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Abstract

The exact mechanism underlying fibromyalgia is unknown, but increased facilitatory modu-

lation and/or dysfunctional descending inhibitory pathway activity are posited as possible

mechanisms contributing to sensitization of the central nervous system. The primary goal

of this study is to identify a fibromyalgia neural circuit that can account for these abnormali-

ties in central pain. The second goal is to gain a better understanding of the functional con-

nectivity between the default and the executive attention network (salience network plus

dorsal lateral prefrontal cortex) in fibromyalgia. We examine neural activity associated with

fibromyalgia (N = 44) and compare these with healthy controls (N = 44) using resting state

source localized EEG. Our data support an important role of the pregenual anterior cingulate

cortex but also suggest that the degree of activation and the degree of integration between

different brain areas is important. The inhibition of the connectivity between the dorsal lateral

prefrontal cortex and the posterior cingulate cortex on the pain inhibitory pathway seems to

be limited by decreased functional connectivity with the pregenual anterior cingulate cortex.

Our data highlight the functional dynamics of brain regions integrated in brain networks in

fibromyalgia patients.

Introduction

Physiological pain typically originates from noxious stimuli that are able to trigger a neural

response in pain-dedicated systems. In individuals with fibromyalgia, pain is experienced with

noxious stimulation, but linked to abnormalities in central pain processing. Fibromyalgia is a

disorder characterized by chronic (>3 months) complaints of spontaneous widespread pain in

in all 4 quadrants of the body associated with fatigue not relieved by rest, poor sleep, distress,

depression, or cognitive dysfunction [1].

The exact mechanism underlying this pain syndrome is not known, but increased facilita-

tory modulation and/or dysfunctional descending inhibitory pathway activity are possible

mechanisms contributing to sensitization of the central nervous system [2]. Central sensiti-

zation is defined as an increased responsiveness of the central nervous system to a variety of

stimuli such as pressure and temperature. This causes hyperalgesia, allodynia, and referred
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pain across multiple spinal segments, leading to chronic widespread pain [3]. Functional

and structural neuroimaging studies have provided evidence for this hypothesis, demon-

strating both structural and functional activity and connectivity changes resulting in

enhanced pain facilitation in combination with defective inhibition of nociceptive signals,

which augment pain perception [4, 5]. Activity changes have been identified in the insula,

the anterior cingulate cortex, and the prefrontal cortex [6]. These areas are part of what

used to be called the pain matrix, but has recently been shown to be non-specific for pain, as

these areas are also activated by non-painful stimuli, auditory stimuli, and visual stimuli [7].

Based on previous studies looking into salience processing [8], it has been suggested that the

pain matrix is actually a network involved in multimodal salience processing [9, 10]. Brain

resting state functional connectivity changes were identified in the self-referential default

mode network and the executive control network in fibromyalgia patients [6, 11–15].

These network changes in fibromyalgia are similar to what was found in chronic back pain

patients, which was interpreted as a lasting effect of pain on brain function [16, 17]. A defi-

ciency of the pain inhibitory pathways, which critically involve the pregenual anterior cingu-

late cortex (pgACC) has been found in fibromyalgia patients as well [4, 18]. In summary,

functional imaging data suggest fibromyalgia is a clinical syndrome associated with a brain

dysfunction related to an increase in salience attached to pain and a deficiency in pain inhib-

itory mechanisms.

In the current study, we examined neural activity associated with fibromyalgia using resting

state source localized EEG. The primary goal of this study was to identify a fibromyalgia-

related neural circuit that could account for these abnormalities in central pain. The second

goal was to gain a better understanding of the functional connectivity between default and the

executive attention network in fibromyalgia. In addition, we were able to explore potential

abnormalities in different frequency bands using EEG. These bands are associated with differ-

ent neural mechanisms, and we compare these findings with previously published results from

other neuroimaging modalities.

Materials and methods

Subjects

A total of 88 subjects participated in the study, including 44 patients with fibromyalgia

(M = 46.33; Sd = 9.56) and 44 healthy control subjects who were matched for age

(M = 46.33; Sd = 9.56) and gender (males: 4; females: 40). The healthy control subjects were

selected out of an EEG database (N = 264) that were collected by our group using the same

equipment and room as the fibromyalgia group. Patients were consecutively recruited from

outpatient clinics to obtain a homogeneous sample. All patients met the 2010 American Col-

lege of Rheumatology criteria for fibromyalgia [19]. All patients were screened by a pain

physician to positively diagnose them with fibromyalgia to become enrolled in this study.

