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Exploring the alpha 
desynchronization 
hypothesis in resting state 
networks with intracranial 
electroencephalography and wiring 
cost estimates
Jaime Gómez-Ramírez   1, Shelagh Freedman2, Diego Mateos1, José Luis Pérez Velázquez1 & 
Taufik A. Valiante   3

This paper addresses a fundamental question, are eyes closed and eyes open resting states equivalent 
baseline conditions, or do they have consistently different electrophysiological signatures? We compare 
the functional connectivity patterns in an eyes closed resting state with an eyes open resting state 
to investigate the alpha desynchronization hypothesis. The change in functional connectivity from 
eyes closed to eyes open, is here, for the first time, studied with intracranial recordings. We perform 
network connectivity analysis in iEEG and we find that phase-based connectivity is sensitive to the 
transition from eyes closed to eyes open only in interhemispheral and frontal electrodes. Power based 
connectivity, on the other hand, consistently discriminates between the two conditions in temporal and 
interhemispheral electrodes. Additionally, we provide a calculation for the wiring cost, defined in terms 
of the connectivity between electrodes weighted by distance. We find that the wiring cost variation 
from eyes closed to eyes open is sensitive to the eyes closed and eyes open conditions. We extend the 
standard network-based approach using the filtration method from algebraic topology which does 
not rely on the threshold selection problem. Both the wiring cost measure defined here and this novel 
methodology provide a new avenue for understanding the electrophysiology of resting state.

The view of the brain as a reflexive organ whose neural activity is completely determined by incoming stimuli 
is challenged by the “intrinsic” or spontaneous view of the brain. Nevertheless, the exact implications of resting 
state for brain function are far from clear1,2. Mandag and colleagues3 argue for the reconceptualization of resting 
state as an independent variable (brain’s input) to a multidimensional activity modulator. The emerging field of 
functional connectomics relies on the analysis of spontaneous brain signal covariation to infer the spatial fin-
gerprint of the brain’s large-scale functional networks. While there is growing interest in the brain’s resting state, 
supported by evidence for persistent activity patterns in the absence of stimulus-induced activity (e.g. default 
mode network)4, there lacks a definite recommendation about whether resting state data should be collected with 
participants’ eyes open or closed. If stimulus-induced activity is indeed, at least in part, predetermined by the 
brain’s intrinsic activity (i.e. resting state activity), it follows that we cannot understand one without the other. The 
more we know about the electrophysiological underpinnings of resting state, both with eyes closed and eyes open, 
the better equipped we will be to understand brain dynamics, including both intrinsic activity and the processing 
of stimuli.

The orthodox approach to understanding brain function relies on the view of the brain as an organ that produces 
responses triggered by incoming stimuli, which are delivered at will by an external observer. This idea has been 
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challenged by the complementary view of the brain as an active organ, with intrinsic or spontaneous activity5–7.  
Crucially, the brain’s intrinsic activity both shapes and is shaped by external stimuli. While there has been some 
controversy concerning the ecological relevance of studying a default or resting condition8,9, the empirical evi-
dence for intrinsic brain activity is conclusive10,11.

Despite the ever increasing importance of resting-state functional connectivity (a quick search on PubMed 
shows 2,742 papers with the term “resting state” in the title at the time of the writing), it remains underutilized in 
clinical decision making12. A rationale for this needs to be found with both conceptual and methodological basis. 
First and foremost, the term resting-state is a misnomer, as a matter of fact, the brain is always active, even in the 
absence of an explicit task, or external stimuli. Cognitive task-related changes in brain metabolism, measured 
with PET, account for a mere 5% or less of the brain’s metabolic demand13. Second, the resting state literature, 
from its inception, is eminently based on the analysis of low frequency fluctuations of the BOLD signal measured 
using fMRI, alone or in combination with EEG and PET14,15. Third, these techniques suffer from suboptimal 
temporal and/or spatial resolution and the haemodynamic or metabolic activity measured in fMRI and PET are 
proxy measures for the electrophysiological activity. Fourth, there is a lack of consensus in the literature regarding 
whether resting state data should be collected while the participant has their eyes open, closed, or fixated. See16 
for non-significant between-condition differences in resting state networks and17 for an antagonistic view. This 
paper attempts to better understand the brain’s resting state by characterizing the two most common baseline 
conditions in neuropsychology, eyes closed and eyes open, using intracranial electroencephalogram recordings. 
Note that intracranial electroencephalography, iEEG, and electrocorticography, ECoG, are here used indistinctly.

Previous studies have identified a reduction in the number of connections when the eyes closed condition is 
compared to the eyes open condition, in the alpha band18,19. This is known as “alpha desynchronization”. Using 
EEG, Barry and colleagues19 found that there are electrophysiological differences -topography as well as power 
levels- between the eyes closed and eyes open resting states. A higher degree of alertness caused by opening 
one’s eyes is associated with the attenuation of alpha rhythm, which is supplanted by desynchronized low voltage 
activity20. Geller and colleagues21 found that eye closure causes a widespread low-frequency power increase and 
focal gamma attenuation in the human electrocorticogram. However, although these studies explicitly conclude 
that eyes open and eyes closed are different baseline conditions, they do not provide a method for comparing the 
functional connectivity patterns elicited by either of the two conditions against a common criterion.

Shedding some light on the problem, this paper examines whether the eyes closed and eyes open resting states 
are equivalent baseline conditions by analyzing the differences between the two, using a filtration approach that 
extends the standard network-based approach of using a fixed threshold to obtain the adjancency matrix from 
the correlation matrix. In a filtration method, a set of networks are built for a large number of thresholds, over-
coming the threshold selection problem of building a graph from a correlation matrix. This allows us to explore, 
systematically and bias free, the electrophysiological underpinnings of resting state with intracranial electroen-
cephalogram data.

