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Abstract

Despite advances in radical surgery and chemotherapy delivery, ovarian cancer is the most lethal gynecologic malignancy.
Standard therapy includes treatment with platinum-based combination chemotherapies yet there is no biomarker model to
predict their responses to these agents. We here have developed and independently tested our multi-gene molecular
predictors for forecasting patients’ responses to individual drugs on a cohort of 55 ovarian cancer patients. To
independently validate these molecular predictors, we performed microarray profiling on FFPE tumor samples of 55 ovarian
cancer patients (UVA-55) treated with platinum-based adjuvant chemotherapy. Genome-wide chemosensitivity biomarkers
were initially discovered from the in vitro drug activities and genomic expression data for carboplatin and paclitaxel,
respectively. Multivariate predictors were trained with the cell line data and then evaluated with a historical patient cohort.
For the UVA-55 cohort, the carboplatin, taxol, and combination predictors significantly stratified responder patients and
non-responder patients (p = 0.019, 0.04, 0.014) with sensitivity = 91%, 96%, 93 and NPV = 57%, 67%, 67% in pathologic
clinical response. The combination predictor also demonstrated a significant survival difference between predicted
responders and non-responders with a median survival of 55.4 months vs. 32.1 months. Thus, COXEN single- and
combination-drug predictors successfully stratified platinum resistance and taxane response in an independent cohort of
ovarian cancer patients based on their FFPE tumor samples.
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Introduction

Epithelial ovarian cancer (EOC) is responsible for more deaths of

women in the United States than any other gynecologic malignancy

[1]. Despite attempts to implement effective early detection, the

majority of women continue to present with advanced stage disease.

While over 70% of patients will achieve a complete response with

primary cytoreductive surgery and platinum-based chemotherapy,

nearly 75% will recur in an average of 21 months [2]. In the

recurrent setting, ovarian cancer is rarely cured, in large part due to

progressive chemoresistance. For this reason, the 5-year overall

survival for EOC remains around 20% [3].

Primary surgery with maximal cytoreduction followed by

adjuvant chemotherapy with a platinum-taxane doublet is the

initial treatment of choice in advanced ovarian cancer. Despite

prospective data demonstrating a more favorable outcome for

patients who had complete surgical removal of metastatic disease,

the majority of patients continue to experience recurrence,

especially when a patient’s tumor is platinum-resistant [2].

Therefore, it is well recognized that surgery alone cannot

overcome disease progression in ovarian cancer, and the

phenotype of ‘‘platinum resistance’’ is thus unarguably one of

the most important clinical determinates [4]. About 30% of

patients whose tumors are platinum-resistant will generally either

progress during primary therapy or shortly thereafter—a grim

reminder of the limits of current ovarian cancer care and the need

for improved understanding of tumor biology and therapeutics

over surgical success. Moreover, the setting of platinum resistance

is a clinical conundrum: even though multiple FDA-approved

chemotherapy agents are available for treatment of recurrent

ovarian cancer, all have similar clinical response rates and thus

there is no preferred standard second-line chemotherapy to offer

these patients. Furthermore, no diagnostic tool or guidance is

available to provide individualized care for the heterogeneous

group of patients who comprise current clinical practice.

Recent efforts to improve survival after primary therapy have

focused on novel combinations of standard chemotherapies and

the use of targeted agents as seen in two recent Gynecologic
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Oncology Group trials: GOG182 and GOG218 [2,5]. An

alternative approach has been to focus on determining the sensitivity

of an individual patient’s tumor to standard medicines with a variety

of drug sensitivity and resistance tests [6,7]. The underlying premise

of this approach is that by matching a given chemotherapy to an

individual tumor with demonstrated sensitivity, physicians hope to

achieve higher response rates, more durable tumor-free intervals,

and fewer side effects compared to the standard of care (e.g. empiric

choice of agents for individual patients). Unfortunately, when

examined in a randomized trial, these chemotherapy sensitivity

and resistance tests did not improve progression free or overall

survival compared to the standard of care [8].

Molecular prediction signatures have also been developed using

retrospective data sets of ovarian cancer patients treated with

platinum-based chemotherapy [9]. However, these current

methods for assessing chemosensitivity have been of limited use

due to several shortcomings. First, these tests and signatures have

been developed only based on patient data restricted to current

drug combinations. Consequently, these patient-based predictors

were unable to differentiate tumors with heterogeneous responses

to various single agents. Also, previous molecular prediction

techniques were validated based on highly-controlled patient

cohorts in clinical trials that collected fresh frozen tissues. These

techniques often fail to consistently perform well with lower-

quality patient samples such as FFPE tissues that are customarily

collected in clinical practice. Because of these limitations,

molecular prediction signatures have been neither validated

against a vast amount of archived FFPE patient samples, nor

readily applied in diverse clinical settings.