Patients presenting with pathologies mimicking the symptoms of fibromyalgia, as well as

patients suffering from severe organic or psychiatric co-morbidity (except minor depressive

disorder) were excluded from participation. None of the patients were suffering from cervi-

cotrigeminal radicular pain or types of hemicrania. None of the patients enrolled were tak-

ing any medication or have a history of drug abuse. This study was approved by the local

ethical committee (St-Augustinus Hospital, Antwerp, Belgium) and was in accordance with

the declaration of Helsinki. Patients gave a written informed consent before the procedure.

We have made the data available on figShare, with the accompanying DOI: https://figshare.

com/s/a39acc64713d03706333.
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Questionnaires

1. Pain questionnaires. Fibromyalgia Impact Questionnaire (FIQ). The fibromyalgia

impact questionnaire creates an inventory of the overall impact of fibromyalgia related symp-

toms on daily life. It is proven to be a well-designed questionnaire to measure the impact of

fibromyalgia on the overall quality of life of patients. The maximum score is 100 and a higher

score indicates a greater negative impact of the syndrome on the patient [20].

Pain Vigilance and Awareness Questionnaire (PVAQ). The PVAQ measures the preoccupa-

tion with or attention to pain and pain changes and is associated with pain-related fear and

perceived pain severity [21]. It consists of 16 items (e.g., ‘I am very sensitive for pain’) rated

between 0 (‘never’) and 5 (‘always’).

2. Fatigue questionnaires. Modified Fatigue Impact Scale (FIS). The MFIS is a self-report

instrument designed to rate the extent to which fatigue affects perceived function over the pre-

ceding one-week time interval. It includes 3 subscales: cognitive functioning (10 items), physi-

cal functioning (10 items), and psychosocial functioning (20 items). Each item is rated on a

scale from 0 (‘no problem’) to 4 (‘extreme problem’) with a maximum score of 120 [22].

3. Mood questionnaires. Beck Depression Inventory (BDI-II). The BDI is a questionnaire

to evaluate the severity of depressive mood states. The BDI scores severity of components such

as feelings of hopelessness and guilt in addition to fatigue and other physical symptoms [23]. It

consists of 21 questions, rated between 0 (no symptom impact) and 3 (maximum symptom

impact) with a maximum score of 63.

Electrophysiological data

1. EEG acquisition and preprocessing. EEG recordings were obtained in a fully lighted

room. Each participant was sitting upright on a small but comfortable chair. The recording

lasted approximately five minutes. The EEG was sampled using Mitsar-201 amplifiers (Nova-

Tech http://www.novatecheeg.com/) with 19 electrodes placed according to the standard 10–

20 International placement (Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8,

O1, O2), analogous to what was done in the control group. We checked the impedances to

remain below 5 kO. Data was collected with eyes-closed with a sampling rate of 500 Hz and

band passed in the range of 0.15-200Hz. The data was band-pass filtered off-line in the range

2–44 Hz, resampled to 128 Hz and subsequently transposed into Eureka! software [24]. The

data were plotted, and carefully inspected for manual artifact-rejection. We removed for the

stream of the EEG. All episodic artifacts including eye blinks, eye movements, teeth clenching,

body movement, or ECG artifact were removed. Average Fourier cross-spectral matrices were

computed for frequency bands delta (2–3.5 Hz), theta (4–7.5 Hz), alpha1 (8–10 Hz), alpha2

(10-12Hz), beta1 (13–18 Hz), beta2 (18.5–21 Hz), beta3 (21.5–30 Hz), and gamma (30.5–44

Hz).

2. Source localization. To estimate the standardized low-resolution brain electromagnetic

tomography (sLORETA; Pascual-Marqui, 2002) was used the intracerebral electrical sources

that generated the recorded activity (at sensor level). The common average reference transfor-

mation [25] was performed before applying the sLORETA algorithm and computing the elec-

tric neuronal activity as current density (A/m2). The solution space used in this study and

associated leadfield matrix are those implemented in the LORETA-Key software (freely avail-

able at http://www.uzh.ch/keyinst/loreta.htm). The software implements the realistic electrode

coordinates [26] and the lead field produced by Fuchs et al. (2002) applying the boundary ele-

ment method on the MNI-152 (Montreal neurological institute, Canada) template of Maz-

ziotta et al. [27]. The sLORETA-key anatomical template divides and labels the neocortical

(including hippocampus and anterior cingulated cortex) MNI-152 volume in 6,239 voxels of
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dimension 5 mm3, based on probabilities returned by the Demon Atlas [28]. The co-registra-

tion makes use of the correct translation from the MNI-152 space into the Talairach and Tour-

noux space [29].

