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B lymphocytes are multitasking cells that direct the immune response by producing pro-
or anti-inflammatory cytokines, by presenting processed antigen for T cell activation and
co-stimulation, and by turning into antibody-secreting cells. These functions are important
to control infection in the liver but can also exacerbate tissue damage and fibrosis as part
of persistent inflammation that can lead to end stage disease requiring a transplant. In
transplantation, immunosuppression increases the incidence of lymphoma and often this
is of B cell origin. In this review we bring together information on liver B cell biology from
different liver diseases, including alcohol-related and metabolic fatty liver disease,
autoimmune hepatitis, primary biliary and primary sclerosing cholangitis, viral hepatitis
and, in infants, biliary atresia. We also discuss the impact of B cell depletion therapy in the
liver setting. Taken together, our analysis shows that B cells are important in the
pathogenesis of liver diseases and that further research is necessary to fully
characterise the human liver B cell compartment.

Keywords: B cell, liver, liver fibrosis, biliary atresia, paediatric liver disease, liver diseases
INTRODUCTION

Liver disease is responsible for approximately 3.5% of deaths worldwide, with liver cirrhosis being the
11th most common cause of morbidity (1). As a consequence, there is high demand for donor livers
for transplantation, the only effective current treatment. This makes the liver the second most
frequent solid organ transplanted, with less than 10% of liver transplant needs being met (1); the
discovery of alternative treatments is therefore essential in reducing the global demand for donor
livers. In recent years, therapies which manipulate the immune system, an underlying factor in many
disease settings, have reported efficacy in the liver (2). These approaches require an in-depth
understanding of how cells of the adaptive immune response contribute to the progression of disease.
B cells play a central role in the protection against pathogens, whilst also contributing to immune
regulation and the maintenance of self-tolerance. B cells are also known to contribute to the
pathogenesis of autoimmune disorders through the production of autoantibodies, antigen
presentation and the secretion of pro-inflammatory cytokines (3, 4). The role of B cells in other
chronic liver diseases is less clear. In this review, we will discuss descriptions of liver B cell subsets and
how they may contribute to inflammation in the liver, with possibilities for therapeutic intervention.
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B CELL DEVELOPMENT AND
DIFFERENTIATION

B cells develop from haematopoietic stem cells (HSCs) in the bone
marrow and progress from pro-B cell stages (expressing
CD45 isoform B220) to pre-B cell stages (expressing CD19)
(Figure 1) (8). The formation of the pre-B cell receptor
(pre-BCR) involves the rearrangement and assembly of heavy
and light immunoglobulins chains (8). B cells that possess a
non-functional BCR are then deleted and those with an
autoreactive pre-BCR either undergo apoptosis or receptor
editing to produce a functional BCR (8, 9). These B cells further
develop into immature B cells that express immunoglobulins (Ig)
M and IgD. Immature B cells undergo another checkpoint where
their BCR reactivity against autoantigens is monitored; B cells with
high autoreactivity or low autoreactive BCRs are either deleted or
undergo receptor editing to produce a functional BCR (10).
Activation-induced cytidine deaminase (AID) is important in
central B cell tolerance; Meyers et al., showed that there was an
increase in the frequency of autoreactive clones, exiting the bone
marrow, in AID-deficient patients (11). Developing B cells from
humanized mice, deficient in AID expression failed to remove
autoreactive clones displaying a vital role for AID expression in
central B cell tolerance (12). Immature B cells with an autoreactive
BCR, expressing recombination-activating gene 2 (RAG2)
undergo secondary recombination to produce a non-
autoreactive BCR (12). Those B cells with non-autoreactive
BCRs then exit the bone marrow into the periphery and are
termed transitional B cells (13, 14).
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Transitional B cells are defined as CD19+ CD24hi CD38hi
CD77- and express surface IgM (sIgM) and surface IgD (sIgD)
(15). CD19+ CD24hi CD38hi populations also contain
regulatory B cells (B-regs) which control the immune response
through interleukin (IL)-10 and transforming growth factor b
(TGF-b) secretion (16, 17). Transitional B cells migrate to
secondary lymphoid organs (SLO) where they mature into
naïve B cells, defined by CD19+ CD27- IgM+ IgD+ (CD24+
CD38-/low) waiting to encounter an antigen (5, 18, 19). If naïve
B cells do not encounter their cognate antigen, they re-circulate
back into the periphery and die within several days (5).