The co-expression extrapolation (COXEN) method, an in vitro

cell-line-based multi-gene prediction technique, has been demon-

strated previously with its high potential to forecast chemother-

apeutic outcomes of cancer patients [10]. Several subsequent

studies have provided promising results in different cancer sites

including breast, ovarian, and bladder cancer [11,12,13].

COXEN predictors can x initially be developed independently

from patient tumors that are often treated with various drug

combinations, by using a single chemotherapeutic agent’s in vitro

cancer cell-line activities associated with genome-wide expression

data. The so-called COXEN biomarkers that are concordantly

regulated between the cell lines and in vivo patient tumors are then

further identified from these initial biomarkers to link in vitro cell

line chemosensitivity to a patient’s chemotherapeutic response,

overcoming the differences of the tumor microenvironment and

drug metabolism [13].

Since nearly all EOC tumors (.70%) will be platinum-sensitive

during primary therapy, only the identification of patients sensitive

to platinum agents may not provide high clinical utility. A more

clinically useful scenario would be the reliable identification of

patients for whom standard therapies will fail (i.e. the small

proportion (less than 30%) of platinum-resistant patients). These

patients could then be guided to alternative chemotherapy agents

and treatment options, potentially avoiding unnecessary toxicity.

We undertook this study in an effort to validate the COXEN

prediction assays for their clinical utility, using an independent

ovarian cancer patient cohort with archived FFPE tumor samples.

Our hypothesis was that COXEN could reliably predict platinum

resistance in a series of advanced epithelial ovarian cancer patients.

Materials and Methods

Cell line drug activity and microarray data
In vitro drug activity and microarray data of the NCI-60 cancer

cell panel were previously described elsewhere [10]. In brief,

publicly-available drug sensitivity data, expressed in terms of 50%

growth inhibition (GI50) for the NCI-60 were obtained from the

NCI DTP web site (http://dtp.nci.nih.gov). NCI-60 expression

profiling data on HG-U133A GeneChipH arrays (Affymetrix,

Santa Clara, CA) were from a public domain at the National

Cancer Institute (http://discover.nci.nih.gov). The second cell line

set, Peter-18, was based on six ovarian cancer cell lines with in vitro

drug activity for carboplatin [14]. These cell lines were originally

derived from six ovarian carcinoma (papillary serous adenocarci-

noma) patients. These cell lines were then characterized as either

carboplatin sensitive (n = 3) or resistant (n = 3) based on their in

vitro cell-line drug sensitivity after treatment. Specifically, these cell

lines were experimented to evaluate the cytotoxic index (% kill) of

,350 cells seeded into 60-well microtiter plates, grown for 24 hrs

and treated with different concentrations of carboplatin, compared

to untreated controls at 48 hrs after treatment [14]. Three

replicated cultures of each cell line were then subject to genome-

wide expression profiling using Affymetrix HG-U95A GeneChipH
arrays. These sets are summarized in Table 1.

Historical patient sets for predictor development and
evaluation

Microarray gene expression data from frozen tissue samples

obtained at the time of primary cytoreductive surgery from two

previously-published human ovarian cancer cohorts were also

used for the development and independent evaluation of our

molecular predictors. The first cohort of 185 primary ovarian

tumors treated with adjuvant chemotherapy was originally

obtained for identifying prognostic molecular signatures of survival

[15]. We used the subset of 167 patients with platinum-based

chemotherapeutic response information for our predictor devel-

opment. These patients comprised 112 (67%) complete response

(CR), 41 (25%) partial response (PR), and 14 (8%) progress of

disease (PD). The second set (Dressman-119) of 119 ovarian

cancer patients from the Duke University and H. Lee Moffitt

Cancer Center also received platinum-based adjuvant chemother-

apy [9]. Of 119, 85 (71%) patients had a complete response

whereas 34 (29%) patients showed an incomplete response (IR) to

the chemotherapy. Expression profiling data of the frozen-tissue

tumor samples from both sets were available with Affymetrix HG-

U133A GeneChipH arrays.