First, we perform power and phase based connectivity analysis to asses whether the connectivity patterns cal-
culated from intracranial recordings are able to differentiate between the two conditions. Additionally, we exploit 
the excellent temporal and spatial precision of ECoG to calculate the wiring cost for the connectivity maps.

Second, we investigate whether network topological properties have enough statistical power to be used as a 
feature/covariate to distinguish between the eyes closed and eyes open conditions. Finally, we extend the network 
theory based results, borrowing from algebraic topology, to perform a filtration method to study the dynamics of 
the network topologies for a large number of thresholds.

Materials and Methods
Participants.  The intracranial electroencephalography recordings were collected at the Toronto Western 
Hospital (Toronto ON, Canada). Our research protocol was approved by the University Health Network Research 
Ethics Board and informed consent was obtained from the participants. All methods were performed in accord-
ance with the relevant guidelines and regulations. Informed consent was obtained from all patients. Eleven 
participants (6 female) with pharmacologically-refractory mesial temporal lobe epilepsy underwent a surgical 
procedure, in which electrodes were implanted subdurally on the temporal lobe and stereotaxic depth electrodes 
were implanted in the hippocampi or other deep structures (Fig. 1). For each patient, electrode placement was 
determined to best pinpoint the origin of seizure activity. In addition to electrodes implanted in the temporal 
lobe, including depth electrodes in the hippocampi, some patients had electrodes implanted in frontal, interhem-
isphic and the cortical convexity (see Table 1). The electrode implants are thus not identical for all participants, 
though they tend to overlap in the mesial temporal lobe epilepsy (MTLE) sensitive regions. This limits the ability 
to directly compare the wiring cost or other network properties among participants. However, we can still com-
pare and generalize from participants by examining the difference between the two conditions. For example, in 
order to compare the functional connectivity pattern of two participants, one with a grid in the left cortex and 
another with depth electrodes in the hippocampus and temporal areas, we calculate the difference between net-
work parameters from eyes closed to eyes open, within each participant.

Resting state conditions.  To assess resting-state activity for both the eyes closed and and eyes open condi-
tions, participants were asked to relax and rest quietly in their hospital bed, in a semi-inclined position. First, they 
were asked to close their eyes for three minutes and then asked to keep their eyes open for another three minutes. 
Each session was recorded with real-time monitoring of the intracranial electroencephalography and continuous 
audio and video surveillance.

ECoG recordings allow us to simultaneously study both fast and slow temporal dynamics of the brain at rest, 
that is, not engaged in tasks prescribed by the experimenter. Freeman and Zhai22 have shown that the resting 
ECoG has low-dimensional noise, making resting state an optimal starting point for defining and measuring both 
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artifactual and physiological structures emergent in the activated electrophysiological signals. Importantly, ECoG 
signals covary in patterns that resembled the resting state networks (RSN) found with fMRI23.

iEEG acquisition.  Continuous iEEG data were recorded in an unshielded hospital room using NATUS 
Xltech digital video-EEG system. Commercially available depth electrodes and subdural electrodes were used 
to collect continuous iEEG recordings. Common reference and ground electrodes were placed subgalealy at a 
location distant from any recording electrodes with contacts oriented toward the dura. Electrode localization 
was accomplished by localizing the implanted electrodes on the postoperative computed tomography (CT) scan 
using the Matlab toolbox iELVis for localizing and displaying human intracranial electrode data24. Subdural elec-
trodes were arranged in strip or grid configurations, with an inter-electrode spacing of 10 mm. The location of 
the electrode implants was not identical across patients, however, all participants had depth electrodes, mostly in 
the hippocampi (Table 1).

Signal processing.  Signals were filtered online using a high-pass (0.1 cutoff frequency) and an anti-aliasing 
low-pass filter. Offline filtering using Matlab in house-scripts, consisted of a high-pass and low-pass filter at 0.5–
70 Hz and a notch filter applied at 60 Hz to remove electrical line noise.

To extract power and phase estimates of time-varying frequency-specific band, the ECoG signals were con-
volved with complex-valued Morlet wavelets. The wavelet convolution transformed the voltage trace at each elec-
trode to obtain both instantaneous power and phase trace for each frequency. The wavelet length was defined in 
the range of −1 to 1 seconds and was centered at time = 0 (in doing so we guarantee that the wavelet has an odd 
number of points). We used a constant number of wavelet cycles (7). This number was chosen since we have long 
trial periods (3 minutes) in which we expect frequency-band-specific activity and a large number of cycles (from 
7 to 10) to facilitate identifying temporally sustained activity25.

Of note, it is also possible to use a number of wavelet cycles that changes as a function of frequency, to adjust 
the balance between temporal and frequency precision as a function of the frequency of the wavelet. Thus, there is 
a trade-off between temporal and frequency precision. Since we are processing long epochs, we favour frequency 
over time precision and therefore chose to use a large number of wave cycles.

Figure 1.  Schematic of the electrode implant for two participants. (left) Participant 5 with bitemporal implant, 
36 electrodes total, 18 in each hemisphere, including a strip of 6 electrodes in the posterior temporal, strip of 4 
electrodes in the medial temporal and the anterior temporal and 4 depth electrode contacts in the hippocampus. 
(right) Participant 13 with Grid and depth electrodes. In blue the Grid of 64 contacts (8 × 8 matrix), the depth 
electrodes are not visible in this figure.