Upon antigen recognition, naïve B cells become activated and
either differentiate to IgM-producing plasma cells as part of the
extrafollicular response, where they form short-lived plasma cells
(6) or enter secondary lymphoid tissues where they encounter T
cells in the T cell zone. B cells that are co-stimulated by T cells
enter B cell follicles where they differentiate into proliferating
centroblasts forming a germinal centre (GC) (Figure 1) (20).
Centroblasts rapidly proliferate in the dark zone of the germinal
centre and somatic hypermutation (SHM) enters point
mutations into the variable region genes. In the light zone,
now differentiated to centrocytes (21), the B cells undergo
selection based on affinity of their BCR. Centrocytes sample
antigen from the surface of follicular dendritic cells and present it
to follicular helper T cells (TFH) to undergo selection (22).
Centrocytes may regain entry to the dark zone for further
receptor editing or to undergo class-switch recombination
(CSR) and leave the GC as memory B cells or as precursors to
long-lived plasma cells (23).
FIGURE 1 | B cell development stages. B cells develop in the bone marrow from haematopoietic stem cells (HSCs), progressing from pro-B cell stages to pre-B cells
before migrating into the circulation as transitional B cells. Upon antigen recognition, activated B cells migrate to secondary lymphoid organs and enter germinal centres
where they undergo clonal expansion and somatic hypermutation (SHM) within the dark zones (DZ). B cells with disadvantageous mutations die by apoptosis whereas
those B cells with improved receptor affinity interact with follicular dendritic cells (FDC) and T follicular helper cells (TFH), in the light zone (LZ). B cells undergo class switch
recombination (CSR) and receive survival signals to differentiate into memory B cells and long-lived plasma cells (PCs) (5). Naïve B cells can differentiate into short-lived
plasma cells through extrafollicular responses (6). Naïve B cells can also differentiate into age-associated B cells (ABCs) upon stimulation (7).
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Based on their IgD, CD27, CD38 and CD24 expression B cells
can be separated into subpopulations of naïve and memory B
cells. Common proteins that are used to identify B cell subsets are
listed in Table 1. Unswitched memory B cells express IgM and
CD27 on their surface, classical switched memory B cells are
IgD- CD27+ and IgD- CD27- B cells, referred as double-negative
(38, 57–60). This cell type is increased in inflammation caused by
autoimmunity (58) or infection (61). Memory B cells that
encounter antigen proliferate rapidly and mount a robust
immune response (62). CD19+ CD24-/low CD38hi IgD-
CD77- PBs are terminally differentiated B cells capable of
secreting high affinity antibodies (15). PBs leave the GC and
circulate in the blood to the bone marrow or to further target
organs, where they further differentiate into long-lived plasma
cells (PCs) (CD138+) that receive survival signals from their
niche (62–65).

B cells with an exhausted memory-like phenotype are
expanded in the peripheral blood of the elderly and are termed
age-associated B cells (ABCs) (60). ABCs are characterised as
Frontiers in Immunology | www.frontiersin.org 3
CD19+ CD21lo CD11b+ CD11c+ and express the transcription
factor, T-bet (60, 66–68). CD21 low B cell populations are likely
to be heterogeneous and can show distinct stages of
differentiation in different diseases. In SLE, they have been
described as antibody secreting cells with germline-encoded Ig
genes likely to belong to the extrafollicular response (69) while in
other diseases, such as rheumatoid arthritis they have been
described as memory B cells (70). This novel population of B
cells has been found within the memory pool, contributing to
inflammation associated with ageing, (‘inflammaging’) through
the production of tumour necrosis factor-alpha (TNF-a) (60,
66). ABCs can be stimulated via BCR triggering or toll-like
receptor (TLR) ligation to secrete pro-inflammatory cytokines
(71, 72). Activation of ABCs also induces their differentiation
into antibody secreting cells which may contribute to
autoimmunity (72). Rubstov et al., showed that CD24- CD38-
B cells are present at the onset of autoimmunity and that
autoimmune mice depleted of CD24- CD38- B cells, had
reduced number of autoantibodies, suggesting that this
TABLE 1 | Common proteins that are used to differentiate B cell subsets.

Marker Function Reference

CD1d May enable B cells to present antigens to invariant NKT cells
Expressed in naïve and memory B cells, in plasma cells and in regulatory B cells

(24)

CD5 Negative regulator of BCR signalling
Protects B cells from apoptosis after BCR stimulation
Supports B cell survival via IL-10 production

(25)

CD10 Role in pre-B cell maturation and differentiation (26)
CD11b Forms part of the complement receptor 3 present on the surface of B cells (27)
CD11c Integrin, alpha X (complement component 3 receptor 4 subunit) (ITGAX) found on activated B cells (27)

Expressed on age-associated B cells (28)
Marks memory cells, precursors of antibody-secreting cells (29)

CD19 Co-receptor required for BCR signal transduction (30)
Cooperates with CD21 for BCR-independent signalling (31)

CD20 Pan-B cell surface marker for mature B cells
Lost during terminal B cell differentiation

(32)

Regulator of calcium flux triggered by BCR
Required for optimal B cell responses to T-independent antigens

(33)

CD21 B cell co-receptor required to enhance BCR signalling, complement receptor (34)
CD24 On activated B cells, CD24 facilitates CD4+ T cell clonal expansion via co-stimulation (35)

Role in the regulation of B cell development (36)
CD27 Promotes the differentiation of memory B cells into plasma cells (37)

Marker of B cell activation/memory (38)
CD38 Involved in B cell differentiation (39)