Independent cohort of patients and FFPE tumor samples
After an Institutional Review Board approval, the UVA Cancer

Registry was queried to identify stage III–IV epithelial ovarian

cancer patients treated between 1995–2004 whose follow-up

information was available for at least five years or were deceased.

For inclusion in the validation cohort, patients must have had a

primary surgery followed by platinum-based chemotherapy. Sixty-

five patients were identified both from the UVA Cancer Registry

and Biorepository Tissue Research Facility (BTRF). Patients were

excluded if they lacked adequate follow-up clinical data for review.

These cases were also examined whether they had adequate

archived pathologic material for molecular analysis. Ten patients

were excluded from these, leaving 55 patients available for the

validation of COXEN predictors (UVA-55). Formalin-fixed

paraffin embedded (FFPE) tissue blocks were obtained for each

patient in the validation cohort. These blocks were reviewed by a

pathologist to ensure an adequate tumor was present for analysis.

The corresponding histologic sections were examined by a

pathologist and areas of tissue with tumor cell percentages

.70% were selected. Only blocks that contained .2 mm of

tissue thickness were used to obtain tumor tissue of the block with

3 mm biopsy punches for subsequent microarray analysis.

Chemotherapy Response Predictors in Ovarian Cancer
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The detailed clinical characteristics of the cohort are summa-

rized in Table 2. All patients received a primary surgical effort by

a board-certified gynecologic oncologist and a gynecologic

pathologist reviewed all pathology. Adjuvant chemotherapy

consisted of platinum (carboplatin or cisplatin) either alone

(n = 2) or in combination with a taxane (n = 51, paclitaxel or

docetaxel) or cyclophosphamide (n = 2). Response assessment and

surveillance schedules followed accepted clinical practice. The

median age in this cohort was 62 (range 38–65) and the majority

were stage III cancers (91%) of serous histology (85%). The

median progression-free survival was 13 months (95% CI 10–16)

and the median overall survival for the cohort was 50 months

(95% CI 32–68). All research involving human participants have

been approved by the institutional review board at the University

of Virginia. Witten informed consents were obtained from all

participants involved in the study.

Microarray Profiling on FFPE Tumor Samples
Gene expression profiling from the two 3 mm core punches of

FFPE tumor tissue blocks containing .70% tumor cells were

performed by Almac Diagnostics, Inc. (Durham, NC) based on its

standard protocol. In particular, RNA extraction and amplifica-

tion were performed with the NuGen WT-OvationTM FFPE RNA

Amplification kit which is specialized to overcome the cross-linked

and fragmented RNAs in FFPE samples (NuGen, Inc., San Carlos,

CA). Data normalization and quality control assessment of the

hybridization results were performed with the RMA Bioconductor

package (http://www.bioconductor.org).

Statistical Methods
The procedures for our predictor training and test are

summarized in Figure 1. In brief, COXEN predictors for

paclitaxel and carboplatin were first derived from in vitro drug

sensitivity and microarray data [10]. Candidate biomarkers that

were highly associated with carboplatin and paclitaxel sensitivity

were identified from the Peter-18 and NCI-60 microarray data,

respectively. That is, the 10–35% most and least sensitive cell lines

based on GI50 (growth-inhibition 50%) or cell kill percent values

were correlated with genome-wide expression data to identify

initial chemosensitivity biomarkers for each drug. These initial

biomarkers were filtered with FFPE-robust probe sets (about 55%

of all probe sets) which were previously derived from our in-house

dataset comprising .27 paired frozen and FFPE tumor samples

(data not shown). These FFPE-robust chemosensitivity biomarkers

Table 1. Cell and patient data sets used for COXEN Predictor Training and Testing.

Name Sample type
Array Platform
(# of probes)

Responder
(sensitive)

Non-responder
(resistant) Drugs

(Training)

NCI-60 Cell lines HG-U133A
(22,215)

10 22 Taxol

Peter-18
(GSE1926)

Cell lines HG-U95
(9,530)

9 9 Carboplatin

Bonome-185 Human
patients

HG-U133A
(22,283)

112 55 Carboplatin, Taxol, Cisplatin,
Cytoxan

(Testing)

Dressman-119 Human
patients

HG-U133A
(22,215)

85 34 Platinum-based chemotherapy

UVA-55 Human
patients

HG-U133+2
(54,675)

3̀2 23 Carboplatin Taxol

NCI-60 and Peter-18 cell-line data sets were used to discover chemosensitivity biomarkers and to train multivariate statistical prediction models for paclitaxel and
carboplatin, respectively. Bonome-185 set was used to select the biomarkers with the consistent directions of differential expression. Dressman-119 set was used to
independently evaluate the trained predictors and to derive the optimal cutoff value of each predictor. UVA-55 set was purely used to test the predictability of the
COXEN predictors in a prospective manner.
doi:10.1371/journal.pone.0030550.t001

Table 2. Clinical Characteristics of the UVA-55 Cohort.

