIV-infected patients (168). Infection by Toxoplasma
gondii has also been reported to promote chronic liver disease in
HIV-infected individuals (169). Hepatitis C virus infection is also
known to act as an opportunistic disease in AIDS patients, directly
causing progressive liver damage, which may also result in liver
cirrhosis and hepatocellular carcinoma (176, 177).

Moreover, the medications associated with the drug
treatment of opportunistic diseases are further contributing
factors to persisting liver damage. The current first-line drug
treatment for TB is a regimen of four drugs, i.e., isoniazid (INH),
rifampicin (RIF), ethambutol (EMB), and pyrazinamide (PZA)
(178). However, hepatotoxicity has been frequently observed as a
serious adverse reaction following the use of these anti-TB drugs,
especially with use of PZA, INH, and RIF, with a 2–28%
incidence rate (179–183). Among PLWH, a higher incidence of
hepatotoxicity has been seen, and Araújo-Mariz et al., have
reported a 30.6% cumulative incidence rate of hepatotoxicity in
PLWH following the use of recommended drugs for TB
treatment (184). Sulfonamides, including trimethoprim/
sulfamethoxazole (TMP/SMZ) and sulfadiazine, are other
drugs which have been widely used in AIDS patients, and have
been recommended as drugs of first choice for infections by
Pneumocystis jirovecii and Toxoplasma gondii in HIV-infected
patients (185). These drugs have also been frequently reported to
induce hepatotoxicity (186–189).

Other contributing factors that may occur during the
AIDS stage, such as paradoxical and unmasking immune
reconstitution inflammatory syndrome (IRIS) and drug-drug
interactions, may also result in liver disease or toxicity (190, 191).
However, further studies of the baseline liver status of patients
(uninfected by HBV) during the AIDS stage and studies of
liver enzyme profiles in these patients during the AIDS stage
are warranted to further assess other potential influencing factors
for HBV establishment in patients with AIDS.
CONCLUSION

It is known that HIV infection induces an immunodeficiency
syndrome, rendering the patient vulnerable to infections,
including HBV infection. The present review is the first to
critically discuss the specific mechanisms leading to HBV
establishment in a patient who is already HIV-positive. We
report that the acute phase is responsible for a sudden immune
system defense subversion, a CD4+ T-cell depletion, and a high
viral RNA load, all contributing to increasing the vulnerability of
the liver, which subsequently inexorably develops a
permissiveness to HBV. During the chronic phase of HIV
infection, gut-associated dysbiosis and immune cell exhaustion,
compounded by the hepatotoxic phenomena encountered
during the acute phase, are two major consequences of HIV
infection which are likely to enhance the probability of
subsequent HBV invasion of the liver. The other possible
facilitatory causes for HBV invasion of the liver in HIV-
infected patients that we have discussed herein are the use of
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modern ART, and HIV-associated B-cell depletion. Finally, the
AIDS phase of HIV infection is often defined by particularly low
CD4+ T-cell counts, OIs (and OI-related drug treatments), and
extraordinarily high viral RNA loads, all of which, as we have
described herein, conspire to inflict further sustained injury to
the liver, which also favors HBV establishment.
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Communication: Interactions Between Nevirapine Plasma Levels, Chronic
Hepatitis C, and the Development of Liver Toxicity in HIV-Infected
Patients. AIDS Res Hum Retroviruses (2003) 19(3):187–8. doi: 10.1089/
088922203763315687

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.
Frontiers in Immunology | www.frontiersin.org 14
Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zaongo, Ouyang, Chen, Jiao, Wu and Chen. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
April 2022 | Volume 13 | Article 853346

https://doi.org/10.14309/crj.0000000000000660
https://doi.org/10.1089/088922203763315687
https://doi.org/10.1089/088922203763315687
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	HIV Infection Predisposes to Increased Chances of HBV Infection: Current Understanding of the Mechanisms Favoring HBV Infection at Each Clinical Stage of HIV Infection
	Introduction
	HIV And HBV: Transmission Routes And Life Cycle
	Acute And Early HIV Infection
	Innate Immune Defense Subversion
	High HIV Viral Load and CD4+ T-Cell Depletion

	HIV Seroconversion And The Chronic Phase
	HIV-Associated Gut Dysbiosis
	Immune Cell Exhaustion
	Antiretroviral Treatment (ART)
	HBV Vaccinated Individuals

	Acquired Immunodeficiency Syndrome (Aids) Phase
	Conclusion
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