Patient Sex Age Laterality Channels

5 F 45 B H, T

6 M 32 B H, T, F, IH

7 M 41 B H, T, F, IH

10 F 24 B FP, IH, F

11 F 29 B H, T

12 M 49 B H, T

13 F 18 B Grid, D

15 F 29 R H, FP, F, IH, T

16 F 37 B H, T

17 M 28 L Grid, D

18 M 25 R H, FP, F, T

Table 1.  ID, sex, age, laterality and type of implant. The laterality can be bilateral (B), left (L) and right (R). 
The location of the electrodes fall under the following categories: hippocampus (H), temporal (T), frontal (F), 
interhemispheral (IH), frontal polar (FP), Grid, and depth (D; different from hippocampus).
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Connectivity measures.  We are interested in calculating the wiring cost associated with the functional 
connectivity map defined upon the electrodes’ spatial location. Measures of correlated activity are not real meas-
ures of “connectivity”. Here we use the term connectivity because it is the standard nomenclature, but a caveat on 
the dangers of assuming equality between correlated activity and connectivity is worth mentioning. Functional 
connectivity is calculated using both power-based and phase-based measures. For power-based we calculate 
Spearman’s correlation, while for phase-based connectivity we calculate two different measures - phase-lag index 
(PLI)26 and intersite phase clustering (ISPC). Note that ISPC represents the clustering in polar space of phase 
angle differences between electrodes resulting from the convolution between a complex wavelet and the signal 
and is also referred in the literature as R25.

Next, we briefly outline the three connectivity measures used. First, we describe power-based connectivity and 
next phase-based connectivity for the phase lag index and intersite phase clustering measures.

Power-based connectivity.  To calculate the correlation coefficients for power time series from any two electrodes 
in the same frequency, we perform time-frequency decomposition using wavelets to then compute the Spearman 
correlation coefficient between the power time series of the two electrodes. To increase the signal to noise ratio, 
we segment the data into non-overlapping windows of 5 seconds, compute Spearman’s correlation coefficient for 
each segment, and then average the correlation coefficients together.

The Spearman’s correlation is the Pearson correlation of the data previously rank-transformed. Formally, the 
Spearman correlation of two channels x and y whose power time series values have been rank-transformed is:
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It is of note that power-based correlation coefficients range from −1 to 1. To have a more normal looking 
distribution, it is preferable to perform a Fisher-Z transformation. It ought to be noted that power correlation is 
not limited to the kind of instantaneous correlations performed here, for example, cross correlation detects peak 
connectivity between two time series as a function of time lag.

Phase-based connectivity.  We calculate phase-based connectivity using two different measures, intersite phase 
clustering (ISPC) and the phase-lag index (PLI). The ISPC measures the clustering in polar space of phase angle 
differences between electrodes and is given by the equation:

∑= φ φ−

=

−( )ISPC n exp
(2)

f
t

n
i1

1

x t y t( ) ( )

where n is the number of time points and φx and φy are the phase angles from electrodes x and y at a given fre-
quency f. Note that this measure is sensitive to volume conduction. For example, when the phase differences are 
not uniformly distributed, but clustered around 0 or π in polar space, much of the apparent connectivity between 
these electrodes might be due to volume conduction.

There are several phase-based connectivity measures that ignore the 0 − π phase-lag connectivity problem, 
e.g., imaginary coherence27, phase-slope index28, phase-lag index26 and weighted phase-lag index29. Although 
these measures are designed to be insensitive to the linear mixing of uncorrelated sources, in some cases they may 
still be susceptible to source mixing30.

Phase lag index measures the extent to which the distribution of phase angle differences is more to the positive 
or to the negative side of the imaginary axis on the complex plane. That is, it tells us whether the vector of phase 
angle differences are pointing up or down in polar space. The idea is that if spurious connectivity is due to volume 
conduction, the phase angle differences will be distributed around zero radians. It follows that non-volume con-
ducted connectivity will produce a distribution of phase angles that is predominantly on either the positive or the 
negative side of the imaginary axis. Note that here, contrary to ISPC, the vectors are not averaged, instead it is the 
sign of the imaginary part of the cross spectral density that is averaged:
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where imag is the imaginary part of Sxy(t), or cross-spectral density between channels x and y at time t. The sgn 
function returns +1, −1, or 0.

Phase coherence measures are highly influenced by volume conduction31. PLI, on the other hand, was 
designed to tackle this problem. As shown by Stamm and colleagues, PLI is not particularly sensitive to zero-lag 
correlations and is less sensitive to volume conducted signals and common reference issues26. Later on, Peraza 
and colleagues30 have shown that PLI is not entirely invariant to volume conduction. In a simulation study, they 
found that PLI-based connectivity networks show more small worldness (higher cluster coefficient) than random 
networks. However, for non-volume conduction, PLI-based networks are close to random networks, indicating 
that the high clustering shown for PLI is caused by volume conduction.

To recapitulate, ISPC captures the clustering of the phase angle difference distribution and PLI the phase angle 
directions. ISPC can be influenced by changes in power and is maximally sensitive to detecting connectivity, 
regardless of the phase angle differences. Intracranial EEG is less sensitive to volume conduction problems than 
other electrophysiological techniques (EEG and MEG). Thus, by calculating phase-based connectivity with both 
ISPC and PLI, we expect to clarify the properties of both measures for the analysis of the iEEG signal.
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Wiring cost.  Now that we have described how functional connectivity is obtained, we continue by describing 
how to calculate the wiring cost between any pair of electrodes. The idea behind this measure is to exploit the 
location of the signal to provide a measure of the wiring cost of having two electrodes coupled, that is, statistically 
correlated, by any of the connectivity measures highlighted above. The wiring cost is nothing more than the con-
nectivity matrix weighted by the euclidean distance between the electrodes. To calculate the wiring cost, we need 
then two matrices, the distance matrix ‖ ‖=D x y z x y z( , , ), ( , , )ij i i i j j j  which captures the Euclidean distance 
between any two electrodes physically located in Cartesian coordinates (xi, yi, zi) and (xj, yj, zj) and the functional 
connectivity matrix. Thus, the computation of the wiring cost W combines the physical distance matrix D and a 
functional connectivity matrix F. While there is one phyisical distance matrix D for each participant, we calculate 
the functional connectivity matrix F using three different criteria - ISPC, PLI and the Spearman correlation of 
power time series.