Characteristic N (%)

Patients 55

Median Age (range) 62 (38–65)

Ethnicity

White 51 (93%)

Black 4 (7%)

Stage

III 50 (91%)

IV 5 (9%)

Histology

Serous 47 (85%)

Clear Cell 5 (9%)

Other 3 (6%)

Surgical Outcome

Optimal (,1 cm) 30 (55%)

Sub-optimal ($1 cm) 25 (45%)

Response to Initial Therapy

CR 32 (58%)

PR, PD 23 (42%)

Recurrences 48 (87%)

Deaths 36 (65%)

Survival (months)

Median PFS 13 (95% CI, 10–16)

Median OS 50 (95% CI, 32–68)

CR = Complete Response, PR = Partial Response, PD = Progressive Disease,
PFS = Progression Free Survival, OS = Overall Survival, CI = Confidence Interval.
doi:10.1371/journal.pone.0030550.t002

Chemotherapy Response Predictors in Ovarian Cancer
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were then triaged based on the COXEN coefficient which

represents the degree of concordance of expression regulation

between the NCI-60 cell lines and human ovarian cancer patients.

In brief, the mathematical derivation of COXEN coefficient is

based on the so-called ‘‘correlation of correlations,’’ which first

calculates the expression correlations within each set on the

identical set of genes of interest for both sets and then evaluates

gene-by-gene correlation between the two correlation matrices of

the two sets. This kind of 2nd-order correlation has proven useful

to investigate various gene networks to identify concordant ones

across different data sets by us and others [16,17,18]. More

detailed description of the COXEN algorithm has been desctibed

elsewhere [10,11]. Expression patterns of these NCI-60-based

chemosensitivity biomarkers were further compared to those in a

cohort of 185 human ovarian cancer patients, and were excluded

if their expression changes were inconsistent between the two sets.

Some relevant issues on these filtering steps are discussed later.

Genes with significant COXEN coefficients were then used for

our drug-specific prediction modeling using a double cross-

validated linear discriminant analysis (LDA) on the Peter-18 cell

lines for carboplatin and the NCI-60 cell lines for paclitaxel,

respectively as described elsewhere [19]. The resulting COXEN

predictors were simultaneously applied to the two independent

patient cohorts of Dressman-119 frozen and UVA-55 FFPE tumor

samples. Assuming their independence, combined prediction

scores from the two individual drug predictors were simply

calculated to generate a combination chemotherapy (CT)

predictor.

Performance of these predictors was first evaluated by testing a

significant difference in the COXEN scores between the CR and

PR patient groups using a non-parametric Wilcoxon rank-sum

test. We also performed an ROC (receiver operator characteristics)

analysis both to evaluate their overall predictability by the area

under the curve (AUC) and to define optimal cutoff values for high

clinical utility. The optimal cutoff values for the COXEN

predictors were first determined by maximizing the Youden index

( = sensitivity+specificity-1) on the ROC curves. At this Youden

cutoff value, the sensitivity, specificity, positive predictive value

(PPV), and negative predictive value (NPV) for stratifying clinical

responders (pCRs) from non-responders were then derived

independently on our validation patient sets [20]. However, if

these mathematically-derived cutoff values could not provide a

high clinical utility, i.e., a low NPV, we then found alternative

cutoff values by maximizing NPV (see Supplementary Methods in

Text S1 for more details).

Results

COXEN Predictors of Carboplatin and Paclitaxel
We identified the final FFPE-robust 251 and 125 biomarkers for

the training of carboplatin and paclitaxel predictors, respectively,

on the NCI-60 and Peter-18 cell line panels. For each set of

biomarkers, hierarchical clustering and biological pathway

analyses were performed, the latter by Ingenuity Pathway Analysis

(IPA, Ingenuity, Inc., Redwood City, CA; Supplementary
Figure S1). Distinctly, carboplatin biomarkers were from cell

cycle/tissue disorder, hematological system development, organ-

ismal functions, and cellular growth/proliferation associated

network functions. Biomarkers from these networks were, in fact,

found to be closely clustered in the clustering heatmap analysis

(Figure 2; Supplementary Table S1). In particular, the

responders (red) and nonresponders (green) were found to be

generally clustered together even in this unsupervised clustering

analysis. Paclitaxel biomarkers were also found to be from cell

death, DNA replication, recombination, and repair networks

(Supplementary Table S1; Supplementary Figure S1B, C).

