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Purpose: To investigate the potential of statistical andmachine learning approaches to
determine the diabetic status of patients from optical coherence tomography angiog-
raphy (OCT-A) images.

Methods: This was a retrospective cross-sectional observational study based at Manch-
ester Royal Eye Hospital, United Kingdom. OCT-A scans were sequentially selected from
one eye of each of 182 patients whowere either not diabetic, diabetic without retinopa-
thy, or diabetic with retinopathy requiring hospital follow-up. Eligible images were
analyzed by expert purpose-built automated algorithms to calculate clinically relevant
outcomemeasures. Thesewere used in turn as inputs tomachine learning and statistical
procedures to derive algorithms to perform clinically relevant classifications of patient
images into the clinical groups. Receiver operating characteristic curves for the classi-
fiers were evaluated and predictive accuracy assessed using area under curve (AUC).

Results: For distinguishing diabetic patients from those without diabetes, the Random
Forest classifier provided the highest AUC (0.8). For distinguishing diabetic patients with
significant retinopathy from those with no retinopathy, the highest AUC was repre-
sented by logistic regression (0.91).

Conclusions: The study demonstrates the potential of novel techniques using
automated analysis of OCT-A scans to diagnose patients with diabetes, or when diabetic
status is known, to automatically determine those that require hospital input.

Translational Relevance: This work advances the concept of a rapid and noninvasive
clinical screening tool using OCT-A to determine a patient’s diabetic status.

Introduction

The impact of diabetes on retinal vasculature
has for many years been investigated with tradi-
tional techniques involving photography and fluores-
cent intravenous dyes.1 Such traditional invasive
techniques may show leakage and be sensitive to subtle
features, such as microaneurysms, but require intra-
venous injection of contrast agents, a process that
is time-consuming and can have potentially serious
side effects.2 Optical coherence tomography angiog-
raphy (OCT-A) is a modern imaging innovation that
allows for detailed but noninvasive visualization of
retinal vasculature. The advent of OCT-A technol-

ogy has spawned numerous studies including research
on the automated segmentation and analysis of
OCT-A images for identifying characteristics of
diabetic disease.

Eladawi et al.3 used spatial models to segment blood
vessels, and Ting et al.4 investigated the impact of
diabetes on such segmented retinal microvasculature.
Other articles corroborate the finding that changes
in OCT-A vasculature occur even in patients with
diabetes who have no discernible diabetic retinopa-
thy.5 Nesper et al.6 showed that higher intensity in the
superficial capillary plexus may be an early marker
of diabetic microvascular changes before clinical signs
of diabetic retinopathy. Durbin et al.7 have reported
variable diagnostic potential when individual features
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of OCT-A are used to distinguish eyes with diabetic
retinopathy from normal eyes. They found that super-
ficial plexus vessel density had the highest area under
the receiver operating characteristic (ROC) curve (area
under curve [AUC]) of 0.893, compared with features
such as foveal avascular zone (FAZ) area (0.472) and
vessel density in the deep plexus (0.703). More recent
studies by Eladawi et al.8 have progressed to demon-
strate the ability to distinguish normal patients from
those who were diabetic with retinopathy (DR) by
combining OCT-A features using a machine learning
algorithm.

We propose to expand on work in this field using a
wider variety of OCT-A features that have been devised
by a retinal expert for their diagnostic potential includ-
ing novel characteristics that have not previously been
studied. A greater number of modern statistical and
machine learning techniques will thereafter be applied
to optimize the diagnostic potential of these OCT-A
features. Finally, to equate findings to real-world use,
the algorithms will be designed to differentiate two
sets of less diverse patient groups that better repre-
sent clinical need. Two principal scenarios are envis-
aged, which would be most appropriate to demonstrate
the potential clinical utility of this technique. First, the
capacity to reliably diagnose diabetes using a single
noninvasive test (distinguishing diabetic patients from
those without diabetes). Second, the capacity to deter-
mine if patients with known diabetes have significant
retinal disease that requires hospital care (distinguish-
ing diabetics with significant retinopathy from those
without significant retinopathy).The aim of this study
was therefore to investigate the potential of statisti-
cal and machine learning approaches to distinguish
diabetic status between these specific closer related
groups of patients through clinically driven OCT-A
analysis.