3. Lagged phase connectivity. Coherence and phase synchronization between time series

corresponding to different spatial locations are interpreted as indicators of the “functional

connectivity”. Due to this is highly contaminated with an instantaneous, non-physiological

contribution due to volume conductionPascual-Marqui [30] introduced a new measure of

coherence by taking into account only non-instantaneous (lagged) connectivity. Hence, effec-

tively removing the confounding factor of volume conduction. As such, this measure of depen-

dence can be applied to any number of brain areas jointly (i.e., distributed cortical networks,

whose activity can be estimated with sLORETA). Measures of linear dependence (coherence)

between the multivariate time series are defined. The measures are non-negative, taking the

value zero only when there is independence, and are defined in the frequency domain: delta

(2–3.5 Hz), theta (4–7.5 Hz), alpha1 (8–10 Hz), alpha2 (10-12Hz), beta1 (13–18 Hz), beta2

(18.5–21 Hz), beta3 (21.5–30 Hz), and gamma (30.5–44 Hz). Based on this principle, lagged

linear connectivity was calculated. Time-series of current density were extracted for different

region of interests using sLORETA. Power in all 6,239 voxels was normalized to a power of 1

and log-transformed at each time point. Region of interest values thus reflect the log-trans-

formed fraction of total power across all voxels and do so separately for specific frequencies.

Regions of interest were defined based upon all brain areas obtained in previous analyses for

the different frequencies. We include the left and right insula (BA13), the dorsal anterior cin-

gulate cortex (BA24), the left and right dorsal lateral prefrontal cortices (BA9), and the poste-

rior cingulate cortex (BA23).

Statistical analysis

Statistical analysis is based on estimating, via randomization, the empirical probability distri-

bution for the max-statistic under the null hypothesis comparisons [31]. This methodology

corrects for multiple testing (i.e., for the collection of tests performed for all voxels and for all

frequency bands). Due to the non-parametric nature of the method, its validity does not rely

on any assumption of Gaussianity [31]. sLORETA statistical contrast maps were calculated

through multiple voxel-by-voxel comparisons in a logarithm of F-ratio [30]. The significance

threshold is based on a permutation test with 5000 permutations [30].

In addition, a similar technique was applied for connectivity. Connectivity contrast maps

were calculated through multiple comparisons using t-statistics. The significance threshold

was based on a permutation test with 5000 permutations.

A correlation analysis for the fibromyalgia patients, was conducted between the logged trans-

formed multiple voxel-by-voxel comparisons current density of sources for the 8 frequency

bands and respectively the FIQ, PVAQ, BDI, and FIS. A permutation testing with 5000 permu-

tations was used to define the significance threshold and to correct for multiple comparisons.

A similar analysis was applied for the connectivity strength between each region of interest

for the 8 frequency bands and respectively the FIQ, PVAQ, BDI, and FIS. A permutation test-

ing with 5000 permutations was used to define the significance threshold and to correct for

multiple comparisons.

Results

Behavioral data for fibromyalgia patients

The average of duration of the illness was 14.87 months (Sd = 11.45). The Fibromyalgia impact

questionnaire (FIQ) total score was 71.06 (Sd = 26.25) and the pain vigilance and awareness

Resting state electrical brain activity and connectivity in fibromyalgia
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questionnaire (PVAQ) score was 40.59 (Sd = 12.41). The score for the FIS was 59.72 (Sd = 14.57).

The Beck depression inventory score was 23.90 (Sd = 11.03).

Brain activity

1. Fibromyalgia vs healthy controls subjects. A comparison between fibromyalgia

patients and healthy controls revealed a significant effect for the alpha1, beta1, beta2, and

beta3 frequency bands (see Table 1 & Fig 1). For the alpha1 frequency, a decrease in activity in

the posterior cingulate cortex extending into the precuneus was found for the fibromyalgia

patients. For the beta1 and beta2 frequency bands, increased spontaneous activity was mea-

sured within the posterior cingulate cortex extending into the precuneus. In addition,

increased beta3 activity in the dorsal anterior cingulate cortex and the subgenual anterior cin-

gulate cortex was found. No significant effects were obtained for the delta, theta, alpha2, or

gamma frequency bands.

2. Correlation between brain activity and the FIQ in patients with fibromyalgia. For

the patients with fibromyalgia, a correlation analysis between the FIQ and brain activity

revealed a significant effect for the alpha 2 and beta1 frequency bands (see Table 1 & Fig 2).

For both frequency bands, a positive correlation was found in the dorsal anterior cingulate cor-

tex indicating that the higher the current density in the dorsal anterior cingulate cortex for the

alpha1 and beta1 frequency are, the higher the score on the FIQ and vice versa. No significant

effects were obtained for the delta, theta, alpha1, beta2, beta3, or gamma frequency bands.