These biomarkers of each drug were used to develop COXEN

multivariate prediction models.

Validation on independent patient cohorts
The performance of these multi-gene predictors was first

independently examined on the frozen-tissue-based Dressman-

119 cohort. We found the COXEN scores of both carboplatin and

paclitaxel predictors for responder patients were significantly

higher than those of non-responder patients in this set (Wilcoxon

rank-sum test P = 0.036 for carboplatin and P = 0.035 for

paclitaxel). The combined prediction scores for the two drugs

also significantly stratified responder patients from the non-

responders in this cohort (Wilcoxon rank-sum test P = 0.038)

(Figure 3A, B, and C).

The unaltered COXEN predictors were then used for

predicting chemotherapeutic responses of the FFPE tissue-based

UVA-55 cohort for both single and combination agents. We again

found the predicted sensitivity scores of each of carboplatin and

paclitaxel of the responders were significantly higher than those of

Figure 1. Schematic Summary of COXEN Predictor Develop-
ment and Test.
doi:10.1371/journal.pone.0030550.g001

Chemotherapy Response Predictors in Ovarian Cancer
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non-responders in the UVA adjuvant patients (Wilcoxon rank-sum

test P = 0.019 for carboplatin and P = 0.041 for paclitaxel). The

combination-drug predictor also provided a significant difference

between responders and non-responders (P = 0.014) in the UVA-

55 cohort (Figure 3D, E, and F). These predictors provided high

stratification capability between responders and non-responders in

the ROC analysis: combination predictor AUC 0.604 [95% CI:

0.483–0.723] and 0.703 [0.549–0.856] with Wilcoxon P = 0.038

and 0.009 on the two sets, respectively, which well demonstrated

the significance of their overall predictability (Table 3).

Survival benefit of COXEN predictors
As described above, these predictors showed statistical signifi-

cance in their overall predictability. However, one still needs to

define a fixed cutoff value for each predictor in order to evaluate

its clinical benefit a priori, thus defining responder vs. nonresponder

Figure 2. COXEN Biomarkers and Gene Networks for Carboplatin. Clustering heatmap analysis with major gene networks with x-axis
responder (red) and non-responder (green) patients and y-axis Immunological disease/cell death entwork (red), Cell cycle/Connective tissue
disorders/Inflammator disease network (green), Cellular movement/Hematological system/Immune cell trafficking network (yellow), and Free radical
scavenging/cellular movement/cancer/cellular growth and proliferation network (blue).
doi:10.1371/journal.pone.0030550.g002

Chemotherapy Response Predictors in Ovarian Cancer
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in a future patient set at this cutoff. We first chose the

mathematical cutoff points of these predictors by maximizing the

Youden index ( = specificity+sensitivity-1) on the Dressman-119

cohort cohort (Supplementary Table S2). These predictors

with the Youden cutoff values (for stratifying pathologic clinical

response to chemotherapy) provided a significant survival

difference between predicted responder and non-responder

groups. Only overall survival time was available both for

Dressman-119 and UVA-55 cohorts so we used this survival

outcome endpoint to directly compare predicted survival benefit

on the two cohorts. Overall survival time longer than 5 years was

censored to avoid mathematical artifacts from a few patients’

outlying survival times (e.g. .10 years) in our survival analysis.

Death beyond this time period (after chemotherapy) may not be

directly relevant to the chemotherapeutic response. The clinical

characteristics (e.g. surgical outcome, chemotherapy agents) of

patients with .5 years of survival were not significantly different

from the remaining cohort (data not shown). For the Dressman-

119 cohort, we found the combination-drug COXEN predictor

provided a highly significant survival difference by a Kaplan-

Meier survival analysis (log-rank test P = 0.0002; Figure 4A). The

median survival times were 77.8 and 22.3 months between

predicted responder and non-responder groups in the cohort. For

the UVA-55 cohort, the identical combination-drug predictor also

similarly provided a survival difference between the two groups

(log-rank test P = 0.094; Figure 4B); statistical significance was

only marginally significant, likely due to a relatively small sample

size in this cohort. The median survival times were 55.4 and 32.2

months between predicted responders and non-responders among

these UVA-55 patients.