Methods

This was a retrospective clinical case–control analy-
sis of anonymized OCT-A scans of one eye of
patients seen at Manchester Royal Eye Hospital,
United Kingdom, between April 2017 and June 2018.
The research was prospectively approved to study
anonymized patient images by the Central Manch-
esterUniversity Foundation Trust Research andDevel-
opment Office and adhered to the Declaration of
Helsinki.

Patients were included in the study if they had no
significant ocular condition that might affect quality
of an OCT-A image or introduce other inappropriate

clinical cues, including macular edema, macular degen-
eration, retinal vein or artery occlusion, glaucoma, and
significant cataract. Patients recruited were required
to have had an OCT-A scan with good segmentation
free of artefacts in the examined eye as determined
by the researcher. If both eyes were eligible, a random
number generator was used to determine which eye
was selected for analysis. The clinical characteristics
and best corrected visual acuity (BCVA) on the day of
the scan were determined from electronic records and
paper notes for patients and visual acuity converted to
ETDRS (Early TreatmentDiabetic Retinopathy Study)
letter score.

We included three cohorts of patients in the study.
The first cohort consisted of patients with no diagnosis
current nor pending of diabetes, nor signs or symptoms
of the disease (normal controls, [N]). They were
patients who had been attendingManchesterRoyal Eye
Hospital and had screening scans for a variety of other
conditions that had ultimately returned diagnoses that
did not involve any posterior segment disease.

The second cohort consisted of patients who were
diabetic (insulin and noninsulin dependent) but who
had been referred into the hospital eye service for other
reasons and did not have any signs of diabetic retinopa-
thy on clinical examination by an ophthalmologist nor
on color imaging (diabetic no retinopathy [DnR]).

Finally, we included a cohort of patients who had
been diagnosed with diabetic retinopathy and were
currently in the hospital eye service for active or stable
disease requiring hospital observation or management
(DR).

OCT-A Imaging

Patients were imaged using a Topcon swept-source
OCT-A machine (Triton DRI-OCT, Topcon, Inc.,
Topcon, Tokyo, Japan) with a field of view of 12
× 9 mm with 7-layer automated segmentation and a
refresh rate of 100,000 A- scans per second. Depth of
field of view was set to 3 × 3 mm with axial sampling
density of 320 × 320 pixels and number of repetitions
set at 4. Scans were obtained aligned to the central
point of the fovea. En face OCT angiograms were
segmented automatically using the built-in software to
define the superficial capillary plexus. Superficial capil-
lary plexus images were exported in the PNG format
from ImageNet6—the central OCT-A viewer for the
site.

Image Processing and Analysis

The software algorithm for image analysis was
developed in-house usingMATLAB2015 (Mathworks,
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Natick, MA) using the image processing toolbox. The
code worked automatically through various steps to
achieve a segmented image and then calculated physi-
cal measurement outcomes based on it, which reflected
expert knowledge on the impact of diabetes in the eye.
It was entirely automatic with no subjective steps. A
summary of themain steps in the algorithm is provided
here, with more detail provided in the Supplementary
Section S1.

The original image first underwent noise removal
via a Wiener filter, and subsequent sharpening filters
were followed by techniques to equalize the image
histogram. At this stage, the vascular network was
refined using a seed-growing algorithm. Automated
threshold levels were then used to define pixels repre-
senting vasculature, with alternate areas representing
areas of nonperfusion. If these nonperfused areas
matched predefined thresholds of size, they were
defined as ischemic areas. Major vessels among the
vascular network were located by starting with noise
removal and an averaging filter and then pruning
of smaller capillaries. A final segmented image was
produced of capillaries, major vessels, ischemic areas,
and FAZ.

