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Abstract: The relation between deformation inhomogeneity and low-cycle-fatigue failure of T2 pure
copper and the nickel-based superalloy GH4169 under symmetric tension-compression cyclic strain
loading is investigated by using a polycrystal representative volume element (RVE) as the material
model. The anisotropic behavior of grains and the strain fields are calculated by crystal plasticity,
taking the Bauschinger effect into account to track the process of strain cycles of metals, and the
Shannon’s differential entropies of both distributions of the strain in the loading direction and the
first principal strain are employed at the tension peak of the cycles as measuring parameters of strain
inhomogeneity. Both parameters are found to increase in value with increments in the number of
cycles and they have critical values for predicting the material’s fatigue failure. Compared to the
fatigue test data, it is verified that both parameters measured by Shannon’s differential entropies can
be used as fatigue indicating parameters (FIPs) to predict the low cycle fatigue life of metal.

Keywords: deformation inhomogeneity; crystal plasticity; differential entropy; low-cycle fatigue; life
prediction; polycrystalline metal

1. Introduction

Extensive studies have been conducted in computational mechanics, materials science, and
physics to investigate the fatigue lifetime problem and the deformation mechanisms of metals subjected
to alternating stress and strain. These have improved our understanding of the fatigue resistance
and service life of metallic engineering components and structures. However, the established and
widely applied estimation methods, formulas and analyses for fatigue life prediction are based on
the conclusions drawn from extensive fatigue experiments [1,2]. Among the competing approaches,
Basquin’s formula [3] describes the relationship between the stress state and cyclic fatigue life, and the
Manson-Coffin formula [4,5] characterizes the relation between plastic strain and cyclic fatigue life.
Both formulas, as well as their combination [6], rely on the lifetime measurement gained in cyclic fatigue
experiments under the condition of controlled stress or strain, and the parameters are numerically
fitted to match the measurements. These kinds of empirical methods, which generally depend on
measured fatigue life data, are still widely used [7–14].

Considerable efforts are, therefore, underway towards establishing an analytical model which
is capable of reflecting the evolution of fatigue damage in a material undergoing cyclic loading until
final failure. For instance, models based on accumulated plastic strain or dissipation energy describe
the degree of material damage at the macro-scale [15–20], but since they lack any interpretation

Materials 2018, 11, 1917; doi:10.3390/ma11101917 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-6260-2029
http://www.mdpi.com/1996-1944/11/10/1917?type=check_update&version=1
http://dx.doi.org/10.3390/ma11101917
http://www.mdpi.com/journal/materials


Materials 2018, 11, 1917 2 of 22

of the damage mechanism, they still require calibration of model parameters by a series of fatigue
experiments, similar to the formulas and models by Basquin [3], Manson-Coffin [4,5] or Morrow [6].

Considering that fatigue damage formation and evolution take place at tiny areas, some analytical
models [21–29] introduce continuum damage or crystal plasticity to describe these processes at the
meso and micro level [30–37]. These studies mainly give credit to accumulating plastic strain or energy
as sources of damage evolution. The basic assumptions made with respect to the constitutive behavior
are significantly different in different studies. The plasticity analysis of crystals takes into account
the anisotropy and inhomogeneity of the mesoscopic deformation in polycrystals, whereas models of
continuum damage usually assume that the material is isotropic and homogeneous.

According to the dissipative character of plastic deformation, the cumulative plastic strain
or energy are related to the thermodynamic entropy [38]. Considering this relationship, several
authors [39–45] have used this physical quantity as a variable describing fatigue damage. Entropy
generation generally results from mechanical dissipation due to plastic deformation, non-recoverable
energy due to plastic hardening and damage, and thermal dissipation due to heat conduction.
Prevailingly, only plastic work is considered by most authors [40–43], again. According to
Boltzmann [46], thermodynamic entropy can be understood as a representation of disorder, and
this disorder parameter may also be employed for characterizing damage evolution [39,45]. Shannon
introduced the entropy concept to communication processes to study the amount of information in a
transmitted message [47,48]. The definition of the information entropy is, however, quite general and
is mathematically equivalent to the Boltzmann entropy. It has, therefore, also found applications for
probabilistic fatigue damage prognoses [49,50].

The perception that fatigue damage occurs in regions of very small size gives reason to the
relevance of the inhomogeneous micro- or meso-structure of materials. Although it is generally
understood that this inhomogeneity causes nonuniform deformation, more systematic research on the
role of cyclic loading for local deformation is still needed [35,51,52]. Zhang et al. [53,54] performed
crystal plasticity simulations of polycrystals modeled by representative volume elements (RVE)
obtained by Voronoi tessellation. They investigated pure copper T2 and the nickel-based superalloy
GH4169 under cyclic loading and focused on the evolution of inhomogeneous deformation with an
increasing number of cycles. The number of cycles before fatigue failure of these materials is very
different, and may be very large when the loading strain amplitude is small, but no matter how large
or small the strain amplitude, the increasingly inhomogeneous plastic deformation at the grain level
resulting from cyclic loading is very similar.