3. Correlation between brain activity and the PVAQ in patients with fibromyalgia. A

correlation analysis between the PVAQ and brain activity was also computed. A significant

effect was demonstrated for both the beta1 and beta2 frequency bands in the pregenual ante-

rior cingulate extending into the dorsal medial/lateral prefrontal cortex (see Table 1 & Fig 3).

Table 1. MNI coordinates and Brodmann of peak voxels for each cluster.

Analysis Frequency Band MNI

coordinate

Brodmann area Name t-value

x y z

Fibromyalgia patients versus Healthy control

subjects

Alpha1 -15 -15 -50 31 Posterior Cingulate Cortex 3.46

Beta1 0 -36 37 31 Posterior Cingulate Cortex 3.82

Beta2 -5 -25 44 31 Posterior Cingulate Cortex 3.78

Beta3 -65 -24 17 24 Dorsal Anterior Cingulate Cortex 3.90

Beta3 -1 2 -5 Subgenual Anterior Cingulate

Cortex

3.25

Correlation FIQ r

Alpha1 5 30 25 32 Dorsal Anterior Cingulate Cortex .34

Beta1 5 25 40 32 Dorsal Anterior Cingulate Cortex .34

Correlation PVAQ r

Alpha1 5 30 25 32 Pregenual Anterior Cingulate Cortex .34

Beta1 5 25 40 32 Pregenual Anterior Cingulate Cortex .34

Correlation BDI Alpha2 5 25 27 24 Dorsal Anterior Cingulate Cortex .44

Beta3 -5 25 15 32 Dorsal Anterior Cingulate Cortex .41

Beta3 -5 19 -7 25 Subgenual Anterior Cingulate

Cortex

.39

Correlation BDI Theta -5 30 35 24 Dorsal Anterior Cingulate Cortex .34

Gamma -10 20 25 32 Dorsal Anterior Cingulate Cortex .41

Gamma -10 12 -15 25 Subgenual Anterior Cingulate

Cortex

.35

https://doi.org/10.1371/journal.pone.0178516.t001
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These effects revealed that the higher patients scored on the PVAQ, the higher the current den-

sity was within the pregenual anterior cingulate extending into the dorsal medial/lateral pre-

frontal cortex for the beta1 and beta2 frequency bands and vice versa. No significant effects

were obtained for the delta, theta, alpha1, alpha2, beta3, or gamma frequency bands.

4. Correlation between brain activity and the BDI in patients with fibromyalgia. We

performed a correlation analysis between the BDI and brain activity which demonstrated a sig-

nificant correlation for the alpha2 band in the dorsal anterior cingulate cortex and for the

Fig 1. A comparison between fibromyalgia patients and healthy controls. For the alpha1 frequency, a decrease in activity was identified in the

posterior cingulate cortex extending into to the precuneus for the fibromyalgia patients. For the beta1 and beta2 frequency bands, increased

spontaneous activity was measured within the posterior cingulate cortex extending into the precuneus. In addition, a significant effect was found for the

beta3 frequency band revealing increased activity in the dorsal anterior cingulate cortex and the subgenual anterior cingulate cortex.

https://doi.org/10.1371/journal.pone.0178516.g001
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beta3 band in the dorsal ACC and pgACC (see Table 1 & Fig 4). No significant effects were

obtained for the delta, theta, alpha1, beta1, beta2, or gamma frequency bands.

5. Correlation between brain activity and the FIS in patients with fibromyalgia. A cor-

relation analysis revealed a significant correlation for the theta and gamma frequency bands

based on the FIS with brain activity (see Table 1 & Fig 5). For the theta frequency band, a nega-

tive correlation was obtained between the current density in the dorsal anterior cingulate cor-

tex and the FIS, while for the gamma frequency band, positive correlations were demonstrated

between the subgenual anterior cingulate cortex, dorsal anterior cingulate cortex, and the FIS

Fig 2. Correlation with FIQ. For the alpha2 and beta1 frequency bands, a positive correlation was identified

within the dorsal anterior cingulate cortex: the higher the current density in the dorsal anterior cingulate cortex

for the alpha1 and beta1 frequency, the higher the score on the FIQ and vice versa.

https://doi.org/10.1371/journal.pone.0178516.g002
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respectively. No significant effects were obtained for the delta, alpha1, alpha2, beta1, beta2, or

beta3 frequency bands.