The pairwise wiring cost for a distance matrix of electrodes D and functional connectivity matrix F calculated 
at frequency f is calculated as:

W f D F f( ) ( ) (4)= .∗

Thus, the pairwise wiring cost of two electrodes is directly proportional to the distance and the correlation. 
The further away and the stronger the correlation, the larger the wiring cost (Fig. 2).

Network analysis.  The correlation matrices can be converted into adjacency matrices and then into undi-
rected graphs with the direct application of a threshold. The choice of the threshold specifies the relationship 
between two electrodes, two electrodes are connected when the correlation is within a certain threshold. Thus, 
two electrodes are connected when the correlation is larger than the threshold.

Figure 3 shows the binary or unweighted networks that result from thresholding the power based correlation 
matrices in the alpha band. The threshold of choice is equal to the mean plus one standard deviation. We build the 
network connectivity for each subject and condition in the frequency band to then calculate an extensive set of 
network metrics including clustering, transitivity, path length, and number of components.

It is important to note that although the majority of subjects have electrodes in temporal areas and the hip-
pocampi, the location of the electrodes varies substantially from one subject to another and the subjects’ networks 
are not directly comparable. For example, a subject with a grid of 64 contacts with a separation of 1 cm will nec-
essarily have a larger clustering coefficient than a subject with bitemporal electrodes, and by the same token, the 
average path length in stereotactically implanted electrodes will be larger than in the grid.

In order to avoid this limitation, we study the difference in the network metrics between conditions for each 
subject. In this way, we can compare the variations in network topology for the two conditions across subjects.

Persistent homology.  A not less important limitation is that we obtain very different networks depend-
ing on the significance level (threshold) we use. This is problematic, particularly when the underlying system 
it not scale invariant. Small world and clusterness are joint measures and can change drastically depending on 
the choice of threshold32. Furthermore, by adopting a threshold, we may be loosing important information, for 
example, it may occur that some small-scale features are noise artifacts while other are critically important33,34.

Algebraic topology35 provides a language and a methodology to overcome these limitations. It presents a 
multiscale framework able to deal with the threshold selection problem. In the standard approach, in order to 
study the topological properties of functional connectivity networks we need to consider a threshold, which once 
applied to the connectivity matrix, will produce a binary graph from which network properties such as clustering, 

Figure 2.  The nodes represent electrodes and the edges the correlation between the nodes. The wiring cost 
between electrodes A and B is calculated as the product between the Euclidean distance between the nodes and 
the functional connectivity. Thus the wiring cost between two nodes A, B is the functional connectivity value 
weighted by the distance, WAB = DAB * FCAB.
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small world, characteristic path length and others can be measured. The selection of the threshold is, however, 
arbitrary, and the resulting network depends entirely upon that choice.

We overcome this limitation by following a filtration method used in algebraic and computational topol-
ogy36,37, in which rather than having one threshold, we build a vector of thresholds, containing all possible thresh-
old values between the two extremes (minimum and maximum connectivity values). For example, for the matrix 
F, of dimension n × n we obtain the threshold vector T with n2 elements bounded between the minimum and 
maximum of F, T = [min(W), max(W)].

A set of binary networks is then obtained by thresholding the wiring cost matrix for each possible threshold. 
Specifically, the binary matrix Bτ for the threshold τ and functional connectivity matrix F is such that Bτ(ij) = 0 
if the correlation between electrodes i,j is less than the threshold, Bτ(ij) < τ, otherwise Bτ(ij) = 1. Thus, for 
each threshold value τ ∈ T, we obtain a binary network and the resulting set of networks is comprised at the 
two extremes of the spectrum by the disconnected graph Bτ(V, ∅), produced when applying the threshold τ = 
min(W) and the full graph Bτ(V, E(W)) resulting from applying the threshold τ = max(W). Importantly, the set of 
binary networks has an internal structure that progressively increases until it becomes a fully connected network.

Results
First, we study the statistical significance for the two conditions, eyes closed and eyes open, using the correlation 
matrix for power and phase based connectivity in the alpha band.

The effect of a higher degree of alertness (going from eyes closed to eyes open) for the various regions of inter-
est for power-based connectivity in the alpha band is shown in Table 2. All the patients (11/11) have at least one 
electrode with a power-based connectivity pattern that is statistically significant for the two conditions.

Tables 3 and 4 show the statistical significance analysis for phase-based (ISPC and PLI) connectivity in the 
alpha band. Phase based connectivity demonstrated a statistically significant difference between the two condi-
tions in interhemispheric and frontal electrodes for only 2 subjects (2/11). Depth, hippocampal and temporal 
electrodes do not show statistically significant differences between conditions. This is in agreement with EEG 
studies that show a decrease in alpha activity across the entire cortex in response to visual stimulation19.