The aim of performing numerical analyses of cyclic plastic deformations is to find an appropriate
fatigue-indicating parameter (FIP) which correlates with the evolution of damage during the cycles.
The study of the fatigue process and FIPs at the micro or meso scale has to account for the
inhomogeneous deformation resulting from material heterogeneity. There are multiple factors that
trigger inhomogeneous deformation, such as the anisotropy and random orientations of grains, grain
boundaries, different phases, precipitations, inclusions and voids, etc. The complexity of the model
has to be diminished, however, to reduce the computation time. A simplified model of the material
microstructure has been proposed [53,54] considering the metal as a polycrystalline aggregate, the
grain boundaries as geometric interface of zero thickness between adjacent grains, and the grains as
single crystals, while inclusions and holes are not taken into account. The non-uniform deformation
reproduced by this model is mainly dependent on anisotropy and the random orientation of the grains
and the plastic deformation by crystal-slip leading to the change of the principal strain directions.
The increasing inhomogeneity of deformation in the RVE during cyclic loading which results from
changes of the material micro-structure can be characterized by means of statistical analyses of the
strain distribution. These investigations brought about the approach of using the statistical standard
deviation of the longitudinal strain or the statistical mean of the first principal strain as a FIP to
predict fatigue lifetime. The disorder can also be characterized by Shannon entropy [47,48], which
was proposed for a quantitative measurement of information and which can be calculated from the
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distribution of statistical variables. Thus, the change of deformation inhomogeneity of a polycrystalline
metal with loading cycles can be represented by the numerical change of entropy, and this change is
related to the microstructure evolution of the metal. Thereby, we hope to further understand if it can
be adopted as a FIP to predict fatigue failure of materials. To do this, it is necessary to verify whether
the calculation of plastic deformation tracking the cycles up to fatigue failure can be carried out, and
the entropy takes a critical value that is independent of the load amplitude within a certain range.

In the present paper, we focus on the low-cycle fatigue of polycrystalline metals under
strain-controlled symmetrical tensile-compressive cyclic loading, and investigate T2 pure copper
at room temperature and the nickel-based superalloy GH4169 at a temperature of 650 ◦C.

The outline of the paper is as follows: (1) the Shannon’s differential entropies of longitudinal
strain and first principal strain distributions are calculated by crystal plasticity for a polycrystalline
RVE subjected to cyclic loading at different strain amplitudes. (2) Their suitability as FIPs is verified by
comparing them with the standard deviation of longitudinal strain and the mean of the first principal
strain, and their ability for predicting low-cycle fatigue life is discussed.

2. Methodology of Strain Inhomogeneity Analysis at the Grain Level for a Polycrystal under
Cyclic Loading

The conventional analysis of a polycrystalline metal considers it as a continuous medium, whereas
actually the material has a complex micro-structure. Hence, the deformation field is non-uniform at
the grain level and becomes increasingly uneven with increasing numbers of cycles. In the present
paper, the polycrystalline structure of the material is taken into account; thus, the inhomogeneous
elastic-plastic deformation at the grain level and its evolution with loading cycles can be calculated.
To avoid any excess of computation time, information on second phases and other micro-structural
details within the grain and at the area of the grain boundaries are not included in the model.

2.1. Modeling the Material as Representative Volume Element

With reference to [53,54], a Voronoi polyhedron aggregation is employed as RVE. The shape, size
and crystal orientation of the grains in this model are generated randomly. The plastic deformation
of the grains is described by the slip driven by the resolved shear stresses acting at the respective
slip systems. The RVE contains 27,000 8-node hexahedral elements and 29,791 nodes, as shown in
Figure 1. It is subjected to symmetrical tensile-compressive loading cycles and its surfaces are assumed
to remain plane during deformation.
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Figure 1. Local and overall stresses and strains of the RVE.

The macroscopic Cauchy stress tensor Σ and logarithmic strain tensor E are defined as the mean of
the local Cauchy stresses σ and logarithmic strains ε over the RVE and calculated as load per unit area
and displacements of the surfaces. Crystal plasticity is employed as a constitutive relation between
local Cauchy stresses and logarithmic strains within each grain.
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2.2. Constitutive Equations of Crystal Plasticity

Plastic slip in the grains is described by the constitutive equations of crystal plasticity proposed
by Zhang et al. [53,55], which are based on the fundamental theoretical framework established by Hill
and Rice [56], Asaro and Rice [57], Peirce et al. [58] and Needleman et al. [59]. However, the latter did
not consider the plastic behavior under cyclic loading.

Extending Hutchinson’s [60] power relation between the shear strain rate,
.
γ
(α), at a slip system, α,

and the resolved shear stress, τ(α), Feng et al. [61] introduced back-stresses and nonlinear kinematic
hardening, referring to the Armstrong-Frederick model [62] of the Bauschinger effect,

.
γ
(α)

=
.
γ0sgn(τ(α) − x(α))

∣∣∣∣∣τ(α) − x(α)

g(α)

∣∣∣∣∣
k′

(1)

where
.
γ0 is the reference strain rate, being a constant for all slip systems. The resolved back-stress on

the α-slip system is denoted by x(α), k’ is the rate sensitivity parameter and g(α) defines the domain
where the material behaves elastic; its evolution is described as [63]

.
g(α)(γ) =

n
∑
β

hαβ(γ)
∣∣∣ .
γ
(β)
∣∣∣, γ =

∫ n
∑
β

∣∣∣dγ(β)
∣∣∣ (2)

hαβ(γ) denote the hardening moduli proposed by Hutchinson [64],

hαβ(γ) = h(γ)[q + (1− q)δαβ] (3)

q is a constant and h(γ) is given according to Chang and Asaro [65] as

h(γ) = h0sech2
(

h0γ

τs − τ0

)
(4)

where h0 is the initial hardening rate, τ0 is the initial critical resolved shear stress, and τs is the
saturation value. These parameters are regarded as material constants.