Brain connectivity

1. Fibromyalgia vs healthy controls subjects. A comparison of fibromyalgia subjects ver-

sus healthy control subjects for functional brain connectivity, as calculated by lagged phase

synchronization, specific to the alpha2 frequency band revealed multiple differences (F = 3.91,

p = .001; see Table 2 & Fig 6A). Decreased connectivity was identified between the right dorsal

lateral prefrontal cortex and multiple areas, including the left and right insula, the left and

Fig 3. Correlation with PVAQ. A significant effect was demonstrated for the beta1 and beta2 frequency

band in both the pregenual anterior cingulate extending into the dorsal medial/lateral prefrontal cortex with the

PVAQ and vice versa.

https://doi.org/10.1371/journal.pone.0178516.g003

Resting state electrical brain activity and connectivity in fibromyalgia

PLOS ONE | https://doi.org/10.1371/journal.pone.0178516 June 26, 2017 8 / 20

https://doi.org/10.1371/journal.pone.0178516.g003
https://doi.org/10.1371/journal.pone.0178516


Fig 4. Correlation with BDI. For the alpha2 frequency band, a positive correlation was identified in the dorsal

anterior cingulate cortex, while for the beta 3 frequency band a positive correlation was observed in both

dorsal anterior cingulate cortex and the subgenual anterior cingulate cortex.

https://doi.org/10.1371/journal.pone.0178516.g004
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Fig 5. Correlation with FIS. For the theta frequency band, a negative correlation was found between the

current density in the dorsal anterior cingulate cortex and the FIS, while for the gamma frequency band

positive correlations were demonstrated between the subgenual anterior cingulate cortex, dorsal anterior

cingulate cortex, and the FIS respectively.

https://doi.org/10.1371/journal.pone.0178516.g005
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right pgACC, and the bilateral anterior cingulate cortex. There was also a decrease in func-

tional connectivity between the left insula and the left pgACC. Increased functional connectiv-

ity was found between the right insula and multiple areas, including the left insula, left pgACC,

and bilateral posterior cingulate cortex. An increase in functional connectivity was also found

between the left pgACC and bilateral dorsal anterior cingulate cortex, and bilateral posterior

cingulate cortex. An increase was also noted between the left posterior cingulate cortex and

multiple areas including the right posterior cingulate cortex, right insula, right dorsal anterior

cingulate cortex, and left pregenual anterior cingulate. A similar increase in functional connec-

tivity was also found between the right posterior cingulate cortex and multiple areas including

the right insula, right dorsal anterior cingulate cortex, left pgACC, and left dorsal lateral pre-

frontal cortex. No significant effects were obtained for the delta, theta, alpha1, beta1, beta2,

beta3, or gamma frequency bands.

2. Correlation between brain connectivity and the FIQ in patients with fibromyalgia.

A positive significant correlation was revealed between connectivity and patient‘s individual

score on the FIQ for the alpha2 frequency band (r = .39, p< .05; see Table 2 & Fig 6B). This

positive correlation was found between the patient‘s individual score on FIQ and functional

connectivity between multiple areas including the left and right insula, the left and right poste-

rior cingulate cortex, the left pgACC, and left and right dorsal anterior cingulate cortex,

between the left and right posterior cingulate cortex, and the left and right dorsal anterior cin-

gulate cortex. In other words, the higher the score on the FIQ, the higher the lagged phase con-

nectivity strength between these regions and vice versa. No significant effects were obtained

for the delta, theta, alpha1, beta1, beta2, beta3, or gamma frequency bands.

3. Correlation between brain connectivity and the PVAQ in patients with fibromyal-

gia. A correlation analysis between brain connectivity and patient‘s individual score on

PVAQ revealed no significant effects for the delta, theta, alpha1, alpha2, beta1, beta2, beta3, or

gamma frequency bands.

4. Correlation between brain connectivity and the BDI in patients with fibromyalgia.

A correlation analysis between brain connectivity and patient‘s individual score on BDI

Table 2. Connectivity analysis.

Analysis Frequency

Band

Connectivity Name F-

Value

Fibromyalgia patients versus

Healthy control subjects

Alpha2 Increase right INS$ left INS; right INS$ left pgACC; right INS$ bil PCC; left pgACC

$ dACC; pgACC$ bil PCC; left PCC$ right PCC; left PCC$ right INS; left

PCC$ right dACC; left PCC$ left pgACC; right PCC$ right INS; left PCC

$ right dACC; left PCC$ left pgACC; left PCC$ left DLPFC

3.91

Alpha2 Decrease right DLPFC$ left INS; Right DLPFC$ right INS; right DLPFC$ left pgACC,

right DLPFC$ right pgACC, right DLPFC$ dACC; left INS$ bil pgACC

3.91

Correlation FIQ r

Alpha2 Positive right INS$ left INS; right INS$ right PCC; right PCC$ left PCC; right PCC