Figure 3.  The figure shows the power-based connectivity network for 6 subjects for eyes closed and eyes open 
in the alpha band. The threshold used is t = μ + σ. Top left and clockwise, subjects 5, 6, 11, 12, 13 and 17. The 
first and third columns depict the network in eyes closed, and columns 2 and 4 in eyes open. Network property 
changes can be directly observed, for example, for patient 11 (second row, columns 1 and 2) the number of 
edges decreases from eyes closed to eyes open, mainly due to a loss of connections between the right and the left 
hippocampi.
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Power based connectivity (network topology).  Based on the previous results, we focus on power-based 
connectivity to study the network topology difference in the two conditions, eyes closed and eyes open. In order 
to study the topological properties we need to build the network from the correlation matrix. The procedure is 
quite straight forward, from the correlation matrix, we apply a threshold, in this case, the mean plus one standard 
deviation, t = μ + σ, to obtain the adjacency matrix, which can be equally represented as a graph. Figure 3 shows 
the connectivity network for 6/11 subjects for threshold t for both eyes closed and eyes open.

For a quantitaive analysis on the topological changes in the two conditions we calculate the network metric 
differences calculated for power-based connectivity in the alpha band as shown in Figure 4. The x-axis represents 
different network metrics and the y-axis represents the difference between the network metric, for example clus-
tering (fourth point in the x-axis), in going from eyes closed to eyes open. When the difference is positive, for 
example, clustering in eyes closed is larger than in eyes open, the dot is blue, otherwise red. While this approach 
has the potential to help us understand how the topological properties of the connectivity network are affected 
between the two conditions, there is an important caveat to keep in mind. Although all the subjects in our data 
set tend to have electrodes in temporal areas and the hippocampi, the location of the electrodes varies substan-
tially from one subject to another and the subjects’ networks are not directly comparable. It is, however, possible 
to overcome this limitation if we study on a single-subject basis the network properties for a set of thresholds. 
Thus, rather than assuming that the threshold is fixed, we build a large number of networks, as many networks as 
thresholds. In this way, we create a population of networks for each subject and condition from which it is possi-
ble to derive statistics. This is described in Section 2.9.

Power based connectivity (filtration method).  To acquire a qualitative understanding of both condi-
tions, eyes closed and eyes open, in terms of the wiring cost, we need to perform statistics with the distribution 
of binary networks obtained from using a large number of thresholds. The null hypothesis is that the effect of 
eyes closed is indistinguishable from the effect of eyes open for wiring cost. We extend the previous approach 
that consists of building the resulting network from applying the threshold of choice to the connectivity matrix, 
to building a set of networks with one for each possible threshold from the same connectivity matrix. Crucially, 

Patient H T F IH Grid D

5 — p = 0.0131(*)

6 — p = 0.0128(*) p = 0.013(*) p = 0.0312(*)

7 p = 0.027(*) p = 5.3506(**) — p = 0.0128(*)

10 p = 0.0166(*) p = 0.0113(*)

11 p = 0.0062(**) p = 0.0248(*)

12 p = 0.0175(*) p = 0.0058(**)

13 p = 0.018(*) —

15 p = 0.0017(**) — p = 0.0011(**) —

16 p = 0.0244(*) —

17 p = 0.0059(**)

18 p = 0.0066(**) p = 0.0056(**) p = 0.0137(*) —

Table 2.  Statistical significance for power-based connectivity in the alpha band calculated for a 95% confidence 
interval. The p-value is displayed when p < 0.05 (* when p < 0.05 and ** when p < 0.001), — denotes a non 
rejection of the null hypothesis or p > 0.05. For example, subject 5 has electrodes in the hippocampi (H) and in 
the temporal lobe (T) of which only electrodes in the temporal lobe reject the null hypothesis - that the mean 
power-based correlation in eyes closed and eyes open are not significantly different. All patients had at least one 
channel that was statistically significant, with a total of 84 channels with p < 0.05 in the alpha band.

Patient H T F IH Grid D

7 — — p = 0.0274(*) p = 0.0294(*)

10 p = 0.0224(*) p = 0.0149(*)

Table 3.  Statistical significance of phase ISPC-based connectivity in the alpha band. Only 2 subjects out of 11 
have one channel or more with statistical significance.

Patient H T F IH Grid D

7 — — p = 0.0274(*) p = 0.0247(*) — —

10 p = 0.0406(*) p = 0.0087(**)

11 — p = 0.0219(*)

Table 4.  Statistical significance of phase PLI-based connectivity in the alpha band. Only 3 subjects out of 11 
have one channel or more with statistical significance.
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by removing the initial assumption of a fixed threshold which is necessarily ad hoc, we can study the network 
dynamics of the n resulting networks, one for each threshold in the n-dimensional vector of thresholds.

Figure 5 shows the difference in clustering coefficient, density of edges, characteristic path length and wiring 
cost between eyes closed and eyes open.

We perform a test of statistical significance for the four network properties highlighted in Figure 5. The results 
are shown in Table 5. In 4/11 subjects all the network metrics show a statistically relevant difference between the 
two conditions. The network metric with the best score in differentiating between eyes closed and eyes open is the 
wiring cost, in 8/11 subjects.

Discussion
The brain is energy hungry, it amounts to only the 2% of the weight of the body, but takes up to 20% of the body’s 
metabolic demand. Yet, as with all physical systems, the brain has energy limitations. Ramón y Cajal was the first 
to postulate the laws of conservation for time, space and material38. It follows that there is a strong pressure for 
efficient use of resources, for example the minimization of the wiring cost at axonal, dendritic and synaptic levels. 
Longer connections, and those with greater cross-sectional area, are more costly because they occupy more phys-
ical space, require greater material resources, and consume more energy per connection. Networks that strictly 
conserve material and space (e.g. lattice) will likely pay a price in terms of conservation of time: it will take longer 
to communicate an electrophysiological signal between nodes separated by the longer path lengths that are char-
acteristic of lattices39. There are trade-offs between biological cost and topological value.