Clinical Utility of COXEN Predictors
Over ,75% patients with ovarian cancer respond to the initial

platinum-based chemotherapy. This leads to an important

requirement for platinum-based chemotherapy biomarkers in

ovarian cancer. First, it is impractical in treating patients to use the

above mathematically-derived cutoff value, which considers the

same weights both for false negatives and false positives. The

number of false negatives, i.e. incorrectly predicted responders, is

still not a small number at such a cutoff value (,15% of all

responders), which cannot be ethically used in clinical practice.

Therefore, in order to examine clinical utility of our biomarkers,

we defined the cutoff values by maximizing negative predictive

value (NPV) on Dressman-119. We then independently evaluated

these cutoffs on our UVA-55 cohort in a prospective manner,

which showed significant improvement of NPV to 67% (10/15),

75% (6/8), and 71% (5/7) for the carboplatin, paclitaxel, and

combination predictors, respectively (Table 3). We also found

that these provided very high sensitivity 91%, 96%, and 93% with

the three predictors. Therefore, using these cutoff values, one

Figure 3. Evaluation and Validation result on ovarian patients. Figures 3A, 3B, and 3C are evaluation resulton the Dressman-119 cohort; (A)
the distribution of COXEN scores for Carboplatin; (B) COXEN scores for paclitaxel; (C) COXEN scores for the drug combination of Carboplatin and
Paclitaxel. Figures 3D, 3E, and 3F are validation result on the UVA-55 cohort for Carboplatin, Paclitaxel, and for the drug combination of Carboplatin
and Paclitaxel, respectively. Coxen scores of responder (black) and non-responder(gray). P-values calculated by Wilcoxon rank sum test.
doi:10.1371/journal.pone.0030550.g003

Chemotherapy Response Predictors in Ovarian Cancer
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could identify ,70% of the non-responders in advance to the

primary platinum-based chemotherapy both on Dressman-119

and UVA-55 cohorts, maintaining .93% sensitivity (Table 3;

Supplementary Figure S2).

We also investigated whether the chemotherapeutic response

prediction could be improved by using other clinical parameters

such as age, tumor stage, optimal debulking status, or race by a

multivariate logistic regression analysis. We found that only the

COXEN molecular predictor was a significant factor and other

clinical variables were not significantly predictive of chemotherapy

responses (Supplementary Table S3). Finally, we calculated the

odds ratio of platinum-based chemotherapy response between

predicted responders and predicted non-responders. The odds

ratios were 7.16, 95% CI [1.315–38.912] for the Dressman-119

cohort and 4.51, 95% CI [1.013–20.096] for the UVA-55 cohort

(Supplementary Figure S3). Therefore, the odds of chemotherapy

response was .4.5 times higher for the predicted responder

patients of the two diverse cohorts.

Table 3. Prediction performance of COXEN predictors.

Compound
Data
(Res, Nonres)

AUC
[95% CI]
(P-value) Sensitivity (Specificity) PPV NPV

Carboplatin Dressman
(85, 34)

0.606
[0.483–0.730]
(p = 0.036)

0.941(80/85)
(0.891–0.991)

0.294 (10/34)
(0.141–0.447)

0.769(80/104)
(0.688–0.850)

0.667 (10/15)
(0.428–0.905)

UVA-55
(32, 23)

0.617
[0.464–0.769]
(p = 0.072)

0.906 (29/32)
(0.805–1)

0.174 (4/23)
(0.019–0.328)

0.604 (29/48)
(0.465–0.743)

0.571 (4/7)
(0.205–0.938)

Taxol Dressman
(85, 34)

0.595
[0.478–0.712]
(p = 0.053)

0.976 (83/85)
(0.944–1)

0.176 (6/34)
(0.048–0.304)

0.747 (83/111)
(0.667–0.828)

0.75 (6/8)
(0.450–1)

UVA-55
(28, 23)

0.642
[0.488–0.797]
(p = 0.041)

0.964 (27/28)
(0.900–1)

0.087 (3/23)
(0.422–0.702)

0.562 (27/48)
(0.422–0.703)

0.667 (2/3)
(0.133–1)

Carbo/Tax Dressman
(85, 34)

0.604
[0.483–0.723]
(p = 0.038)