Crosslinking of CD38 to the BCR reduces the threshold for B cell activation (40)
CD44 May play a role in antigen-dependent B cell differentiation (41)

Interacts with the polysaccharide hyaluronan (HA) in the extracellular matrix (42)
CD45 Central regulator of BCR signalling (43)
CD77 GC B cell entering apoptosis (CD77+) (44)

Marker of GC B lymphocytes (45)
Discriminator of centroblasts (CD77+) and centrocytes (CD77-) (46)

CD80/CD86 Co-stimulatory molecules (47, 48)
CD138 Syndecan 1, regulates the survival of plasma cells and long-term humoral immunity (49)
FcRL4 Expressed on the surface of a subset of memory B cells (50, 51)

Expressed on the surface of atypical memory B cells (52)
Potential function in mucosal immunity (53)

FcRL5 Expressed on the surface of atypical memory B cells (52)
Novel IgG receptor, inhibits BCR signalling
May have a dual signalling capacity (CD21 co-engagement may result in B cell activation)

(54)

T-bet Promotes the survival of memory B cells and IgG2a isotype switching (55, 56)
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population plays a major role in the progression of
autoimmunity (67, 73). A related population of B cells
expressing the IgA receptor FcRL4 in the inflamed synovial
tissue expresses RANKL and TNF in the inflamed synovium of
patients with rheumatoid arthritis (50, 53, 74).
B CELLS IN LIVER DISEASE

The liver is the largest internal organ with a remarkable ability to
regenerate upon acute liver damage (75). Dual blood flow to the
liver is supplied by the hepatic artery and portal vein, the latter
accounting for over 80% of the liver’s blood supply that has
passed through the spleen and gut (76). The liver is constantly
exposed to gut-derived bacterial products, environmental toxins
and food antigens and needs to maintain tolerance in order to
prevent an over-active immune response resulting in hepatocyte
damage (77–80). Frequent exposure to gut-derived toxins and
antigens requires the liver to possess strong innate immune
defences despite its constant state of immune tolerance (80–83).
However, the liver can shift to a responsive state if an immune
response is required (75, 77, 82, 84).

Acute hepatitis (liver inflammation) resolves upon the
clearance of the pathogen or upon elimination of the cause of
injury. Failure to clear the infection and resolve the inflammation
results in the dysregulation of liver homeostasis and the
progression to fibrosis (Figure 2) (76). Persistent liver insult
can cause chronic inflammation and damage to hepatocytes,
which can lead to cirrhosis, the major cause of mortality in
chronic liver diseases (CLD) (85, 86). Patients with CLD are also
at a higher risk of developing liver cancer (87).
Frontiers in Immunology | www.frontiersin.org 4
B cells represent up to 50% of intrahepatic lymphocytes in
mice with a higher expression of CD5 (88, 89). Novobrantseva
et al., showed a role for B cells in fibrosis using carbon
tetrachloride (CCL4) injections in mice deficient of B cells. B
cell deficient mice showed a reduction in fibrotic deposition after
6 weeks of CCL4 injections when compared to wild-type mice,
via accumulation of macrophages that contribute to fibroblast
stimulation (88). B cells can contribute to collagen deposition by
inducing the differentiation of hepatic stellate cells into
myofibroblasts, via the production of IL-6 (90). In humans, B
cells only account for 8% of the intrahepatic lymphocyte
population (76).

Cirrhotic patients will eventually require a liver transplant.
Orthotopic liver transplantation (OLT) requires chronic
immunosuppressive therapy that can cause post-transplant
lymphoproliferative disorders (PTLD) (91). Epstein-Barr virus
(EBV) is associated with 60-70% of B cell PLD cases in patients
on immunosuppressives (92). The suppressed immune system
can no longer control the proliferation of EBV-transformed B
cells (92).

Liver Inflammation in Children
Paediatric immune composition differs to that of adults (93).
Dendritic cell and regulatory T cell numbers and functions are
decreased in neonates (94). Neonates also have enhanced pro-
inflammatory Th17 T cell responses and differences in the Th1/
Th2 ratios, all of which could contribute to liver disease (94). The
B cell compartment has not been widely characterised in
neonatal livers. Duchamp et al., showed significant changes in
B cell composition from birth to five years of age in peripheral
blood (95). CD27+ IgM+ IgD+ memory B cells formed the
FIGURE 2 | Progression of liver disease. Healthy liver can regenerate after acute injury however, persistent injury to the liver results in hepatocyte damage,
inflammation and fibrosis. Persistent insult to the fibrotic liver may progress to cirrhosis.
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largest compartment of B cells in the periphery of paediatric
samples (95). B cell populations in paediatric livers remain to be
thoroughly examined.