The evolution of back-stresses, x(α), is introduced in [55],

.
x(α) = a

.
γ
(α) − c [1− e1(1− exp(−e2γ))] x(α)

∣∣∣ .
γ
(α)
∣∣∣− λx(α) (5)

where a, c, e1, e2 and λ are material constants. This formulation includes a strain hardening term,
a dynamic recovery term, and a static recovery term. The identification of material constants in
Equations (1), (3)–(5) is based on cyclic tests combined with numerical simulations.

The initial unit normal vector of the slip surface of the slip system α and the unit vector of the
initial direction of the system are denoted as n(α) and m(α), respectively. Referring to Hill and Rice [56],
Asaro and Rice [57], Peirce et al. [58] and Needleman et al. [59], the Schmid tensor, which establishes
the relationship between the shear strain and shear stress in the slip system and its corresponding
strain and stress in the Cartesian coordinate system, is given by:

P(α)∗ =
1
2
(m(α)∗n(α)∗ + n(α)∗m(α)∗) (6)

with m(α)∗ = F∗·m(α), n(α)∗ = n(α)·F∗−1; F∗ is the elastic term of the deformation gradient tensor, F.
The plastic deformation rate tensor can be calculated as

Dp = ∑ P(α)∗ .
γ
(α) (7)
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and the resolved shear stress by Schmid’s law,

τ(α) = P(α)∗ : σ (8)

Assuming that the elastic deformations are small, the constitutive relation can be expressed as

.
σ

J
=

<4>
C : D∗ =

<4>
C : (D−Dp) (9)

where
.
σ

J is the Jaumann rate of Cauchy stress,
<4>
C is the fourth-order elasticity tensor with respect to

the global coordinate axes. During the calculation, the crystal coordinate axes for each grain are rotated
along with the changing configuration according to the lattice rotation, since the global coordinate
system is fixed.

The incremental change of the Cauchy stress tensor can be calculated as

t+∆tσ = tσ
∣∣
t+∆t + ∆σJ = tσ

∣∣
t+∆t +

<4>
C : (∆ε− ∆εp) (10)

where the increments ∆σJ , ∆ε and ∆εp are determined by integrating the corresponding rates
.
σ

J ,
D and Dp.

For specific numerical implementation as user-supplied subroutine UMAT in the FE code
ABAQUS [66], see Zhang et al. [53].

2.3. Characterization of the Deformation Inhomogeneity by Statistical Parameters

Due to the randomness of grain shape, size and orientation the strain distribution within the
RVE appears to be randomly distributed. As mentioned in the introduction, the deformation of a
polycrystalline metal is non-uniform even under uniform macroscopic loading. The distribution of
strains at the grain level can be described by statistical parameters like the average of strain components,

εij =
nRVE
∑

k=1

(
εij
)

kvk = Eij, the standard deviation of strain components, ε̂ij =

√
nRVE
∑

k=1

(
εij
)2

kvk − εij
2, and

the maximum of local strains, εmax
ij = max

nRVE

(
εij
)
; where nRVE is the total number of finite elements in

the RVE, εij are the components of the local logarithmic strain tensor, and vk = ∆Vk/VRVE, with ∆Vk
being the volume of k-th element and VRVE the total volume of the RVE. The strain distribution in
the polycrystalline RVE changes with the loading cycles and so do the statistical parameters defined
above. Zhang et al. [53] proposed to measure the inhomogeneity of micro-strains by the standard
deviation, ε̂(ll), (no summation over subscripts in brackets) of the local longitudinal strain, ε(ll), which
is the strain in the macroscopic loading direction and is also the direction of macroscopic first principal
strain. Its value was found to grow with the number of cycles and can thus be related to the material
fatigue failure. Further investigations demonstrated the same behavior for the average, εI, and the
maximum, εmax

I , of first principal strains [54], which can hence be employed as FIPs and characterize
low-cycle fatigue life by comparison with their respective critical values.

This present work attempts to quantify the inhomogeneity of the deformation by using the
Shannon entropy calculated from the strain distribution. Entropy initially refers to a probability
function characterizing the state of a thermodynamic system and is a measure of its disorder. Shannon
and Weaver [48] transferred the concept to quantitative measurement of information and introduced
the formula of the information entropy,

H = −∑
i

pi log(pi) (11a)

where pi is the probability that an event will occur. The base of the logarithm can be taken as 10, e or 2,
depending on the object investigated. Here, the value e is taken. In Equation (11a), the relative volume
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fraction of the subdivision region,vi = ∆Vi/VRVE (with the strain interval εi ≤ ε ≤ εi+1) is analogized
with pi. For a model such as the Voronoi aggregation in which the strain and stress are the continuous
variables people can adopt the concept of entropy for continuous distributions which is also referred
to as the differential entropy (or continuous entropy) and is given [47],

H = −
∫ ∞

−∞
fx log fxdx (11b)

where fx denotes the probability density function for a random variable. The differential entropy
retains many of the properties of its discrete counterpart, but with some important differences that the
details may refer to the literature [67]. In a RVE, the interval of the strain [εmin, εmax] is divided into n
subintervals ∆εi, i = 1, 2 . . . , n. In addition, then the integral of the entropy described by Equation (11b)
can be numerically calculated according to the following formula:

H = −
n

∑
i=1

[
pεi

∆εi
log

(
pεi

∆εi

)
∆εi

]
; pεi ≥ 0, f or εmin ≤ εi ≤ εmax; pεi = 0, f or else case. (12)

where, pεi , is the relative volume fraction, ∆Vi/VRVE, of the region where εi ≤ ε ≤ εi+1. For calculation
convenience, the interval [εi, εi+1] in calculation is taken as a constant and ∆εi = εi+1 − εi =

(εmax − εmin)/n; n is the division number. It is necessary to point out that the value of the continuous
entropy for strain distribution may be negative due to the term

pεi
∆εi

in Equation (12) being larger than
1, because generally the strain distribution range [εmin, εmax] is very small. People used to assume
entropy to be a positive value; therefore, we use 0.001ε (1000 µε) as the unit for measuring the strain
interval in Equation (12); thus, the value of

pεi
∆εi

will be in the range [0, 1], and then the entropy must be
positive. This treatment only changes the zero point (reference point), and does not change the entropy
difference of different processes.