Initial algorithms explored 12 clinically orientated
measures of the earlier described segmented anatomic
OCT-A features that were designed by a retinal expert
to explore features that could be of pathophysiological
importance. These are described in full in the Supple-
mentary Section S1. We could potentially have submit-
ted all these characteristics into our machine learn-
ing algorithms. However, limited numbers of patients
available for training would have meant inappropri-
ate measures would not necessarily be fully excluded,
with a lower quality result. We opted therefore to
include only those measures deemed to have the most
clinical potential, including at least one measure of
each anatomic segmented zone. We were guided by
earlier feasibility studies that assessed differences in
the outcome measures between patients who were DR
compared with those who were normal. After review-
ing results of these feasibility studies, five key outcome
measures derived from the superficial capillary plexus
were selected as the candidates for input to machine
learning algorithms for the more challenging classifica-
tion tasks and are described later.

FAZ Circularity (“Circ Max”)

Representing the FAZ, this measure was shown to
be significantly different between the two prior feasi-
bility groups. Although the more fundamental value of
perimeter length of FAZ was also significantly differ-
ent, information on perimeter length is present within

the circularity calculation and the value of FAZ circu-
larity has been found to be of discriminatory value
in previous publications.9 It was calculated using the
formula 4πA/P2 where A is the FAZ area and P is
the FAZ perimeter in pixels. Other measures of FAZ
including eccentricity and area were not significantly
different in prior studies and were not included.

Area of Ischemic Zones Around FAZ
(“Adjacent Area Sum”)

The FAZ is easily recognizable as the large central
area in images that is devoid of vascular structures. It
is clinically known that diabetes may lead to increase
in size of the FAZ but also understood that smaller
areas of capillary loss may occur outside of this FAZ.
The “adjacent area sum” measure represents the sum
of all ischemic areas found around the FAZ in the
entire image. Rather than direct measurement of the
area of FAZ,9,10 we found in preliminary studies that
using morphologic techniques to measure the areas
of capillary dropout not within, but surrounding the
FAZ (Fig. 1), was more significant despite this precise
measure not being previously reported. Although these
ischemic areas lacking vasculature could be theoreti-
cally anywhere within the 3 × 3 area of the OCT-A,
they were typically adjacent to the FAZ and this feature
has been labeled as adjacent area sum.

Average Percentage of Skeletonized
Capillary Vessels (“Ave Percent Sk”)

A skeletonization process reduces all objects in any
binary image to single-pixel wide lines, without chang-
ing the essential structure of the image.11 Thus it
extracts the center line while preserving the network
topology. Our algorithmwas novel in utilizingmorpho-
logic processing techniques to distinguish smaller
and larger vessels, allowing for meaningful separate
measures of smaller capillary and larger vessels that
have not been previously studied. “Average percentage
of skeletonized capillary vessels” expresses a measure
of the extent of the smaller capillary vessels networking
to cover the retina, excluding areas taken up by larger
vessels and FAZ. This measure was significantly differ-
ent between the clinical groups of early studies.

Mean Capillary Intensity (“Mean Cap Int”)

This represented a measure of the amount of flow
through small vessels by measuring the intensity of
the small vessel/capillary pixels. As described earlier,
our segmentation techniques allowed measurement of
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Figure 1. OCT-A 3 × 3 mm scan of the superficial capillary plexus of the left eye of a patient with known diabetic retinopathy. (A) Original
scan, (B) segmentation by our algorithms. The large central area boundedby red is the FAZ. It is irregular anddistortedwith numerous spaces
of capillary dropout surrounding it (areas bordered by red lines). The green lines represent capillaries (small vessels) and the blue lines those
areas segmented as large vessels.

capillaries only, excluding larger vessels. This measure
represented a distinct aspect of vessel pathophysiol-
ogy to the feature of “average percentage of skele-
tonized capillary vessels” described earlier, and so both
measures were adopted for further study.

Mean Vessel Intensity (“Mean Ves Int”)

Despite not being shown to be significantly differ-
ent in our small feasibility studies, this measure was still
incorporated as the only discrete indicator of status of
the larger vessels, to allow for some form of representa-
tion of all clinically recognizable anatomic features in
resulting algorithms. It represents average intensity of
the larger segmented vessels.