Neonates have incomplete development of the intrahepatic
biliary tree and narrow bile ducts which affect the flow of bile and
the production of mature bile acids (96). Infants may also have
immature hepatocytes that are unable to detoxify and protect the
liver from harmful substances (97). Stellate cells were shown to
be increased in neonatal rats and they underwent
myofibroblastic activation quicker than adult rat stellate cells
(98). These may contribute to the rapid progression of liver
disease in infants. Examining the B cell compartment in neonates
may elucidate immune mechanisms that may contribute to liver
disease progression.

We know that some liver diseases are specific to neonates
(biliary atresia (97) and others that affect both neonates and adults
(non-alcoholic fatty liver disease (NAFLD), autoimmune hepatitis
(AIH), primary sclerosing cholangitis (PSC)) however, the
differences between paediatric and adult hepatic immunity are
poorly understood and not widely studied (96). Few studies have
looked at differences in paediatric and adult NAFLD. These studies
have found that neonatal NAFLD progressed more rapidly
compared to adult NAFLD (99). Furthermore, paediatric
NAFLD can be categorised into 2 phenotypes; adult-type (type 1
non-alcoholic steatohepatitis (NASH)) and paediatric-type (type 2
NASH) depending on histology (99, 100). Portal inflammation is
mainly seen in children with NAFLD compared to lobular
inflammation seen in adults (100). Adults have pericellular
fibrosis whereas paediatric NAFLD show portal-periportal
fibrosis (100). These discrepancies in histological features may
contribute to the rapidly progressing NAFLD in children.

AIH in children presents with a more aggressive course
compared to adults. Higher prevalence in females occurs in
both paediatric and adult AIH (101). Infants and young
children tend to present with type 2 AIH with IgA deficiency
and raised levels of IgG (102). Those children with type 2 AIH
that are positive for anti-liver kidney microsome type 1 (LKM1)
have elevated bilirubin levels and can develop acute hepatic
failure within 2-8 weeks of disease onset (102).

B Cells in Alcohol Related Liver Disease
Alcohol related liver disease (ArLD) is associated with excessive
consumption of alcohol causing hepatocyte damage and major
shifts in metabolism leading to the retention of fat known as
steatosis (86, 103, 104). Cessation of alcohol consumption at the
point of early fibrosis and steatosis can reverse ArLD (105, 106).
However, continued alcohol abuse can lead to the development
of alcoholic steatohepatitis which progresses ultimately to
cirrhosis (105–107). The toxic effects of acetaldehyde (the
breakdown product of alcohol) cause enhanced lipogenesis
resulting in the accumulation of fat molecules in the liver.
Continued liver inflammation results in hepatic fibrosis and
the formation of scar tissue which disrupts cellular
formation (104).

ArLD patients have an altered B cell compartment; significant
reductions in immature, memory and naïve B cells were reported
Frontiers in Immunology | www.frontiersin.org 5
in these patients, whilst the percentage of PBs were elevated
(103). This increase in PBs may be responsible for high levels of
IgA, IgG and IgM in ArLD. It can be hypothesised that a decline
in regulatory B cells promotes the release of pro-inflammatory
cytokines contributing to the exacerbation of inflammation,
further activating immune cells and reducing the inhibitory
function of regulatory B cell types (103, 108).

Programmed cell death ligand 1 (PD-L1), constitutively
expressed on activated B cells, is the ligand for programmed
cell death receptor 1 (PD-1) (109) and interaction between
PD-1 and PD-L1 modulate immune responses (110).
Kasztelan-Szczerbinska et al., showed a prevalence of PD-1/
PD-L1 positive B cells in ALD females when compared to
female controls. CD19+ PD-L1+ cells from female ALD
patients correlated significantly with all conventional markers
of inflammation (109). Sex hormones have been described to
influence immune responses. There is evidence that oestrogen
can regulate the immune response by modulating B cell function
and impairing negative selection of high affinity auto-reactive B
cells (111). Females with ArLD also present with elevated titres of
circulating immunoglobulins and a variety of autoreactive
antibodies (109). Steatohepatitis patients with more advanced
disease have reduced numbers of sIgM+, soluble IgG+ (sIgG+)
and soluble IgA+ (sIgA+)-reduced memory B cell numbers and
increased sIgA+ class-switched memory B cells when compared
to healthy controls (103, 108). In addition, alcoholic patients that
show no sign of liver disease have a significant expansion of
peripheral blood PBs and elevated sIgA+ memory cells (103).

Exposure to alcohol induces immune dysfunction and studies
in human and animal models of ArLD show a decrease in B cell
numbers (103, 107, 108). An impairment of B cell egress from the
spleen to the blood, may account for the reduction in peripheral
B cells (103). Despite this decline in B cells, ArLD is defined as an
IgA-driven disorder with an increase in IgA complexes, and
peripheral blood mononuclear cells (PBMCs) isolated from
cirrhotic patients secrete significantly higher levels of IgA that
correlate with serum IgA levels (103, 108). Deposition of IgA was
observed in different organs and tissues in ArLD patients (103).
Factors required for IgA class-switching, such as TGF-b were
elevated in chronic ArLD patients together with a T-cell response
from T-helper type 2 (Th2) cells (103).