Thus, Equation (12) is used to describe the inhomogeneity of the distribution in the RVE.
The inhomogeneity of the distributions of local longitudinal strain ε(ll) and local first principal strain
εI, respectively, are measured by the Shannon’s differential entropies Hε(ll) and HεI ,

Hε(ll) = −
n

∑
i

[
pε(ll) i

∆ε(ll)i
log

(
pε(ll) i

∆ε(ll)i

)
∆ε(ll)i

]
and HεI = −

n

∑
i

[
pε1 i

∆εIi
log

(
pεI i

∆εIi

)
∆εIi

]
(13)

where pε(ll) i is the relative volume fraction, ∆Vi/VRVE, of the region where ε(ll)i−1 ≤ ε(ll) ≤ ε(ll)i, and
pε1i is the relative volume fraction of the region where εIi−1 ≤ εI ≤ εIi, respectively. Equation (13)
provides a measure of the deformation inhomogeneity; when the deformation is completely uniform
the entropy is zero, generally it is greater than zero, and the more uneven the deformation is, the larger
is H. The calculated results by using Equation (13) are convergent with the division number, n, which
is verified by taking a Gaussian distribution function; when the division number is no less than 20 the
calculated entropy result will be very close to the saturation value and the error can be ignored.

To verify the rationality of Hε(ll) and HεI as the parameters characterizing the deformation
inhomogeneity and as FIPs, the low-cycle fatigue predictions of the pure copper and the nickel-based
superalloy GH4169 are performed by applying both FIPs. In addition, they are further compared
with that using the parameters ε̂(ll) and εI, which have been proposed as FIPs in previous
publications [53,54].

3. Results

For the pure copper and the nickel-based superalloy GH4169, the fatigue experiments are
conducted under symmetrical cyclic strain-controlled loading, at room temperature for copper and at
a temperature of 650 ◦C for GH4169. Both materials have the fcc lattice and they are approximated
as fcc-equiaxed crystals [53,54]. The effect of grain size is ignored in the material model, and the
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same geometric partitioning of the RVE (see Figure 1) is used for both. Due to the presence of grain
boundaries, inhomogeneous distribution of dispersed phase particles and defects, the very strong
strain gradient will lead to a grain size effect. It is difficult to establish a quantitative analysis model
based on these complicated factors. Therefore, we regard each grain to be an equivalent crystal with
an ideal lattice, and establish a simplified polycrystalline RVE model without size effect, by which the
numerical simulation of the whole cycle process can be performed and the difference in grain size for
different metals can be ignored.

The chemical compositions of the pure copper T2 and the alloy GH4169 are shown in Tables 1
and 2, respectively, and the mechanical properties at room temperature for copper and at 650 ◦C for
GH4169 are exhibited in Tables 3 and 4, respectively.

Table 1. Chemical composition of the pure copper T2 (wt%).

Cu + Ag P Bi Sb As Fe Ni Pb Sn Zn Mn Cd

99.935 0.0416 0.0036 0.001 0.0015 0.0032 0.0023 0.003 0.0019 0.0025 0.0034 0.001

Table 2. Chemical composition of the GH4169 superalloy (wt%).

C Cr Mu Nb + Ta Ni Fe Al Ti

0.015~0.08 17.0~21.0 2.80~3.80 4.75~5.50 50.0~55.0 Rest 0.30~0.70 0.75~1.15

Si Mn Co Cu P S B
≤0.35 ≤0.35 ≤1.00 ≤0.30 ≤0.015 ≤0.015 ≤0.006

Table 3. Mechanical properties of the pure copper T2.

Young’s Modulus
(E) GPa

Yield Stress
(σ0.2) MPa

Tensile Strength
(σb) MPa

Fracture Strain (εf)
mm/mm

108 66.4 297 1.2

Table 4. Mechanical properties of the GH4169 superalloy (at 650◦C).

Young’s Modulus
(E) GPa

Yield Stress
(σ0.2) MPa

Tensile Strength
(σb) MPa

Fracture Strain (εf)
mm/mm

150.5 1230 1090 0.52

Based on the finite-element simulation of the RVE of the polycrystals, the parameters of the
crystal-plastic model of the materials can be calibrated according to the tested hysteresis-loops. The
material model parameters for the pure copper and the cast nickel-base superalloy GH4169 are
displayed in Tables 5 and 6, respectively, according to references [53,54], where the detailed procedure
for parameter calibration can be found.

Table 5. Elastic constants and crystal plasticity parameters of the pure copper T2 [53].

Elastic Constants Material Parameters of the Crystal Viscoplastic Model

C11 C12 C44 τ0 τs h0 a c λ e1 e2
.
γ0 q k′

GPa GPa GPa MPa MPa MPa GPa GPa s−1 - - s−1

136.4 98.334 61.074 13.9 30 96 20.6 1.42 0 0.41 5.0 1 × 10−3 1 200
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Table 6. Elastic constants and crystal plasticity parameters of the GH4169 superalloy [54].