Functional connectivity analysis from EEG data provides an explanation for alpha desynchronization in terms 
of the number of connections i.e., the number of connections decreases when one’s eyes are open compared to 
closed. It is worth noting that the term desynchronization is defined in the literature quite vaguely, and used to 
mean very different things. Synchronization sometimes refers an to increase in band power in some frequency 
band (e.g. alpha) and conversely, desynchronization is also associated with a loss of power in the frequency band 
of interest. Stam et al.40 provide an alternative approach to desynchronization of the alpha rhythm, which is 
characterized as an increase in the irregularity of the EEG signal. The EEG irregularity is quantified with the 
acceleration spectrum entropy (ASE), which is the normalized information entropy of the amplitude spectrum of 
the second derivative of a time series.

This study investigates the electrophysiological signatures that characterize eyes closed and eyes open resting 
states in patients diagnosed with mesial lobe epilepsy, taking advantage of the unmatched spatio-temporal prop-
erties of iEEG. Power and phase based connectivity analysis were performed for both conditions in the alpha 
band, to investigate the alpha desynchronization hypothesis. Alpha desynchronization, or the alpha blocking 
response to eye opening was originally reported by Berger in 1929. Alpha suppression is produced by an influx of 
light, other afferent stimuli and mental activity41. Alpha rhythm is the EEG correlate of relaxed wakefulness, best 
obtained while the eyes are closed20.

The wiring cost, as defined here, combines the physical distance between electrodes and the statistical correla-
tion and takes full advantage of the spatial resolution of the ECoG signal. Specifically, the local wiring cost of two 

Figure 4.  The figure represents the difference between a number of network metrics for power-based 
connectivity in the alpha band in eyes closed minus eyes open. In the x-axis are plotted the network metrics, 
namely and from left to right: Generalized topological overlapping measure, Matching index, Density 
coefficient, Clustering coefficient, Transitivity coefficient, Number of connected components, Size of connected 
components, Community structure, Assortativity coefficient, Core/periphery structure, Characteristic path 
length, Eigenvector centrality normalized, Page rank centrality, and Degree. In the y-axis are plotted the 
difference in value between the two conditions for each metric, when the difference is positive the dot is plotted 
in blue, otherwise in red. The number of points plotted for each metric is equal to the number of subjects. In 
none of the network metrics do we observe a strict increase (all red points) or strict decrease (all blue dots) 
of the topological properties studied. However, since the electrodes implants are not spatially coincident, it is 
impossible to draw any overarching conclusion about how the network is affected from eyes closed to eyes open.
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electrodes represents the product between the distance and the correlation value. The combination of functional 
connectivity and distance networks allows us to quantify the wiring cost for the two conditions under study -eyes 
closed and eyes open. The rationale behind this approach is that the wiring cost might explain, at least in energy 
minimization terms, why, among all possible configurations, some functional connectivity patterns are selected 
rather than others. We mathematically define the wiring cost for a given connectivity pattern in Equation 4.

Figure 5.  The figure (top left and clockwise) shows the difference in clustering coefficient, density, characteristic 
path length and wiring cost between eyes closed and eyes open in the alpha band. The x-axis represents a 
network built upon applying a threshold. The difference always converges at zero, for some large threshold in 
which the network is fully connected (clique). In that case, the networks are identical for the two conditions and 
the difference is therefore 0.

Patient Clustering Density Path length Wiring Cost

5 ** ** ** **

6 p = 0.107 p = 0.192 p = 0.271 p = 0.336

7 p = 0.768 p = 0.546 p = 0.101 p = 0.601

10 ** ** ** **

11 ** ** p = 0.311 **

12 ** ** p = 0.878 **

13 ** ** ** **

15 p = 0.609 p = 0.278 ** p = 0.991

16 p = 0.599 ** ** **

17 ** p = 0.0328 p = 0.957 **

18 ** ** ** **

Table 5.  The table shows the statistical significance test for four network metrics, clustering coefficient, 
density (ratio between actual connections and potential connections), path length and wiring cost. Clustering 
coefficient differentiates between eyes closed and eyes open in 7/11 subjects, Density in 7/11 subjects, 
characteristic path length in 6/11 and wiring cost in 8/11 patients.
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We do not find compelling evidence for alpha desynchronization in phase-based connectivity analysis (except 
for interhemispheral and frontal electrodes). Power-based connectivity, on the other hand, is a more consistent 
predictor of alpha desynchronization, in particular within temporal electrodes. We find that the wiring cost does 
a better job in differentiating between eyes closed and eyes open than network metrics such as characteristic path 
length, clustering, or the edge density.

To investigate the loss of connectivity predicted by the alpha desynchronization hypothesis without relying on 
the adoption of a network threshold, we calculated the distribution of network property values associated with 
the connectivity matrix derived from a threshold vector bounded by the minimum and maximum functional 
connectivity values. We find that the location of the electrodes is the most important factor to be considered when 
studying the alpha desynchronizationin ECoG.

Although intracranial electroencephalography has unmatched spatial and temporal specificity, it may not be 
the optimal method for studying macroscopic aspects of the human brain. This study has the limitation that the 
electrode implants tend to be located in the seizure sensitive temporal lobe and leave untouched occipital and 
parietal lobes. A complementary model system for the study of the wiring cost difference between two connectiv-
ity patterns would be EEG or fMRI, in which the signal source is regularized in a common brain volume template. 
However, these techniques are limited by the source reconstruction problem, which is not as problematic in iEEG.