All eligible OCT-A scans were processed with the
automated analysis software, and the key outcome
measures described earlier were calculated. These
image analysis outcome measures were used as poten-
tial predictor variables with the target outcome being
the clinical cohort to which the patients belong:
normals (N) or diabetic (DM). The DM cohort
consisted of patients who were DR or DnR. In this
article, we do not promote or explore the accuracy
of individual stages of segmentation or analysis of
the processing algorithms but focus on assessing and
reporting the utility of our final outcome measures to
provide data on which to differentiate diabetic status.

We conducted an initial exploratory analysis includ-
ing distributions of the potential predictor variables
and summary statistics of predictor variables in each of
the clinical cohorts. As an extension to the exploratory
analyses, we derived a decision tree multiclass classi-
fier to illustrate the interaction and importance of the
predictor variables to the clinical groups as a whole.
We used R (R Foundation for Statistical Computing,
Vienna, Austria) for these analyses.12

Rather than using a three-class classifier to separate
a patient into one of three clinical groups, we deemed
it more clinically appropriate to build separate binary
classifiers for two distinct, clinically useful classifica-
tions. In the first scenario, we assess the capacity to
distinguish any patients with diabetes, whomay or may
not have visible retinopathy, from normal patients. In
the second, we assess the potential of algorithms to
distinguish those diabetic patients with clinically signif-
icant retinopathy (requiring hospital care) from those
diabetic patients with no retinopathy. The binary classi-
fiers we assessed were Naïve Bayes,13 Decision Tree,13
Logistic Regression,14 Random Forest,15 and a gradi-
ent boosting classifier (XGBoost).16

The Naïve Bayes classifier provided a baseline
against which to assess the predictive accuracy of
the other classifiers, predictive accuracy markedly
below that of the Naïve Bayes classifier may be an
indication of overfitting, and therefore less reliable
for inference about the importance of the various
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Table 1. Summary Statistics by Diabetic Status of all Patients Included in Study Analyses

Diabetic no Diabetic with
Retinopathy, Retinopathy,

Variable Statistic Normals, N (n = 49) DnR (n = 50) DR (n = 53)

Sex Male 32, Female 17 Male 36, Female 14 Male 43, Female 10
Age Mean (SD) 57.14 (13.56) 61.06 (12.77) 58.38 (13.06)

Median 57.0 61.5 60
BCVA Mean (SD) 85 (19.66) 96.36 (7.39) 86.17 (13.43)

Median 95 95 90
Adjacent area sum Mean (SD) 3117.12 (3662.07) 3613.92 (3458.93) 12427.91 (6899.22)

Median 1953.0 1978.5 10959
Circ max Mean (SD) 0.32 (0.16) 0.24 (0.10) 0.18 (0.088)

Median 0.29 0.22 0.18
Ave percent sk Mean (SD) 12.89 (0.44) 13.14 (0.53) 12.58 (0.41)

Median 12.85 13.03 12.52
Mean ves int Mean (SD) 180.65 (6.43) 181.38 (6.04) 179.28 (7.45)

Median 182.0 183.5 181.0
Mean cap int Mean (SD) 98.69 (6.23) 94.22 (5.41) 93.47 (6.03)

Median 99 95 94

Image analysis metrics shown are area of ischemic zones around FAZ (adjacent area sum), FAZ circularity (circ max),
skeletonized capillary11 percentage area (avepercent sk),meanvessel intensity (meanves int), andmean capillary intensity
(mean cap int).

predictor variables. ROC curves for the classifiers
were evaluated by performing a leave-one-out (LOO)
cross-validation. The ROC curve is essentially a plot
of sensitivity against specificity for the classifier. Due
to both the Random Forest and XGBoost algorithms
having a nondeterministic element to them, for each
cross-validation fold we ran these algorithms 100 times,
each with a different random initialization, and used
the mean predicted probability across these 100 runs
as our estimate for the left-out data point. Predictive
accuracy for the classifiers was assessed using the AUC
of the ROC curve. We used the AUC package in R to
calculate AUC values of the ROC curves. Confidence
intervals for the AUC values were estimated using
the pROC package in R. We presented and explored
in further detail those classifiers demonstrating the
highest AUC values.