A variety of toll-like receptors (TLRs) are expressed by B cells.
TLR ligation activates B cells and is also required for B cell
survival, antigen presentation and the production of cytokines
and antibodies (112). In alcoholic cirrhosis, TLR-9 activated B
cells were associated with a rise in IgA (80). However, Massonnet
et al., noted a significant decrease in TLR-9 mRNA expression
level in PBMCs from AC patients compared to healthy controls
(108). Response to TLR stimulation was diminished in B cells
isolated from alcoholic cirrhotic patients whereas, B cells from
healthy controls produced IgA upon stimulation with CpG
(103). However, B cells isolated from alcoholic cirrhotic
patients exhibit an increase in IgA production when stimulated
with CpG or R848, a TLR-7 agonist, compared to healthy
controls (103). CpG-stimulated B cells, from cirrhotic ArLD
patients, secreted more IgA, which may be due to the direct
September 2021 | Volume 12 | Article 729143
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stimulation of B cells (108). B cells from ArLD patients, secreted
a mean of 45 times more IgA in the absence of any stimulation
compared to B cells from healthy controls (103). These studies
show that TLR activation drives liver B cell responses in ArLD.

Alcohol has the ability to downregulate the expression of tight
junction proteins permitting the transposition of bacterial
constituents and causing a dysbiosis of gut flora, which may
contribute to enhanced inflammation due to the presence of
higher quantities of dangerous endotoxins (104). Altered
intestinal permeability and bacterial translocation is often seen
in ArLD patients (103, 107, 108). Impaired intestinal
permeability results in the circulation of lipopolysaccharide
(LPS), which was increased in the blood of ArLD patients
(105, 106). LPS can activate immune cells via TLR-4 ligation
resulting in further inflammation and damage to hepatocytes in
ArLD (86, 105). Furthermore, alcoholic patients have elevated
circulating levels of lipopolysaccharide binding protein (LBP)
(103, 108). LBP elicits an immune response upon binding LPS,
contributing to the inflammatory milieu and hepatocyte damage
(105). LPS may trigger the migration of peripheral B cells
towards gut-associated lymphoid tissue (GALT). Almeida
et al., suggested that chronic alcoholic patients had increased
numbers of GALT-derived sIgA+ B cells. This was supported by
a significantly higher predominance of IgA+ memory B cells and
IgA+ PBs in the peripheral blood of patients (103). In addition,
they showed that peripheral blood sIgA+ memory B cells have
GC-independent responses, similar to gut lamina propria IgA-
producing cells, suggesting that this B cell population is the
peripheral counterpart of gut lamina propria IgA-producing B
cells (103). These results indicate that LPS, derived from the gut
due to alcohol-induced intestinal permeability, could activate
immune cells and initiate an inflammatory cascade, further
exacerbating inflammation in ArLD.

Increased bacterial translocation results in chronic
inflammation which coupled with alcohol abuse, damages
hepatocytes (86, 107). Almedia et al., showed a reduction in
circulating B cell numbers in ArLD patients; this may be due to
alcohol-induced apoptosis of B cells (107). Hepatocyte and
leukocyte damage was also mediated by reactive oxygen species
(ROS) and acetaldehyde production (a product from the
breakdown of alcohol), which destroys cell membranes (86).
Bcl-2; a protein that regulates apoptosis, was strongly expressed
on B cells in ArLD patients, correlating with the degree of portal
and lobular inflammation (107). Significant volumes of cellular
debris were produced due to Bcl-2-mediated B cell apoptosis and
ROS-induced damage to hepatocytes and biliary epithelial cells
(BECs). The release of cellular debris and intracellular proteins
from cell debris may activate autoreactive B cells. ArLD patients
had autoantibodies against modified liver, suggesting a
dysregulated antibody response or impaired negative selection
of B cells (105). This may be due to a breakdown in tolerance and
a reduction in overall B-reg function.

25-60% of ArLD patients showed the presence of several self-
recognising antibodies: mostly antiphospholipid, anti-nuclear,
anti-dsDNA and anti-ssDNA (106). These autoantibodies arise
due to alcohol-induced oxidative stress which damages cell
Frontiers in Immunology | www.frontiersin.org 6
structures and activates antigen presenting cells (APCs), which
recognise haptens; a form of toxic metabolite (106). APCs induce
the activation of T cells, which detect both self and non-self
proteins, activating B cells to generate antibody secreting cells
that release antibodies against proteins and haptens (106). TFH
cell numbers were reduced in the blood as a result of excessive
alcohol consumption (105). This may be due to the migration of
TFH cells to local GC-like structures where they select the
survival of B cells, allowing their differentiation into memory B
cells and to high affinity antibody producing PCs, which are
increased in ArLD patients.