0.976 (83/85)
(0.944–1)

0.147 (5/34)
(0.028–0.266)

0.741 (83/112)
(0.660–0.822)

0.714 (5/7)
(0.380–1)

UVA-55
(28, 23)

0.703
[0.549–0.856]
(p = 0.009)

0.928 (26/28)
(0.833–1)

0.174 (4/23)
(0.019–0.329)

0.577 (26/45)
(0.433–0.722)

0.667 (4/6)
(0.289–1)

The overall predictability (AUC) of identical COXEN predictors are summarized on the Dressman-119 and UVA-55 cohorts by AUC values with their 95% CIs and p-values.
Cutoff values of COXEN predictors were derived by maximizing NPVs on the Dressman-119 cohort. Sensitivity, specificity, PPV, and NPV values were evaluated on both
Dresseman-119 and independent UVA-55 cohort.
doi:10.1371/journal.pone.0030550.t003

Figure 4. Overall Survival Difference between COXEN Predicted Responders vs. Non-Responders. (A) Kaplan Meier survival plot of
Dressman-119 cohort. (B) Kaplan Meier survival plot of UVA-55 cohort. The survival curves of patients predicted to be responders (Red) and non-
responders (Green) showed significant differences between COXEN predicted responders and non-responders with median survival times 77.8 and
22.3 months for the Dressman-119 cohort and 55.4 and 32.2 months for the UVA-55 cohort between the two groups. P-values were calculated by
Log-rank test.
doi:10.1371/journal.pone.0030550.g004
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Discussion

We have developed and independently validated multi-gene

predictors for the two primary chemotherapeutic agents in ovarian

cancer—carboplatin and paclitaxel. These molecular predictors

significantly and consistently stratified the responder patients from

the non-responders using two independent and distinctive patient

cohorts in their clinical settings and tumor sample types. In

particular, the identical predictors (and their pre-defined cutoff

values) provided consistent prediction capability in both settings.

We believe that this is quite encouraging, especially since they

could be successfully applied with a high prediction performance

both on the frozen tissue and the archived FFPE patient samples

which may enable us to utilize these tests for a much wider

retrospective validation and in clinical settings.

At the clinical optimal cutoff points (maximizing NPV), these

predictors could identify .70% of non-responders to primary

platinum-based chemotherapy who may be guided to choose

different therapeutic options, potentially avoiding unnecessary

toxicity. While this may provide a clinical utility in the primary

chemotherapy to pre-select a small number of non-responder

patients, it can be more useful in the second-line or subsequent

chemotherapy selection for which the proportion of non-

responders is significantly higher. However, we are well aware

that these results may still not provide sufficient clinical utility to be

used in the primary treatment setting. Instead, these single-drug

predictors would be highly useful for patients receiving second-line

and subsequent chemotherapeutic decisions for whom chemo-

therapeutic responses are much more heterogeneous (and response

rates lower for each agent).

COXEN predictors showed statistically significant predictability

simultaneously on the Dressman-119 and UVA-55 cohorts which

were quite heterogeneous in their clinical settings and tumor tissue

types, i.e. fresh frozen tumor vs. paraffin embedded. We also

believe these were encouraging results. COXEN is best thought of

as a screening tool for chemotherapy response, so we believe

.90% sensitivity with ,70% NPV seen in our independent

testing demonstrates its general clinical utility.

Several additional points are worth mentioning. The cell lines

for our in vitro ovarian cancer training were serous adenocarcino-

mas. The Dressman-119 cases were also reported to be serous

adenocarcinomas. All patient-derived tumors were advanced stage

(III–IV). We found no difference in the predictor performance

with stratification by histology (data not shown). The COXEN

approach is based on multiple filtering steps for discovering the

most predictive biomarkers for an individual patients’ therapeutic

response. Its initial discovery starts from in vitro drug activity data

of cancer cell lines to identify gene expression biomarkers only

relevant to single drug activities, which is infeasible from human

patient data since patient data are often confounded with their

prognostic and other treatment factors. On the other hand, the

majority of biomarkers initially discovered from cell line data are

not similarly regulated and functioning in vivo. We believe this is

why direct attempt to use the molecular observations from cell line

data has been difficult to be translated to the clinical setting. We

employed several biomarker filtering steps to avoid such pitfalls.

One of our initial steps is to confirm whether candidate genes’

expression changes observed between the sensitive and resistant

cell lines (to the drug of interest) have been consistently shown in

patients treated with the drug. For this we used a training patient

set, Bonome-185, which is completely independent of our test sets.