Results

We assessed 182 eyes for this study, of which 30
were excluded due to significant artefacts or poor
quality: 12 in the DR group and 9 in both DnR and
normal groups. A total of 152 eyes from 152 patients
were therefore used in the analyses. There were 49 eyes
in the normal control cohort of patients, 50 eyes in
the cohort of diabetic eyes with no retinopathy, and
53 eyes in the cohort with diabetic retinopathy. The

summary of demographic data for each cohort are
reported in Table 1.

Exploratory Data Analysis

From initial histograms of variables, we were able
to infer which of them help differentiate between the
different diabetic statuses (see Supplementary Section
S2). In particular, age did not appear to differentiate
between the three diabetic populations. As a known
diabetic risk factor, confirmation that the sample
populations had been matched sufficiently for age is
provided by Table 1, which gives summary statistics for
each of the variables by diabetic status. The differences
in age are not statistically significant (P = 0.07 for two-
sided, two-sample Wilcoxon test of normals vs. DnR;
P = 0.33 for two-sided, two-sample Wilcoxon test of
normals vs. DR). As the different populations are age
matched and we are interested in identifying purely
ophthalmic imaging factors for diabetic status, we do
not include age as a predictor in the classifiermodels we
will build. Likewise, we consider the lower BCVAvalues
in the normal population to likely be due to nondiabetic
patients with suspected vision issues being referred
for assessment and a priori do not consider BCVA
to be a useful diagnostic or causal factor of diabetic
status for our study. Consequently, we do not include
BCVA as a predictor variable in our classifier models.
As BCVA does not display strong correlations within
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Figure 2. Multiclass decision tree. At the root of each branch is the variable that the algorithm uses to decide the split at that branch. The
labels at the terminal nodes are those in which the algorithm predicts to be the most probable diabetic status. Where we see the same
terminal label at both nodes of a binary split, this means that the variable has detected different distributions despite the label being the
same.

any of the other variables (see Supplementary Section
S2), this should not induce any bias in the resultant
classifiers.

An initial decision tree built on all the obser-
vations (all three sample populations) using the R
tree package is shown in Figure 2. This classification
technique serves as a useful visual representation of the
importance of the various image analysis outcomes in
distinguishing between the different clinical scenarios.
It is distinct from the Random Forest algorithm used
subsequently as a binary classifier. It is evident that the
decision tree uses “adjacent area sum”at the root node,
primarily distinguishing DR cases (43 out of 53 of the
DR cases) from the other sample populations. “Skele-
tonization percentage” and “mean cap int” are then
also used to distinguish primarily between normals and
those with diabetes.

Binary Classifiers and Predictive Accuracy

The results from using the various binary classi-
fiers for each of the two clinical classifications of
all diabetic patients from nondiabetic (normal), or
those with significant diabetic retinopathy from those
without significant retinopathy (DR vs. DnR), are
presented in Table 2. Estimates of the AUC values of
the ROC curves, along with 95% confidence intervals,
for the Naïve Bayes, Decision Tree, Logistic Regres-
sion, Random Forest, and XGBoost classifiers are
provided for each scenario. To further aid compari-
son of the different classifiers, we have listed estimates
(along with 95% confidence intervals) of the specificity
for each classifier at 90% sensitivity. Further details on
those classifiers demonstrating the highest AUC values
are provided later.