To summarise, excessive alcohol consumption results in the
breakdown of alcohol into acetaldehyde (Figure 3). This
metabolite induces inflammation and damages cell membranes
resulting in the exposure of cellular debris. Alcohol consumption
also deregulates the gut barrier allowing bacterial translocation of
LPS and other gut-derived pathogens, resulting in the secretion
of inflammatory mediators which damage hepatocytes (113).
Intracellular antigens from cell debris are engulfed by APCs and
are presented to autoreactive T cells that become activated upon
antigen recognition; B cells are activated as a consequence of T
cell activation, migrate to the GC where they proliferate and
differentiate into class-switched memory B cells and antibody
secreting cells, with the aid of TFH cells. Increased
immunoglobulin secretion ensues, forming immune complexes
and further activating the immune response leading to
liver injury.

Non-Alcoholic Fatty Liver Disease
Fat accumulation in the liver causes a range of conditions
described as non-alcoholic fatty liver disease (NAFLD) (114).
NAFLD can progress from the abnormal retention of lipids in
the liver (steatosis) to non-alcoholic steatohepatitis (NASH),
where lipid retention is accompanied with hepatic
inflammation (114, 115). NASH patients have varying degrees
of fibrosis, initiated due to the inflammatory damage of
hepatocytes inducing their apoptosis (86). Fibrosis develops to
cirrhosis with the eventual requirement of a liver transplant (114,
115). NAFLD patients frequently present with extrahepatic
conditions such as obesity, type 2 diabetes, cardiovascular
diseases and osteoporosis (115, 116). NAFLD/NASH patients
have persistent injury to the hepatocytes due to ROS, lipotoxicity
and the secretion of inflammatory mediators from immune
cells (115).

The pathogenesis of NAFLD is considered to be a ‘two-hit’
theory; first-hit is the excessive lipid influx and/or a reduction in
lipid clearance due to abnormal liver lipid metabolism and the
second-hit is the inflammatory process (117), which leads to
lobular and portal inflammation and infiltration of activated
immune cells (115). Patients with NAFLD had altered hepatic
lymphocyte compartments (114), and increased B cells (117) that
were associated with disease severity (118). Ectopic lymphoid
structures with B cell and T cell aggregates are seen in ~60% of
patients with NASH, these aggregates correlate in size and
prevalence with lobular inflammation (116). B cells may be
involved in fibrosis through the production of inflammatory
September 2021 | Volume 12 | Article 729143
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mediators that stimulate hepatic stellate cells, these cells support
liver B cell survival and maturation into plasma cells (116).
Isolated B cells from the visceral adipose tissue (VAT) of obese
mice show elevated production of pro-inflammatory cytokines
whilst a lack of B cells improves fat-induced inflammation (116),
suggesting that B cells play an important role in the progression
of NAFLD to NASH.

Obese people have altered distribution of adipose tissue.
Obesity promotes B cell activation, an early event in the
development of experimental NASH animal models,
contributing to the progression of steatohepatitis (115). In
mice, mesenteric adipose tissue (MAT), located between the
gut and liver, affects the liver by secreting inflammatory
cytokines, adipocytokines and releasing free fatty acids (FFA)
that reach the liver via the portal vein (119). B cells from high fat
diet (HFD)-fed mice produce IgG and promote epididymal
adipose tissue (EAT) inflammation (119). The release of
cytokines from inflamed adipose tissue combined with ROS
production from dysregulated hepatocyte lipid metabolism,
contribute to the progression from steatosis to NASH (86).
Intestinal permeability was compromised in NAFLD allowing
bacterial translocation and inducing the activation of hepatic
inflammatory cells. Patients with NAFLD had elevated serum
levels of endotoxin compared to healthy controls (118). Bacterial
translocation and LPS promote hepatic inflammation, lipid
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accumulation and hepatocyte damage (86, 118). Furthermore,
hepatic B cells encourage local inflammatory responses when
stimulated with LPS (80).

ROS and hepatocyte apoptosis result in the expulsion of
hepatocyte cellular debris, inducing antibody production from
B cells as a consequence. NAFLD/NASH patients had raised
titres of IgG against oxidative stress-derived epitopes (OSE).
Patients with increased anti-OSE IgG had a higher prevalence of
fibrosis and/or cirrhosis with elevated serum levels of interferon
gamma (IFN-g) (115). PBs upregulate MHC class II as a result of
B cell activation in NASH, suggesting that they have a role in
presenting OSE to T cells that become activated and contribute
to NASH progression (115). Aggregates of B and T cells were
observed in 63% of NASH liver samples correlating with the
severity of lobular infiltration and enhancement of fibrosis (115).
These aggregates were also linked to an increase in anti-OSE IgG
titres (115).