$ right dACC; right PCC$left dACC; left PCC$ left INS; left pgACC$ left

dACC; left pgACC$ right dACC

.39

Correlation PVAQ -

Correlation BDI -

Correlation BDI Delta Negative right DLPFC$ right INS; right DLPFC$ left pCC; right DLPFC$ right PCC;

right DLPFC$ right pgACC; left DLPFC$ right pgACC; right DLPFC$ right

INS; right DLPFC$ right PCC; left pgACC$ right pgACC; left pgACC$ left

PCC; left pgACC$ right PCC; right pgACC$ right INS; right pgACC$ left

PCC; right pgACC$right PCC; right dACC$ right PCC; right dACC$ left

PCC; leftt dACC$ right PCC; left dACC$ left PCC; right INS$ right PCC;

right INS$ left PCC; left INS$ right PCC; left INS$ left PCC

-.41

https://doi.org/10.1371/journal.pone.0178516.t002
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Fig 6. (A) A comparison between fibromyalgia patients and healthy controls. For the alpha2 frequency band,

decreased connectivity (blue lines) was identified between the right dorsal lateral prefrontal cortex and

multiple areas, including the right and left insula, the right and left pregenual anterior cingulate cortex, and the

right and left dorsal anterior cingulate cortex. There was also a decrease in functional connectivity in the

alpha2 frequency band between the left insula and the left and right dorsal lateral prefrontal cortex and the left

and pregenual anterior cingulate. Increased functional connectivity (green lines) was found between the right

insula and multiple areas, including the left insula, left pregenual anterior cingulate cortex, and bilateral

posterior cingulate cortex for the alpha2 frequency band. An increase in functional connectivity was also found

between the left pregenual anterior cingulate cortex and right insula, left and right pregenual anterior cingulate

cortex, and left and right posterior cingulate cortex for the alpha2 frequency band. An increase was also noted

between the left posterior cingulate cortex and multiple areas, including right posterior cingulate cortex, right

insula, right pregenual anterior cingulate cortex, and left pregenual anterior cingulate cortex. A similar

increase in functional connectivity for the alpha2 frequency band was also identified between the right

posterior cingulate cortex and multiple areas including the right insula and right dorsal anterior cingulate

cortex, left PCC, left pregenual anterior cingulate cortex, and left dorsal lateral prefrontal cortex. (B) A

correlation between fibromyalgia and FIQ. A positive correlation was found between the FIQ and alpha2

functional connectivity between multiple areas including the left insula, the right insula, and the left and right

posterior cingulate cortex, as well as between the left pregenual anterior cingulate cortex and left and right

dorsal anterior cingulate cortex, and between the right posterior cingulate cortex and left posterior cingulate

cortex, left and right insula, left and right dorsal anterior cingulate cortex. (C) A correlation between

fibromyalgia and FIS. A negative correlation was identified between the FIS and functional connectivity

between most of the regions of interest, i.e. the dorsal lateral prefrontal cortex, the insula, the pregenual

anterior cingulate cortex, the dorsal anterior cingulate cortex, and the posterior cingulate cortex for the delta

frequency band.

https://doi.org/10.1371/journal.pone.0178516.g006
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revealed no significant effects for the delta, theta, alpha1, alpha2, beta1, beta2, beta3, or gamma

frequency bands.

5. Correlation between brain connectivity and the FIS in patients with fibromyalgia. A

negative correlation was identified between the functional connectivity and patient‘s individ-

ual score on FIS for the delta frequency band (r = -.41, p< .05; see Table 2 & Fig 6C). A

negative correlation was obtained between patient‘s individual score on FIS and functional

connectivity between most of the included areas, namely the dorsal lateral prefrontal cortex,

the insula, the pgACC, the dorsal anterior cingulate cortex, and the posterior cingulate cortex.

Thus, the higher the score on the FIS, the lower the lagged phase connectivity strength between

these regions. No significant effects were obtained for the theta, alpha1, alpha2, beta1, beta2,

beta3, or gamma frequency bands.

Discussion

We have investigated the association between different clinical symptoms of fibromyalgia,

including pain, fatigue, mood measures, resting state source localized EEG brain activity, and

functional connectivity. Multiple changes were identified in brain activity that correlate with

pain, fatigue, and mood questionnaires. Based on the connectivity analysis, our results suggest

a strong association with increased connectivity between the posterior cingulate cortex, dorsal

anterior cingulate cortex, dorsolateral prefrontal cortex, and pgACC. Also, a decreased con-

nectivity between the dorsal lateral prefrontal network and the dorsal anterior cingulate cortex

as well as the pgACC is noted. In addition, the connectivity between the dorsal anterior cingu-

late cortex and posterior cingulate cortex as well as the dorsal anterior cingulate cortex and

the pgACC correlate positively with the fibromyalgia questionnaire, while the connectivity

between the dorsal anterior cingulate cortex and posterior cingulate cortex correlates nega-

tively with the fatigue questionnaire.