Ideally, this study would have used randomization of the two conditions -eyes closed and eyes open- altering 
the order. In the alpha blocking response to eye opening initially described by Berger (Berger’s effect), also called 
alpha desynchronization, there is a specific sequence – eyes closed precedes eyes open- and this is the sequence 
that we have used. It is however possible to go beyond the alpha blocking response to a more general study of 
the electrophysiological signatures of eyes open and eyes closed. This would require randomization and will be 
studied in future work in which we perform an intervention between eyes closed and eyes open, alternatively.

The results here obtained can be of interest to resting state (sleep, awake), task-based and pathological condi-
tions, for example in epileptic seizures. In a forthcoming study, we show that the wiring cost increases dramati-
cally in the ictal period compared to the pre-ictal period.

This work is a step forward in understanding the electrophysiological differences between the eyes open and 
eyes closed resting state conditions. It uses a straight forward and easily replicable approach to investigate the 
electrophysiology of baseline conditions in terms of energy efficiency. Furthermore, we introduce the method of 
persistent homology from algebraic topology to study network connectivity dynamics free of the threshold selec-
tion problem. The minimization of the wiring cost for functional connectivity networks acting over networks of 
intracranial electrodes provides a new avenue for understanding the electrophysiology of resting state.

References
	 1.	 Schneider, F. et al. The resting brain and our self: self-relatedness modulates resting state neural activity in cortical midline 

structures. Neuroscience 157, 120–131 (2008).
	 2.	 Northoff, G., Duncan, N. W. & Hayes, D. J. The brain and its resting state activity–experimental and methodological implications. 

Progress in Neurobiology 92, 593–600 (2010).
	 3.	 Maandag, N. J. et al. Energetics of neuronal signaling and fmri activity. Proceedings of the National Academy of Sciences 104, 

20546–20551 (2007).
	 4.	 Greicius, M. D. & Menon, V. Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting 

activation. Journal of Cognitive Neuroscience 16, 1484–1492 (2004).
	 5.	 Llinás, R. R. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. 

Science (New York, N.Y.) 242, 1654–1664 (1988).
	 6.	 Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using 

echo-planar MRI. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of 
Magnetic Resonance in Medicine 34, 537–541 PMID: 8524021 (1995).

	 7.	 Papo, D. Why should cognitive neuroscientists study the brain’s resting state? Frontiers in Human Neuroscience 7, 45 (2013).
	 8.	 Buckner, R. L. & Vincent, J. L. Unrest at rest: default activity and spontaneous network correlations. Neuroimage 37, 1091–1096 

(2007).
	 9.	 Morcom, A. M. & Fletcher, P. C. Does the brain have a baseline? why we should be resisting a rest. Neuroimage 37, 1073–1082 (2007).
	10.	 Wang, L. et al. Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fmri. 

Neuroimage 31, 496–504 (2006).
	11.	 Mantini, D., Perrucci, M. G., Del Gratta, C., Romani, G. L. & Corbetta, M. Electrophysiological signatures of resting state networks 

in the human brain. Proceedings of the National Academy of Sciences 104, 13170–13175 (2007).
	12.	 Tracy, J. I. & Doucet, G. E. Resting-state functional connectivity in epilepsy: growing relevance for clinical decision making. Current 

Opinion in Neurology 28, 158–165 (2015).
	13.	 Sokoloff, L., Mangold, R., Wechsler, R. L., Kennedy, C. & Kety, S. S. The effect of mental arithmetic on cerebral circulation and 

metabolism. Journal of Clinical Investigation 34, 1101 (1955).
	14.	 Van Den Heuvel, M. P. & Pol, H. E. H. Exploring the brain network: a review on resting-state fmri functional connectivity. European 

Neuropsychopharmacology 20, 519–534 (2010).
	15.	 Musso, F., Brinkmeyer, J., Mobascher, A., Warbrick, T. & Winterer, G. Spontaneous brain activity and eeg microstates. a novel eeg/

fmri analysis approach to explore resting-state networks. Neuroimage 52, 1149–1161 (2010).
	16.	 Patriat, R. et al. The effect of resting condition on resting-state fmri reliability and consistency: a comparison between resting with 

eyes open, closed, and fixated. Neuroimage 78, 463–473 (2013).
	17.	 Yan, C. et al. Spontaneous brain activity in the default mode network is sensitive to different resting-state conditions with limited 

cognitive load. PloS One 4, e5743 (2009).
	18.	 Tan, B., Kong, X., Yang, P., Jin, Z. & Li, L. The difference of brain functional connectivity between eyes-closed and eyes-open using 

graph theoretical analysis. Computational and Mathematical Methods in Medicine (2013).
	19.	 Barry, R. J., Clarke, A. R., Johnstone, S. J., Magee, C. A. & Rushby, J. A. Eeg differences between eyes-closed and eyes-open resting 

conditions. Clinical Neurophysiology 118, 2765–2773 (2007).
	20.	 Niedermeyer, E. & da Silva, F. L. Electroencephalography: basic principles, clinical applications, and related fields (Lippincott Williams 

& Wilkins, 2005).
	21.	 Geller, A. S. et al. Eye closure causes widespread low-frequency power increase and focal gamma attenuation in the human 

electrocorticogram. Clinical Neurophysiology 125, 1764–1773 (2014).



www.nature.com/scientificreports/

1 1SCIeNTIfIC REPOrTS | 7: 15670 | DOI:10.1038/s41598-017-15659-0

	22.	 Freeman, W. J. & Zhai, J. Simulated power spectral density (psd) of background electrocorticogram (ecog). Cognitive Neurodynamics 
3, 97–103 (2009).