Table 2. AUC Values from Analyses of Different Binary Classifiers

Classifier AUC AUC Specificity Specificity
All Diabetic vs. Normal DR vs. DnR All Diabetic vs. Normal DR vs. DnR

Naïve Bayes 0.78 (0.70, 0.86) 0.90 (0.83, 0.95) 0.43 (0.29, 0.59) 0.68 (0.40, 0.88)
Decision Tree 0.61 (0.52, 0.70) 0.83 (0.75, 0.91) 0.12 (0.04, 0.24) 0.46 (0.23, 0.78)
Logistic Regression 0.79 (0.71, 0.87) 0.91 (0.85, 0.96) 0.47 (0.31, 0.63) 0.72 (0.56, 0.88)
Random Forest 0.80 (0.73, 0.87) 0.86 (0.79, 0.93) 0.49 (0.31, 0.69) 0.66 (0.34, 0.82)
Gradient Boosting 0.75 (0.67, 0.83) 0.84 (0.76, 0.92) 0.41 (0.12, 0.59) 0.62 (0.22, 0.80)

Values for AUC for each of the various forms of machine learning and statistical analysis that have been applied are given
with respect to the classification tasks in the first two columns; N versus DM individuals and DR versus DnR. A perfect classifier
has an AUC value of 1. In the rightmost two columns, specificity estimates of each of the binary classifiers are provided for a
fixed 90% value of sensitivity. Values for the 95% confidence intervals are shown in brackets.
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Figure 3. The left image represents the ROC curves for all classifiers for N versus DM. The ROC curves shows how the true-positive rate
(sensitivity) increases with increase in the false-positive rate (1-specificity). The ROC curve for a near perfect classifier would start from the
origin and rise steeply into the top-left quadrant. The AUC measures how close the ROC curve is to that of a perfect classifier. A perfect
classifier has an AUC value of 1. The right image similarly represents the ROC curves for all classifiers for DR versus DnR.

Diabetic versus Normal: Random Forest

The Random Forest algorithm provided the highest
predictive accuracy, as measured by the AUC value of
0.8, and is therefore presented in detail. The Random
Forest ROC curve estimated from the LOO cross-
validation analysis is shown in the left image of Figure 3
in green, along with the ROC curves (for comparison)
for all the other classifiers. The importance of each

variable, as measured by the values of mean decrease in
accuracy and mean decrease in Gini coefficient, when
the Random Forest algorithm was applied to the full
dataset, is shown in Table 3. The decrease in accuracy
measure indicates the reduction in classifier accuracy
when we explicitly break any potential link between
the predictor variable and the outcome variable. The
Gini coefficient is a standardmeasure of how unequal a
probability distribution is, and in this instance indicates

Table 3. Variable Importance Measures for the Random Forest Classifier when Differentiating N fromDM Individ-
uals

Mean Decrease Mean Decrease in
Variable in Accuracy Gini Coefficient

Adjacent area sum 21.11 (21.059, 21.15) 18.45 (18.44, 18.47)
Circ max 10.21 (10.17, 10.26) 15.27 (15.25, 15.28)
Ave percent sk 6.44 (6.40, 6.48) 11.01 (11.00, 11.017)
Mean ves int 2.00 (1.96, 2.045) 7.69 (7.68, 7.70)
Mean cap int 12.81 (12.76, 12.85) 12.99 (12.97, 13.00)

The table shows the mean decrease in accuracy estimated from 2000 runs of the Random Forest algorithm applied to the
full dataset. The more the accuracy of the Random Forest classifier decreases when breaking the link between the predic-
tor variable and the outcome variable, the more important that predictor variable. Variables with a large mean decrease in
accuracy are therefore more important for classification of the data. The Gini importance measures the mean decrease of
node impurity by splits of a given variable. If the variable is useful, it tends to split mixed labeled nodes into pure single class
nodes. The table shows the average across the 2000 runs of the algorithm of the mean decrease in Gini coefficient for each
predictor variable. In all cases the numbers in brackets denote the range corresponding to ±1.96 standard errors around the
average. Thus we can see that area of ischemic zones around FAZ (adjacent area sum) and FAZ circularity (circ max) are the
most important variables.
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Table 4. Table of Coefficient Values for Logistic Regres-
sion of Image Analysis Measures Differentiating DR
versus DnR

Standard
Variable Effect Error P Value

Adjacent area sum 2.56 0.69 0.00021***

Circ max –0.36 0.36 0.31
Ave percent sk –1.65 0.48 0.00052***

Mean ves int 0.085 0.45 0.85
Mean cap int –0.11 0.45 0.81

It is evident from this table that significant effect is seen
from the variables of area of ischemic zones around FAZ
(adjacent area sum) and percentage skeletonized area (ave
percent sk).