The pgACC is part of the descending inhibitory pathway and both structural and functional

changes, as well as changes in connectivity have been identified in fibromyalgia patients [10,

17, 32]. In this study, a positive correlation between the pgACC and the pain vigilance and

awareness questionnaire was found, indicating that the higher the score for pain vigilance and

awareness, the higher the activity in the pgACC in the beta frequency range. Since the pgACC

is a key region involved in the descending inhibition of pain, activity and connectivity changes

in the pgACC in the fibromyalgia patients provides support for the hypothesis that the devel-

opment of fibromyalgia in patients may be associated with dysfunction of descending pain

modulation. There is a distinct overlap between decreased cortical thickness, decreased brain

volumes, and decreased functional regional coherence in the pgACC in fibromyalgia [4]. The

same area is also overactive resting state in alpha. Persistent beta activity in a pathological state

is proposed to result in an abnormal persistence of the status quo and a deterioration of flexible

behavioral and cognitive control [33]. This could signify the dysfunctional pain inhibition is

maintained and non-adaptive.

It is known that the unpleasantness of pain correlates with activity in the dorsal anterior

cingulate cortex [34] and motor responses to pain correlate with subgenual anterior cingulate

cortex activity [35]. The dorsal and subgenual anterior cingulate cortex are related to distress

in (social) pain [36], analogous to what has been found in tinnitus [37], which is the auditory

analogue of pain [38]. Our findings are supported by the idea that these areas are involved in

the affective component of pain, as both areas correlate positively with the depression inven-

tory for the alpha and beta range. It is further known that cingulotomy decreases the affective

response to noxious stimuli, but does not alter the discriminatory components of pain such as

the perceived intensity of the pain [39] or the ability to localize the unpleasant stimulus [40].
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In addition, the dorsal and subgenual anterior cingulate cortices were correlated to the fatigue

scale for the theta and gamma frequency bands. The persistent co-localized activity of theta

and gamma band has been called thalamocortical dysrhythmia and has been shown to be pres-

ent in the subgenual anterior cingulate cortex [41]. Furthermore, it is known that fatigue and

depression are correlated, which was again confirmed in this study (r = .59). Our results also

indicate that for the alpha and beta frequency bands, dorsal anterior cingulate activity corre-

lates positively with fibromyalgia impact. Previous research on pain has reported that the

alpha and beta rhythms are correlated to both transient and tonic noxious painful experiences

[42–45] and might reflect individuals’ inherent tonic pain responsiveness [46]. In addition,

neuropathic pain models in animals have demonstrated structural micro- and macro-changes

in the anterior cingulate cortex associated with the induction of anxiety-like behavior and

attention deficits [47]. In association with the insula, the dorsal anterior cingulate cortex is

known to be involved in evaluative processing and forms part of the resting-state salience

network [8] which is proposed to evaluate the behavioral relevance of internal states and of

incoming external stimuli. As mentioned, the dorsal anterior cingulate cortex and insula are

part of the pain matrix, which has been shown to be a multimodal salience network [7].

Increased functional coupling within the salience network has been implicated in emotional

salience monitoring and precedes the perception of stimuli as painful [48].

The posterior cingulate gyrus is the central hub of the default mode network, which is antic-

orrelated to the salience network [49]. Therefore, when no salient external stimuli, such as

pain stimuli, are perceived, the default mode is activated. When behaviorally important exter-

nal stimuli are presented, the salience network is activated and the default mode inactivated

[50]. The posterior cingulate cortex is involved in self-referential processing and mind-wan-

dering (day-dreaming, i.e. thinking about the future and reflecting about the past) [51]. Our

data are in keeping with previous findings by indicating activity changes in the alpha and the

beta frequency bands for fibromyalgia patients in comparison to healthy controls. The poste-

rior cingulate cortex has previously indeed been related to fibromyalgia pain [52]. In addition,

changes in the posterior cingulate cortex have been associated with impaired cognition in

fibromyalgia [11, 12, 53]. In this study, we found an increase in functional connectivity

between the salience network and the default mode network. Previous research already identi-

fied a correlation between pain severity and abnormal functional connectivity between the

salience network and the default mode network [15], and reduced connectivity between the

salience network and the default mode network is correlated with a reduction in pain for fibro-

myalgia patients [14]. These findings are similar to what was found in chronic back pain [16]

as well as in previous fibromyalgia studies [54].