	23.	 Fukushima, M., Chao, Z. C. & Fujii, N. Studying brain functions with mesoscopic measurements: advances in electrocorticography 
for non-human primates. Current Opinion in Neurobiology 32, 124–131 (2015).

	24.	 Groppe, D. M. et al. iELVis: an open source MATLAB toolbox for localizing and visualizing human intracranial electrode data. J. 
Neurosci. Methods 281, 40–48 (2017).

	25.	 Cohen, M. X. Analyzing neural time series data: theory and practice (MIT Press, 2014).
	26.	 Stam, C. J., Nolte, G. & Daffertshofer, A. Phase lag index: assessment of functional connectivity from multi channel eeg and meg with 

diminished bias from common sources. Human Brain Mapping 28, 1178–1193 (2007).
	27.	 Nolte, G. et al. Identifying true brain interaction from eeg data using the imaginary part of coherency. Clinical Neurophysiology 115, 

2292–2307 (2004).
	28.	 Nolte, G. et al. Robustly estimating the flow direction of information in complex physical systems. Physical Review Letters 100, 

234101 (2008).
	29.	 Vinck, M., Oostenveld, R., van Wingerden, M., Battaglia, F. & Pennartz, C. M. An improved index of phase-synchronization for 

electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 55, 1548–1565 (2011).
	30.	 Peraza, L. R., Asghar, A. U., Green, G. & Halliday, D. M. Volume conduction effects in brain network inference from 

electroencephalographic recordings using phase lag index. Journal of Neuroscience Methods 207, 189–199 (2012).
	31.	 Mormann, F., Lehnertz, K., David, P. & Elger, C. E. Mean phase coherence as a measure for phase synchronization and its application 

to the eeg of epilepsy patients. Physica D: Nonlinear Phenomena 144, 358–369 (2000).
	32.	 Toppi, J. et al. How the statistical validation of functional connectivity patterns can prevent erroneous definition of small-world 

properties of a brain connectivity network. Computational and Mathematical Methods in Medicine (2012).
	33.	 Fallani, F. D. V., Richiardi, J., Chavez, M. & Achard, S. Graph analysis of functional brain networks: practical issues in translational 

neuroscience. Phil. Trans. R. Soc. B 369, 20130521 (2014).
	34.	 Papo, D., Buldú, J. M., Boccaletti, S. & Bullmore, E. T. Complex network theory and the brain. Phil. Trans. R. Soc. B 369, 20130520 

(2014).
	35.	 Munkres, J. R. Elements of algebraic topology, vol. 2 (Addison-Wesley Menlo Park, 1984).
	36.	 Dabaghian, Y., Brandt, V. L. & Frank, L. M. Reconceiving the hippocampal map as a topological template. Elife 3, e03476 (2014).
	37.	 Dotko, P. et al. Topological analysis of the connectome of digital reconstructions of neural microcircuits. arXiv preprint 

arXiv:1601.01580 (2016).
	38.	 Ramón y Cajal, S. Histology of the nervous system of man and vertebrates, vol. 1 (Oxford University Press, USA, 1995).
	39.	 Fornito, A., Zalesky, A. & Bullmore, E. Fundamentals of brain network analysis (Academic Press, 2016).
	40.	 Stam, C., Tavy, D. & Keunen, R. Quantification of alpha rhythm desynchronization using the acceleration spectrum entropy of the 

eeg. Clinical EEG and Neuroscience 24, 104–109 (1993).
	41.	 Schomer, D. L. & Da Silva, F. L. Niedermeyer’s electroencephalography: basic principles, clinical applications, and related fields 

(Lippincott Williams & Wilkins, 2012).

Acknowledgements
We acknowledge the support of the Bial Foundation, grant number #20614.

Author Contributions
J.G.R. and S.F. wrote the main manuscript. J.G.R. analyzed data and conceived the wiring cost model. S.F. 
performed the experiments. D.M. prepared Figures 1 and 2 and analyzed electrophysiolgical data. J.L.P.V. 
supervised the project and and built initial wiring cost models. T.V. provided access to the clinical population and 
analyzed electrophysiolgical data.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Exploring the alpha desynchronization hypothesis in resting state networks with intracranial electroencephalography and wir ...
	Materials and Methods

	Participants. 
	Resting state conditions. 
	iEEG acquisition. 
	Signal processing. 
	Connectivity measures. 
	Power-based connectivity. 
	Phase-based connectivity. 
	Wiring cost. 

	Network analysis. 
	Persistent homology. 

	Results

	Power based connectivity (network topology). 
	Power based connectivity (filtration method). 

	Discussion

	Acknowledgements

	Figure 1 Schematic of the electrode implant for two participants.
	Figure 2 The nodes represent electrodes and the edges the correlation between the nodes.
	Figure 3 The figure shows the power-based connectivity network for 6 subjects for eyes closed and eyes open in the alpha band.
	Figure 4 The figure represents the difference between a number of network metrics for power-based connectivity in the alpha band in eyes closed minus eyes open.
	Figure 5 The figure (top left and clockwise) shows the difference in clustering coefficient, density, characteristic path length and wiring cost between eyes closed and eyes open in the alpha band.
	Table 1 ID, sex, age, laterality and type of implant.
	Table 2 Statistical significance for power-based connectivity in the alpha band calculated for a 95% confidence interval.
	Table 3 Statistical significance of phase ISPC-based connectivity in the alpha band.
	Table 4 Statistical significance of phase PLI-based connectivity in the alpha band.
	Table 5 The table shows the statistical significance test for four network metrics, clustering coefficient, density (ratio between actual connections and potential connections), path length and wiring cost.