Elastic Constants Material Parameters of the Crystal Viscoplastic Model

C11 C12 C44 τ0 τs h0 a c λ e1 e2
.
γ0 q k′

GPa GPa GPa MPa MPa MPa GPa GPa s−1 - - s−1

206.7 137.98 73.65 260 265 80 35 0.43 0 0 0 1 × 10−3 1 150

3.1. Calculation of Entropy for Fatigue Failure of Pure Copper

Applying the parameters of Tables 5 and 6, the stable hysteresis-loops of copper T2 for strain
amplitudes 0.003, 0.004, 0.005 and 0.006 and of nickel-based superalloy GH4169 for strain amplitudes
0.0045, 0.006, 0.008, 0.009, 0.01 and 0.013, respectively, as calculated by the RVE simulations are shown
in Figure 2. The actually measured steady hysteresis-loops are plotted for comparison. The numerically
simulated results accord well with the test data.
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Figure 2. Results for steady and symmetric tensile-compressive hysteresis loops from simulations 
and experiments: (a) for copper T2; (b) for superalloy GH4169. 
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Figure 2. Results for steady and symmetric tensile-compressive hysteresis loops from simulations and
experiments: (a) for copper T2; (b) for superalloy GH4169.

3.1.1. Strain Distribution in RVE with Increasing Numbers of Cycles

If the factors characterizing the polycrystalline structure—namely, grain orientation and
anisotropy properties—are considered in the model, the deformation of the material is not uniform,
even under uniform macroscopic loading. Figure 3 displays the contours of the local longitudinal
strain, ε(ll), i.e., the normal strain along macroscopic loading direction, and the local first principal
strain, εI, at the second and 2787th tensile peak for a strain amplitude Ea= 0.004. It can be seen from
Figure 3a,c that the distribution of the longitudinal strains at the 2787th cycle is much more uneven
than that at the second cycle, which implies that the difference of maximum and minimum values in
the RVE has become much larger. The same holds for the first principal strain, see Figure 3b,d.

It needs to be pointed out that the strain contours are differently scaled and the plots cannot
clearly visualize the changes from the 2nd to 2787th cycle. A quantitative evaluation of the strain
distribution in the RVE and its change with cyclic loading is presented in Figure 4, showing the volume
fractions of both the longitudinal strain and the first principal strain at the respective tensile peaks
for increasing numbers of cycles number for different strain amplitudes (Ea = 0.003, 0.004, 0.005 and
0.006). The variation of strains in the RVE becomes larger and larger and the non-zero range expands
with increasing number of cycles.
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pure copper at the tensile peaks of different cycles for various strain amplitudes.

3.1.2. Predicting Low-Cycle Fatigue Failure by Entropy

By applying Equation (12), we calculate and plot the entropy curves, Hε(ll)(Ea, N) and Hε1(Ea, N),
as shown in Figure 5. The horizontal axes are linearly scaled in Figure 5a,b, and logarithmically
scaled in Figure 5c,d. The information entropies of longitudinal strain and the first principal strain
distributions always increase with the number of cycles. The greater the strain amplitude, the faster
the entropy values increase. On the logarithmically scaled x-axes, the H(N) curves tend to become
straight with similar asymptotic slopes for high numbers of cycles.
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Figure 5. Entropy curves and the corresponding critical value determination for copper T2: (a)
Hε(ll) (Ea, N), horizontal axis in linear scale; (b) HεI (Ea, N), horizontal axis in linear scale; (c)
Hε(ll) (Ea, N), horizontal axis in logarithmic scale; (d) HεI (Ea, N), horizontal axis in logarithmic scale.

According to [53], based on the results of symmetric tensile-compressive cyclic experiments and
respective calculations of pure copper, the statistical standard deviation of longitudinal strain over
the RVE can be applied as a FIP for the fatigue life assessment of a polycrystalline material. Likewise,
the results for a GH4169 nickel-based superalloy verify that the statistical standard deviation of the
longitudinal strain and the statistical mean of the first principal strain can also be used as FIPs [54].
The suitability of a parameter to be used as a FIP is proved based on its ability to reach a critical
value that indicates the occurrences of fatigue failure. In the following, the information entropy of the
longitudinal strain and the first principal strain distribution will be examined in terms of whether they
are suitable as FIPs.

The critical entropy values resulting from Hε(ll) f
∼= Hε(ll)

(
Ea, N f

)
and Hε1 f

∼= Hε1

(
Ea, N f

)
, N f is

the fatigue-life cycle number at the specific strain amplitude Ea, and can be determined from Figure 5.
For the respective strain amplitude, the average measured critical values with respect to N f (see Table 7
column 3) and the upper and lower values with respect to corresponding N f (see Table 7 column 2),
obtained from the curves, are listed in Table 7 columns 4 and 5. To prove their rationality, we need to
verify whether the critical entropy value determined at any strain amplitude can be used to reasonably
predict the fatigue failure at another strain amplitude.
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Table 7. Tested low-cycle lives of the pure copper T2 and the critical values of Hε(ll) and Hε1 .

Ea Nf [53] Nf
Hε(ll)f Hε1f

Average/Upper/Lower Average/Upper/Lower

0.3% 6359/6900/7660 6973 4.23/4.30/4.15 3.89/3.96/3.81
0.4% 2760/2998/3016 2925 4.08/4.10/4.03 3.76/3.762/3.70
0.5% 1417/1714/3050 2060 4.23/4.46/3.99 3.92/4.14/3.69
0.6% 1002/1133/1345 1160 4.16/4.24/4.06 3.85/3.93/3.75

Taking a critical value in Table 7 column 4 or 5 at any strain amplitude, one can get the intersects
from the curves at different strain amplitudes in Figure 5 and get the corresponding fatigue-failure
cycles, that is, a fatigue life prediction ( Ea ∼ N f ) based on the test at single strain amplitude. In the
same way, the upper and lower prediction can also be obtained by using the corresponding upper and
lower values in Table 7 column 4 or 5. All the results using the present method using the critical value
determined from the tests of different strain amplitudes to predict the fatigue lives of the material are
listed in Table 8. In addition, the corresponding curves are showed in Figure 6.