To obtain our final biomarkers, we used other filtering steps

including the COXEN step which examines the concordant

expression regulation networks among the chosen biomarkers.

Note that all these filtering steps were performed independent of

and prior to applying to our test sets.

Linear discriminant analysis (LDA) is one of the widely-used

multivariate classification techniques in statistics. We have used

other techniques such as SVM and logistic regression (data not

shown), and found that the prediction performance was generally

similar for the same data set. We here used LDA, taking advantage

of its elegant prediction and inference capability, such as easy

expansion to multi-classes and posterior probabilities of member-

ship conditional on the observed data. Mechanisms of action and

patient responses to carboplatin and taxol are believed to be

independent, which is one of the reasons why this combination

chemotherapy is widely used in ovarian cancer. However, there

often exists a certain degree of correlation in patient response

between different drugs. In our current study we assumed their

independence in order to statistically derive the combination

prediction scores from the two drugs’ individual prediction scores.

Despite this limitation, we found that COXEN prediction was

generally more significantly predictive for the combination

chemotherapy, which, we believe, partially justifies such an

assumption.

Some limitations of this study should be noted. Our grouping of

the validation cases into responders (CR) and non-responders (PR,

SD, PD) were clinically justified because cases with CR had

excellent long-term survival whereas those with PR, SD, PD

patients had a variable outcome. However, most cases with PR

had some degree of tumor response and therefore these cases were

not strictly resistant to therapy even if their long-term benefit from

chemotherapy remained uncertain. To address the impact of this

dichotomization, we may need to correlate prediction scores with

a residual cancer burden treated as a continuous response variable

in a future study. Also, genomic data from patients treated with

single drugs were not available for validation. The lack of data

from patients with different single agent therapies also limits the

ability to truly evaluate the regimen specificity of the cell-line

derived signatures. Our current combination-drug predictor was

mathematically derived from single-drug predictors, assuming

independence of these drugs’ activities. This combination-drug

prediction modeling may be too naı̈ve to capture the complexity of

potential multi-drug interactions that can occur during treatment

which may also need to be expanded based on a combination of

drug activities on these cell lines.

Several intriguing questions remain: if platinum resistance could

be predicted preoperatively—in the absence of any therapeutic

advancement—would we change surgical management? Would

we change adjuvant or neoadjuvant chemotherapy choices?

Would we be able to individualize cancer care for women with

ovarian cancer? We think these questions can only be explicitly

answered in the setting of a prospective clinical trial. Nevertheless,

the preliminary data presented here suggest that platinum resistant

patients with ovarian cancer can be selectively guided based on

our molecular assays.

All of our microarray and patient data have been submitted to

the GEO web site and will be released upon publication.

Supporting Information

Figure S1 COXEN Biomarkers and Gene Networks for
Carboplatin and Paclitaxel. (A) IPA Network Analysis for

Carboplatin COXEN Biomarkers. (B) Clustering heatmap analysis

with major gene networks with x-axis responder (red) and non-

responder (green) patients and y-axis with Cell cycle network (red),

Cellular growth and prolife ration network (green), and Connec-

tive tissue development and function and other cancer gene
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network (yellow). (C) IPA Network Analysis for Paclitaxel COXEN

Biomarkers.

(PDF)

Figure S2 PPV and NPV Analysis for COXEN Predictors
on UVA-55. Positive predictive value (PPV) and negative
predictive value (NPV) were plotted by varying cutoff
values for predicted responders for: (A) Carboplatin

Predictor, (B) Paclitaxel Predictor, (C) Combination Predictor.

(PDF)

Figure S3 Odds Ratio of Platinum-based Chemotherapy
Response between the Predictive Responders and Pre-
dictive Non-Responders. The odds ratio of chemotherapy

response was 4.5,7.1 times favorable for the predictive respond-

ers both for Dressman-119 and UVA-55 patient sets, with 95% CI

[1.315–38.912] and [1.013–20.096], respectively.

(PDF)

Table S1 A: Top gene networks among COXEN biomarkers.

Information on COXEN biomarkers.

(DOC)

Table S2 Performance of COXEN Single and Combination

Predictors at the Youden cutoff.

(DOC)

Table S3 A multivariate logistic regression analysis both with

COXEN and other clinical variables on the UVA-55 cohort.

(DOC)

Text S1

(DOC)
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