To summarise, NASH arises as a result of lipid accumulation
within the liver which results in inflammation and fibrosis
(Figure 4). Activation of various immune cells and the
secretion of inflammatory mediators damages hepatocytes,
further activating immune cells and initiating an inflammatory
loop. B cells produce antibodies against OSE, contributing to
increased cytokine production, activation of T cells and the
production of ROS, all of which participate in damaging the
FIGURE 3 | Alcohol related liver disease pathogenesis. Excessive alcohol consumption (1) induces inflammation and results in increased gut permeability (2),
allowing bacterial translocation of LPS. Inflammatory mediators damage hepatocytes, resulting in the release of cellular debris (3). Self-antigens are engulfed by
antigen presenting cells (4) and presented to autoreactive T cells (5), which stimulate autoreactive B cells (6). Activated B cells then migrate to secondary lymphoid
tissues and undergo germinal centre reactions (7) where B cells with increased affinity receptors differentiate into memory B cells and PCs (8). The secretion of
inflammatory mediators and autoantibodies from memory B cells and PCs further damage hepatocytes (9). The formation of immune complexes induces further
inflammation (10). These immune complexes are engulfed by APCs. Created with BioRender.com.
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liver. This vicious cycle of liver destruction results in fibrosis,
progressing to cirrhosis making the liver unable to regenerate
and heal.

Viral Hepatitis
There are five types of viral hepatitis, of which hepatitis B and
hepatitis C viruses can cause chronic liver disease. Infection may
lead to progressive inflammation and liver damage over decades
that could lead to end-stage disease requiring a transplant,
however these viruses are not directly cytopathic (75, 121).

Antibodies against both viruses are generated in infected
individuals. In HBV, IgM antibodies against the core protein
are used as a marker of early infection whereas, antibodies
against the hepatitis surface (HBsAg) and e (HBeAg) antigens
appear as the infection progresses (121, 122). HBsAg, a T cell-
independent antigen, induces the activation of naïve B cells and
mounts a robust antibody response (71, 123). Adults infected
with HBV are able to resolve infection in the majority of cases,
and there is an effective vaccine for HBV based on the HBsAg
(124). Chronic HBV patients have circulating HBsAg-specific B
cells, however these cells are unable to produce effective anti-HBs
antibodies (71). The early humoral immune response in HCV is
difficult to study as many patients are asymptomatic (125).

Intriguingly, antibodies to the envelope glycoproteins in HCV
infection may emerge late and are abundant in chronic patients,
while at the same time showing potent neutralising ability of
heterologous viruses. Investigations in autologous virus
neutralisation over years in a single patient showed that this
RNA virus remained a step ahead of the antibody response by
generating variants to escape neutralising antibodies (126).
However, antibodies can prevent HCV infection in vivo and
contribute to the eradication of the HCV infection (127). There is
no vaccine against HCV infection, but immunisation of healthy
Frontiers in Immunology | www.frontiersin.org 8
volunteers with viral envelope glycoproteins resulted in the
generation of neutralising antibodies (128), and antibodies
were shown to be protective in a human liver chimeric mouse
model (129). Immunisation of genetically humanised mice with
soluble envelope glycoprotein 2 (sE2), derived from insect cells,
produced high titres of broadly neutralising antibodies against
diverse HCV envelopes and were protected from HCV infection,
in vivo. Immunisation of non-primates with insect derived sE2
resulted in the induction of B and T cell immunity (127). The
role of B cells and antibodies in the context of failure to control
HCV infection was elegantly described by Dustin et al., (130).

An accumulation of circulating B cells within the liver is
associated with severe liver damage (131) and elevated levels of
activated B cells is seen in patients with HBV and HCV (121).
However, these cells have a reduced proliferative capacity and
express Fc receptor-like protein 4 (FcRL4), an inhibitory receptor
overexpressed on exhausted memory B cells (121). This suggests
that B cells are dysfunctional in infected livers as they are
chronically activated and adopt an exhausted phenotype.
Hepatic release of subviral particles (empty virions consisting
of mostly HBsAg) (132) is an immune evasion mechanism in
HBV which forms immune complexes by crosslinking
neutralising antibodies targeting the virus. This leads to
continual BCR triggering, promoting the expansion of
exhausted memory B cells, also referred to as atypical memory
B cells (71, 123, 133). Chronic hepatitis B patients had deposits of
HBcAg-immune complexes in their liver (134). Fc receptor-like
protein 5 (FcRL5) suppresses the activation of B cells by
crosslinking to immune complexes and PD-1 inhibits B cell
signalling; both these markers were enriched on the surface of
atypical memory B cells; T-bet is also associated with the
generation of atypical memory B cells (71, 135). This
population of atypical memory B cells was found to be present
FIGURE 4 | Non-alcoholic fatty liver disease pathogenesis. NASH pathogenesis is linked to obesity and altered adipose tissue distribution (1). Adipose tissue releases
adipokines and free fatty acids (FFA) (2), which result in lipid accumulation within the liver (3) and affect intestinal permeability (4). This allows bacterial translocation of
LPS and other gut-derived pathogens (5) resulting in the secretion of inflammatory mediators which could damage hepatocytes (6). FFA, adipokines, ROS and
inflammatory mediators injure hepatocytes (7) resulting in the expulsion of cellular debris. Self-antigens are engulfed by antigen presenting cells (8) and presented to
autoreactive T cells (9), which stimulate autoreactive B cells (10). Activated B cells then migrate to secondary lymphoid tissues and undergo germinal centre reactions
(11), where B cells with increased affinity receptors differentiate into memory B cells and PCs (12). The secretion of pro-inflammatory mediators (interleukin-6 and
tumour necrosis factor alpha) (120) and autoantibodies from memory B cells and PCs further damage hepatocytes (13). Created with BioRender.com.
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in infected livers (71) Atypical memory B cells enriched in HBV
were unable to escape apoptosis and differentiate into effective
HBsAg-specific antibody secreting cells (71), impairing their
ability to produce neutralising antibodies against the viruses
(123, 133, 134).