Table 8. Prediction of low-cycle lives of the pure copper T2 by applying Hε(ll) andHε1 as FIP.

Ea

Estimations Based on Hε(ll) f

3.89 (Ea = 0.003) 3.76 (Ea = 0.004) 3.92 (Ea = 0.005) 3.85 (Ea = 0.006)

Average/Upper/Lower Average/Upper/Lower Average/Upper/Lower Average/Upper/Lower

0.003 6973 7660 6359 5728 5951 5469 6973 9297 5149 6385 7006 5636
0.004 3768 4214 3346 2925 3016 2760 3768 5415 2566 3425 3818 2851
0.005 2071 2325 1822 1626 1682 1508 2071 3050 1417 1863 2087 1576
0.006 1295 1482 1153 1021 1061 966 1295 1862 896 1160 1345 1002

Ea

Estimations Based on HεI f

3.89 (Ea = 0.003) 3.76 (Ea = 0.004) 3.92 (Ea = 0.005) 3.85 (Ea = 0.006)

Average/Upper/Lower Average/Upper/Lower Average/Upper/Lower Average/Upper/Lower

0.003 6973 7660 6359 5925 5960 5603 7182 9279 5543 6655 7321 5889
0.004 3797 4174 3320 2925 3016 2760 3864 5384 2670 3556 4014 2905
0.005 1993 2243 1755 1604 1615 1475 2060 3050 1417 1886 2129 1576
0.006 1286 1454 1067 1001 1013 933 1330 1976 906 1160 1345 1002
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Figure 6. Predicted fatigue-life curves Ea ∼ N f with the upper and lower estimations based on: (a–d)
Hε(ll) f and (b–h) HεI f . The test data in this figure are cited from literature [53] (see Table 7).

The predictions based on Hε(ll) f and Hε1 f are proved to be rational in Table 8 and Figure 6, since
no matter the average critical value at which the strain amplitude test is taken, the prediction of the
fatigue lives for other strain amplitudes are in agreement with the tests. Also, the scattered feature
of the tested fatigue life can be illustrated by descriptions of the upper and lower curves in Figure 6.
However, the tests are not enough to describe the scattered feature of the fatigue lives; in order to
improve the predictions, more tests at the specified strain amplitude are needed for determining the
FIP critical value, as well as the upper and lower bounds, more accurately.

The error between the predicted and the experimental fatigue lives is shown in Figure 7, including
predictions based on standard deviation and mean values of longitudinal and principal strains, ε̂(ll),
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and εI, data treated according to [53]. The horizontal axis and the vertical axis indicate the actually
measured and the predicted life, respectively. The red solid line represents the ideal prediction, and
the area between the two dashed lines is the interval of a factor of 2. The error of the prediction results
is regarded as acceptable if the data points fall within the double factor region. Hence, Figure 7 shows
that using parameters Hε(ll) f , HεI f , ε̂(ll) f , and εI f for the strain amplitudes can give equally reasonable
predictions of fatigue lives. Therefore, it is proved possib0le for this method to predict the LCF life of a
metal using the present method with its FIP determined based on the test at one strain amplitude.
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3.2. Prediction of Fatigue Failure of a Nickel-Based Superalloy by Entropy

Although they both possess FCC lattices, the nickel-base superalloy GH4169 is highly unlike pure
copper T2 in terms of mechanical properties, see the hysteresis loops in Figure 2, and the microstructure
of GH4169 is far more complex than that of copper T2. By using the same method for analyzing the
fatigue-life, we hope to further verify the suitability of Shannon’s differential entropy as FIP not only
for pure materials like copper, but also for alloy materials.

3.2.1. Entropy Increase with Cyclic Deformation of GH4169

Corresponding to different strain amplitudes, the entropy curves, Hε(ll)(Ea, N) and Hε1(Ea, N),
are calculated dependen on the number of load cycles based on the distribution of longitudinal
strain and the distribution of the first principal strain as shown in Figure 8a,b. The horizontal axis
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is logarithmically scaled. Since the numbers of cycles span three powers of ten, display on a linear
horizontal axis is no longer feasible. Similar to the previous analysis of pure copper, the entropy curves
tend to a linear growth and the slopes are nearly equal.

Materials 2018, 11, x FOR PEER REVIEW  15 of 23 

 

longitudinal strain and the distribution of the first principal strain as shown in Figure 8a,b. The 
horizontal axis is logarithmically scaled. Since the numbers of cycles span three powers of ten, 
display on a linear horizontal axis is no longer feasible. Similar to the previous analysis of pure 
copper, the entropy curves tend to a linear growth and the slopes are nearly equal. 

  
Figure 8. Entropy curves and the critical value determination for the material GH4169 (horizontal 

axis in log scale): (a) )(
)(

,NEH allε ; (b) )( ,NEH a1ε . 