***P Value < 0.001.

how pure, with respect to case mix, the child nodes of
a tree are after splitting using the predictor variable.
Mean decrease in accuracy and mean decrease in Gini
coefficient values are obtained by averaging over all the
trees in the Random Forest ensemble, and were calcu-
lated using the randomForest package in R. We ran
the Random Forest classifier process 2000 times, each
with a different random initialization, to average over
the nondeterministic element of the Random Forest
algorithm. The table shows the averages of the mean
decrease in accuracy and mean decrease in Gini coeffi-
cient across these 2000 runs. The numbers in brackets
in Table 3 denote the range corresponding to ±1.96
standard errors around the average, with the standard
error estimated from the sample standard deviation
across the 2000 runs of the Random Forest algorithm.
From these figures we would conclude that “adjacent
area sum” and “circ max” are the most important
predictors in distinguishing normals from diabetics.

DR versus DnR: Logistic Regression

The Logistic Regression algorithm provided the
highest predictive accuracy, as measured by the AUC
value of 0.91, and is therefore presented in detail. The
ROC curve estimated from the LOO cross-validation
analysis is shown in the right image of Figure 3 in red,
along with the ROC curves (for comparison) for all
the other classifiers. Parameter estimates for the logis-
tic regression model comparing DR versus DnR are
shown in Table 4. We have used standardized versions
of each of the predictor variables (centered to zero
mean and scaled to unit variance), to enable easy direct
comparison of the contribution of each variable to the
probability of a patient having diabetic retinopathy. It
is apparent that the most important predictors appear
to be adjacent area sum and ave percent sk.

Discussion

The dramatic advances in ophthalmic imaging
of recent years have fueled equally intense research
into optimizing use of these images for diagnosis
of systemic as well as ocular disease. In this study,
we combined novel and expert-led image processing
outcomes with modern statistical and machine learn-
ing techniques to demonstrate feasibility of classifying
the diabetic status of patients.

There have been a number of excellent studies
that have highlighted the potential power of OCT-
A in discriminating diabetic status.17–21 In particu-
lar, pioneering work by Durbin et al.7 demonstrated
the ability of measuring retinal microvasculature to
distinguish diabetic status in patients. In their albeit
small cohort they demonstrated highest area under the
ROC curve (i.e., AUC) of 0.893 for measures of the
vessel density in the superficial capillary network. FAZ
area gave a much lower AUC of 0.472. More recently,
Eladawi et al.8 developed a comprehensive computer-
aided diagnosis system that segmented superficial and
deep retinal maps and determined density and caliber
of the blood vessels, and size of the FAZ for both the
superficial and deep retinal maps, which they used to
train and test a support vector machine classifier. Their
system demonstrated an overall accuracy (i.e., AUC)
of 94.3%. Both these articles represent significant steps
forward in the potential use of OCT-A information for
assessing diabetic status.

However, both these systems addressed the single
task of distinguishing patients with diabetic retinopa-
thy from normal patients. For our work we addressed
what we consider to be two more clinically useful
but challenging tasks. First, we aimed to differenti-
ate normal patients from any patients with systemic
diabetes. Second, we elected to differentiate diabetic
patients with retinopathy from patients who were
diabetic but without retinopathy. Our challenges were
greater still as we did not have patients with any signif-
icant macular edema in our study, which often artifi-
cially disrupts OCT-A imaging.

Our work is also distinct in that we compare multi-
ple learning algorithms on new anatomic OCT-A
features. We describe novel outcome measures such
as ischemic areas adjacent to the fovea and separate
metrics for small and larger vessels. We believe our
strategies have led to algorithms with greater external
validity for potential future real-world usage.