Most of the connectivity effects obtained were related to the alpha2 frequency band. This

fits with recent research demonstrating that alpha phase-synchronization or phase-coherence,

are a mechanism for short and long-range communication in the brain [55, 56]. The alpha

band synchronization reflect a functional mechanism of attention and consciousness that have

been linked between default mode structures [57–59]. Furthermore, it was shown that the

upper alpha band (10–12 Hz) oscillations has been associated with tonic alertness in a network

comprising dorsal anterior cingulate cortex, anterior insula and the anterior prefrontal cortex

[59]. The functional connectivity between the posterior cingulate cortex and dorsal anterior

cingulate cortex in the alpha frequency band could suggest persistent salience to an unchang-

ing pain stimulus, causing the pain to become part of the self-referential network. In other

words, the painful state becomes the norm, a mechanism also known as allostatic reference

resetting [60], which is a mechanism that has been hypothesized to occur in fibromyalgia [61].

Allostasis is defined as stability through change and is more efficient than homeostasis by

anticipating needs and preparing to satisfy them before they arise [60]. The advantages are
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obvious and related to a central organ that is capable of prediction—the brain—and therefore

can organize concerted mechanisms to maintain adaptive stability [60]. In order to predict, a

self-reference or self-perception is essential to interpret the incoming internal and external sti-

muli [62]. This fits with the idea that in fibromyalgia, pain prediction is dysfunctional but pain

processing per se is not [63]. The status quo beta activity found in the pgACC in this study

might be an electrophysiological marker for this dysfunctional mechanism.

The anti-correlated activity between an externally oriented network and the default mode

network, which is internally oriented [49], has been further refined. The dorsal lateral prefron-

tal cortex and the salience network exert an inhibitory effect on the default mode network

associated with anti-correlated activity. Additionally, the salience network acts as a switch

between the central executive network and the default mode networks [64]. The inhibitory

effect is mediated via a functional connection between the dorsal lateral prefrontal cortex and

the pgACC as demonstrated by transcranial magnetic stimulation and transcranial direct cur-

rent stimulation [65]. In this fibromyalgia study, we did find that the functional connectivity

between the right dorsal lateral prefrontal cortex and bilateral pgACC is decreased.

A limitation of this study is the low resolution of the source localization inherently resulting

from a limited number of sensors (19 electrodes). This is sufficient for source reconstruction

but results in greater uncertainty in source localization and decreased anatomical precision,

and thus the spatial precision of the present study is considerably lower than that of functional

MRI. Nevertheless, the tomography sLORETA provides has received considerable validation

from studies combining LORETA with other more established localization methods, such as

functional Magnetic Resonance Imaging (fMRI) [66, 67], structural MRI [68], and Positron

Emission Tomography (PET) [69–71] and was used in previous studies to detect activity in

deeper structures, for example [72–74]. Further sLORETA validation has been based on

accepting as ground truth the localization findings obtained from invasive, implanted depth

electrodes, in which case there are several studies on epilepsy [75, 76] and cognitive ERPs [77].

It is worth emphasizing that deep structures such as the anterior cingulate cortex [78] and

mesial temporal lobes [79] can be correctly localized with these methods. The involvement of

the deeper structures was already illustrated in previous research using low density EEG and

was confirmed subsequently by PET and MRI suggesting the reliabilities of our findings. How-

ever, further research could improve spatial precision and accuracy could be achieved using

high-density EEG (e.g., 128 or 256 electrodes), subject-specific head models, and MEG record-

ings. In addition, lagged phase coherence analysis requires the selection of regions of interest

based on a priori knowledge, or by means of heuristic procedures (i.e. only analyze functional

connectivity between areas with altered activity)[80, 81]. The impossibility of a purely data

driven approach (i.e. whole brain connectivity analysis independent of regions of interest)

automatically implies a theoretically funded approach is required, thereby selecting regions of

interest. This can be seen as a weakness but is unfortunately inherent to the technique [82].

Conclusion

Our data highlights the functional dynamics of brain regions integrated in brain networks in

fibromyalgia patients. Overall, this study supports an important role of the pgACC [4] and also

suggests that the degree of activation and the degree of integration within different networks is

important. The inhibition of the dorsal lateral prefrontal cortex with the hubs of the default

mode network and pain inhibitory pathway seems to be limited by a decreased functional con-

nectivity with the pgACC. This decreased impact of the pgACC leads to spontaneous pain,

which—combined with increased functional connectivity between the salience network and

the default mode network—may lead to the pain becoming an integrated part of the self-
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referential default mode network via allostatic reference resetting, causing the painful state to

become the norm. The findings of this study suggest that intrinsic brain connectivity is a can-

didate as an objective marker that is sensitive enough to track pain levels in fibromyalgia.

Intrinsic connectivity could therefore potentially be used as a complementary objective out-

come measure in longitudinal clinical trials to objectively measure effects of different therapies

in this fibromyalgia population.
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