The curves )(
)(

,NEH allε  and )( ,NEH a1ε  
for each specified strain amplitude aE are 

shown in Figure 8a,b; the critical values of the FIPs fll
H

)(ε and fH
1ε  can be picked from each 

curve by specifying the average of the specific measurement of the fatigue life, these data are listed 
in Table 9. Then the fatigue lives at different strain amplitudes can be obtained by using any one of 
these critical values, further drawing a transverse line intersecting with the curves )(

)(
,NEH allε  

or )( ,NEH a1ε . In addition, abscissa of intersection points on different curve are then taken to 

represent the estimated fatigue-life value (shown in Table 10) with respect to the specified strain 
amplitude. The predicted-life curves ( ~ )a fE N  based on the FIPs fll

H
)(ε and fH

1ε  are 

separately displayed in Figure 9a,b. Due only one test for 4 of a total of 6 strain amplitudes having 
been performed, the upper and lower bounds for each FIP curve cannot be obtained, and the other 
2 only had two tests conducted for each. However, the scattered feature of fatigue-life data can also 
be observed from this figure. 

Table 9. Tested low-cycle fatigue lives of the superalloy GH4169 and critical values of fll
H

)(ε  and

fH
1ε . 

aE  fN  54 fN  fll
H

)(ε  fH
1ε  

0.0045 9904/5457 7681 4.24 4.06 
0.006 1494 - 4.28 3.89 
0.008 370 - 3.96 3.65 
0.009 207 - 3.77 3.48 
0.010 354 - 4.52 4.17 
0.013 80/94 87 3.85 3.65 

 

  

Figure 8. Entropy curves and the critical value determination for the material GH4169 (horizontal axis
in log scale): (a) Hε(ll) (Ea, N); (b) Hε1 (Ea, N).

The curves Hε(ll)(Ea, N) and Hε1(Ea, N) for each specified strain amplitude Ea are shown in
Figure 8a,b; the critical values of the FIPs Hε(ll) f and Hε1 f can be picked from each curve by specifying

the average of the specific measurement of the fatigue life, these data are listed in Table 9. Then the
fatigue lives at different strain amplitudes can be obtained by using any one of these critical values,
further drawing a transverse line intersecting with the curves Hε(ll)(Ea, N) or Hε1(Ea, N). In addition,
abscissa of intersection points on different curve are then taken to represent the estimated fatigue-life
value (shown in Table 10) with respect to the specified strain amplitude. The predicted-life curves
(Ea ∼ N f ) based on the FIPs Hε(ll) f and Hε1 f are separately displayed in Figure 9a,b. Due only one

test for 4 of a total of 6 strain amplitudes having been performed, the upper and lower bounds for each
FIP curve cannot be obtained, and the other 2 only had two tests conducted for each. However, the
scattered feature of fatigue-life data can also be observed from this figure.

The fatigue-life predictions by applying FIPs Hε(ll) f and HεI f together with ε̂(ll) f and , which
were suggested in the previous literatures [53,54], are all verified with test fatigue-life data and are
shown in Figure 10. For the verification of the FIPs ε̂(ll) f and ε1 f in this figure, only the predictions
based on the highest and lowest critical values are given for the sake of simplicity. From this figure,
the predictions are observed to provide reasonable fatigue-life estimations over the range of strain
amplitudes under consideration.

Table 9. Tested low-cycle fatigue lives of the superalloy GH4169 and critical values of Hε(ll) f and Hε1 f .

Ea Nf [9] Nf Hε(ll)f Hε1f

0.0045 9904/5457 7681 4.24 4.06
0.006 1494 - 4.28 3.89
0.008 370 - 3.96 3.65
0.009 207 - 3.77 3.48
0.010 354 - 4.52 4.17
0.013 80/94 87 3.85 3.65
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Table 10. Prediction of low-cycle lives of the superalloy GH4169 by applying Hε(ll) and Hε1 as FIP.

Ea

Estimates Based on Hε(ll) f

4.24
(Ea = 0.0045)

4.28
(Ea = 0.006)

3.96
(Ea = 0.008)

3.77
(Ea = 0.009)

4.52
(Ea = 0.01)

3.85
(Ea = 0.013)

0.0045 7681 8164 5795 4737 10124 5133
0.006 1440 1494 1086 873 1905 954
0.008 500 527 370 303 683 332
0.009 347 366 260 207 467 230
0.010 260 272 191 154 354 169
0.013 138 146 98 79 188 87

Ea

Estimates Based on Hε1 f

4.06
(Ea = 0.0045)

3.89
(Ea = 0.006)

3.65
(Ea = 0.008)

3.48
(Ea = 0.009)

4.17
(Ea = 0.01)

3.65
(Ea = 0.013)

0.0045 7681 6497 5097 4250 8548 5097
0.006 1810 1494 1165 946 2067 1165
0.008 601 496 370 308 694 370
0.009 414 336 256 207 466 256
0.010 305 248 187 150 354 187
0.013 159 125 87 69 185 87
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Figure 9. The predicted-life curves (Ea ∼ N f ) of the material GH4169 at temperature 650 ◦C based on
(a) Hε(ll) f and (b) HεI f . The test data in these figures are cited from literature [9] (see Table 9).

3.2.2. The Influence of Model Mesh Size on the Result of Entropy Calculation

The generation of metal polycrystalline RVE models involves many aspects, such as the number
of grains, the division of finite element meshes, and randomly generated grain distributions and crystal
orientations of grains. Due to random generation, the deformation fields of different polycrystal RVEs
obtained by calculation are usually different, and it is necessary to verify whether approximately the
same statistical deformation results can be obtained and that they are not sensitive to the random
generation of the RVE model. Therefore, whether the model differences influence their description and
result with respect to the fatigue law is verified preliminarily by a simple example. In the following, the
effect on the entropy calculation caused by the different element size of the model mesh is discussed,
which is performed to verify the rationality of the method employing entropy as a FIP.