Finally, our classification of three distinct stages
of eye disease has led to insights to vascular changes
associated with diabetic retinopathy progression. In
terms of differentiating diabetic patients with retinopa-
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thy from those without retinopathy, skeletonization
percentage and “adjacent area sum” were found to be
the most informative variables. However, a different
metric, the “mean capillary intensity,”only helps differ-
entiate diabetic populations from normal patients.
Further studies would be needed to confirm any
interpretation, but it may be that a reduced flow to
capillaries (reduced capillary intensity) occurs early on
in changing from normal to diabetic. It would then be
in later stages of diabetes that the complete loss of such
small vessels (skeletonization percentage) becomes an
important distinguishing factor.

There are several limitations to this study that
further research should address. First, our model
involves a variety of automated steps including vessel
segmentation into larger vessels and more fine capil-
laries, before applying a variety of image process-
ing algorithms aiming to produce expert-led, disease-
specificmetrics. In this article, we provide evidence only
for the resultant algorithm when used in its entirety to
produce outcomes that can be combined for discrim-
ination of diabetic status and cannot claim utility of
individual components.

We used relatively low numbers of patients consid-
ering involvement of machine learning techniques.
Rather than separating out a single validation set at
the beginning of the study, we instead made maximum
use of our dataset by using LOO cross-validation.
Such cross-validation can test an algorithm’s ability to
predict new data that was not used in estimating it,
preventing problems of overfitting or selection bias.22
The levels of accuracy despite low numbers reflect the
power of the image analysis outcomemeasures chosen,
as well as the appropriate use of advanced statistical
techniques.

As a retrospective study, there are inevitable poten-
tial sources of bias, such as in the clinical groups, which
largely came from different hospital referral streams.
Some images were excluded from the study if they were
not deemed of suitable quality by a researcher, repre-
senting a subjective step in the otherwise automated
algorithms. For the algorithm to be of eventual clini-
cal use, we will need to ensure any exclusion process is
automated.

Despite these weaknesses, our study demonstrates
the clinical potential of our system of processing and
analysis of OCT-A images. This is especially evident for
distinguishing diabetic patients with retinopathy that
requires hospital care from those without retinopathy
(AUC of 0.91). Demonstration of ability to diagnose
diabetic patients (including with no visible retinopa-
thy) from those without diabetes has an AUC of
0.80. This discriminative ability, however, has arguably
greater potential clinical implications but would need

to be improved, particularly the false-positive rate, as
evidenced by values for specificity given in Table 2. The
algorithms presented in this article are not proposed as
screening tools in their current form, but improvements
as described later may lead to algorithms for clinical
use.

We expect to improve the diagnostic accuracy
through a variety of means. First, newer imaging
technologies provide higher quality images of broader
areas of the retina. We plan to use greater levels
of information from these OCT-As such as by using
deep or intermediate capillary plexi. Previous articles8
suggest that level of information can be improved
by accessing these deep capillary plexi, and we also
plan to use new imaging scanners presenting larger
areas for analysis. Additional patient metadata such
as recent specific symptoms and details of race and
sex might further increase the power of the classifica-
tion algorithms and provide more assurance on exter-
nal validity. We plan to adapt our own algorithms to
manage any artefactual lesions more effectively and
incorporate this into the automated analysis.With such
improvements and subsequent prospective validation,
we hope to optimize use of noninvasive OCT-A scans
to automatically determine clinically important groups
with regard to diabetic status without any clinician
intervention, even when there are no discernible photo-
graphic or clinical signs of diabetes. Future studies
will also investigate the potential of these OCT-A
algorithms to determine diabetic microvascular disease
in other parts of the body such as in renal tissue.

Conclusions

The importance of our study is that it is distinct
in demonstrating the potential for combining expert-
derived and novel OCT-A features, with a range of
learning algorithms to address challenging and clini-
cally relevant discrimination tasks addressing diabetic
status. Further work will aim to develop this potential
to produce clinically useful diagnostic tools for general
and nonspecialist practices to improve screening for
diabetes and diabetic eye complications.
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