Considering the RVE model of Section 2.1, the grain number and the orientation for each grain
are kept unchanged, but the model is re-divided into a finite element mesh. The new model shown in
Figure 11 is the hexahedron RVE divided into 20 × 20 × 20 equal parts along the three directions of
length, width, and height, having 8,000 eight-node hexahedral elements and 9,261 nodes. Compared
with the original model with 30 × 30 × 30 equal parts, 27,000 elements and 29,791 nodes, the present
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model, which is much lower in finite element number, will decrease computation time greatly. For the
strain amplitudes Ea involved in Figure 8, the entropy curves Hε(ll)(Ea, N) and Hε1(Ea, N) (red solid
lines) using the model with less element number and the corresponding curves (black solid lines) using
the original model are plotted together in Figure 12. The curves in the figure show that the difference
in the size of the mesh has little effect on the entropy calculation result, which means that the difference
of FEM mesh divisions will not cause a noticeable difference in the entropy calculation results.Materials 2018, 11, x FOR PEER REVIEW  17 of 23 
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4. Conclusions

In the present paper, the Voronoi polycrystalline RVE is employed, combined with crystal plastic
analysis, to simulate the tensile-compressive symmetric strain cycle of the materials T2 pure copper
and nickel-base superalloy GH4169. The entropies calculated from of the distribution of the strain
in the loading direction and from the distribution of the first principal strain of the materials are
employed, respectively, to characterize the inhomogeneous deformation at the tension peak of the
cyclic loading and to predict the fatigue lives of materials. Based on the analysis, the following
conclusions are obtained:

1. The greater the strain amplitude Ea, the larger the growing rates with cycles will be for the
entropies Hε(ll)(Ea, N) and Hε1(Ea, N).

2. Applying the critical values Hε(ll) f and Hε1 f to determine the occurrence of metal low-cycle
fatigue failure, the predictions are proved rational, and they are also approaches identical to that
by applying the critical values ε̂(ll) f and ε1 f of the FIPs [53,54].

3. Even in the absence of fatigue life data, the Hε(ll)(Ea, N) and Hε1(Ea, N) can be obtained by
simulation depending only on the material parameters for crystal plasticity. Once the critical
values of Hε(ll) f and Hε1 f are determined by using the fatigue tests at only single strain amplitude,
the fatigue lives can be predicted for other fatigue cycle at different strain amplitudes.

4. The difference of the statistical results of Hε(ll) f and Hε1 f from the models with different mesh
sizes is very small. This proves that the Shannon’s differential entropy calculation of strain using
the present method is not sensitive to the mesh division.

It is necessary to point out that the investigation in the present paper only discusses the prediction
of the fatigue lives of a metal under constant strain amplitude loading, and the condition for variable
amplitude is not dealt with. In Figures 5 and 8, one can observe that the values of the functions
Hε(ll)(Ea, N) and Hε1(Ea, N) are larger for the larger strain amplitude loading when the same relative
life is consumed for different strain amplitude loading exerted on a material. Therefore, qualitative
inferences on fatigue life in variable amplitude condition can be obtained that the life may be longer
for such a strain amplitude load sequence from lower to higher, and vice versa. The method may also
be considered to apply to multi-axial fatigue issue, but would need to consider more factors, like the
influence of tri-axial stress state, how to characterize the non-proportional deformation, etc.
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List of Symbols

Σ Macroscopic Cauchy stress tensor Σij Components of macroscopic Cauchy stress tensor

E Macroscopic logarithmic strain tensor ij
Components of macroscopic logarithmic strain
tensor

σ Local Cauchy stress tensor σij Components of local Cauchy stress tensor
ε Local logarithmic strain tensor εij Components of local logarithmic strain tensor
.
γ
(α) Shear strain rate at α-slip system τ(α) Resolved shear stress at α-slip system
α, β Sequence number of slip system

.
γ0 Reference strain rate

γ Accumulated shear slip g(α) Critical resolved shear stress at α-slip system
.
g(α) Evolution rate of g(α) x(α) Resolved back-stress on the α-slip system
.
x(α) Evolution rate of x(α) k′ Rate sensitivity parameter
δαβ Kronecker delta hαβ(γ) Hardening moduli
h0 Initial hardening rate h(γ) Hardening function
τ0 Initial critical resolved shear stress τs Saturation value of g(α)

a Linear hardening coefficient c Dynamic recovery coefficient
λ Static recovery coefficient e1, e2 Material constants to describe cyclic hardening
n(α) Unit vectors of the slip plane normal m(α) Unit vectors of the slip direction
F Deformation gradient tensor F∗ Elastic part of F
P(α)∗ Schmid tensor D Deformation rate tensor
D∗ Elastic deformation rate tensor Dp Plastic deformation rate tensor
<4>
C Fourth-order elasticity tensor .

σ
J Jaumann rate of Cauchy stress

tσ Cauchy stress tensor at time t t+∆tσ Cauchy stress tensor at time t+∆t

tσ
∣∣
t+∆t

Cauchy stress tensor under the
configuration at time t+∆t

εij Average of local strain components over the RVE

ε̂ij
Standard deviation of local strain
components over the RVE

vk Relative volume of k-th element

∆Vk Volume of k-th element VRVE Total volume of the RVE

ε(ll)
Normal strain in the macroscopic
loading direction

εI First principal strain

pε i

Relative volume fraction of the region
where εi ≤ ε ≤ εi+1

∆Vi
Volume of the subdivision region with the strain
interval εi ≤ ε ≤ εi+1

H Shannon’s information entropy Hε(ll) Shannon’s differential entropy for ε(ll)
HεI Shannon’s differential entropy for εI
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