IL-10 producing B-reg cells are another subset of regulatory B
cells that are enriched in HBV and HCV patients, which may
contribute to viral persistence (71, 121, 136–138). Eiza et al.,
showed an increased in IL-10 producing B-regs in chronic HBV
patients, when compared to healthy controls and these cells were
able to dampen down HBV-specific CD8+ T cell responses (138).
A subset of B-reg cells that express high levels of CD5, CD1d and
IgD are thought to be responsible for IL-10 production by B cells
(136, 138). CD5+ B-regs produce IL-10 upon activation and
correlate with poor virus elimination (138).

Beyond immune surveillance, we previously showed that B
cells were vehicles for HCV transmission to hepatocytes (139).
Stimulated B cells were able to bind viral particles using
scavenger receptor B type 1 and C-type lectins DC-SIGN and
L-SIGN and internalised the virus in compartments that
prevented virus degradation. The intact virus was then recycled
to the B cell surface within hours. B cell-transmitted virus was
more infectious than cell-free virus, adding a pathogenic role for
B cells in HCV infection. HCV RNA was detected in 83% (110/
132) of patients with HCV genotype 1 (140). Inokuchi et al.,
reported that HCV RNA was detected more frequently in B cells
compared to CD4+ and CD8+ T cells (141). The role of
antibodies and adaptive immunity in HCV infection has been
recently reviewed (142–144).

The most common B cell lymphoproliferative disease
associated with HCV is mixed cryoglobulinemia (MC) (145,
146). MC presents with formations of cryoglobulins; abnormally
precipitated immunoglobulins that can be coupled with
rheumatoid factor (147), detected in the circulation of 40-60%
of HCV-infected patients (148, 149). B cells contribute to the
formation of cryoglobulins through uncontrolled autoantibody
production and proliferation (149). These cryoglobulin-containing
immune complexes deposit in small or medium vessels causing
vasculitis (145, 150, 151). Whilst cryoglobulinemia is common in
HCV, rare cases have been reported to exist in HBV infected
patients (151). The clonal proliferation of B cells in MC (152), may
cause the formation of ectopic lymphoid aggregates within the
liver of HCV patients. Lauletta et al., has shown that cytokine
(CXCL13) can cause B cell migration to intraportal lymphoid
aggregates in the liver and create a microenvironment to sustain B
cell aggregation (153).

Autoimmune Hepatitis
Autoimmune hepatitis (AIH) is a chronic autoimmune disorder
requiring life-long immunosuppressive therapy (75, 154–156).
This disease affects all ages, races and sexes although it has a
higher prevalence in females (75, 157–159). AIH is associated
with other autoimmune diseases such as coeliac disease and can
coexist with autoimmune family biliary liver diseases; primary
biliary cholangitis (PBC) or primary sclerosing cholangitis (PSC)
(159). This progressive, necro-inflammatory disease is linked to
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increased immune infiltration that destroys the hepatic
parenchyma through immune-mediated hepatocyte damage
(75, 107, 154, 155, 157, 158, 160, 161). Fibrosis and cirrhosis
are ramifications of chronic inflammation and 40% of AIH
patients present with cirrhosis at the time of diagnosis (154).
Despite the use of corticosteroids and immunosuppressives, 10-
20% of patients with AIH will progress to end-stage liver disease
requiring liver transplantation (160).

AIH classification is dependent on antibody specificity.
Patients with AIH can have numerous autoantibodies (162),
including antinuclear antibodies (ANAs), smooth muscle
antibodies (SMA) and antibodies directed against liver kidney
microsome type 1 (LKM1) (107, 157, 159, 163). Type 1 AIH is
characterised by the presence of ANA, SMA and perinuclear
anti-neutrophil cytoplasmic antibodies (pANCA), the latter is
present in 65-92% type 1 AIH patients (157, 159).
Autoantibodies against liver cytosol type 1 (LC1) and/or anti-
LKM1 antibodies are classified as type 2 AIH (159, 160); pANCA
antibodies are not present in this type of AIH. CYP2D6 is the
antigen for anti-LKM antibodies and anti-LC1 antibodies target
a liver-specific metabolic enzyme, formiminotransferase
cyclodeaminase (FTCD) (157, 160). CYPD26 autoantibodies
are of the IgG isotype, supporting the role that T-dependent
class-switching is essential to produce IgG+ PCs (158). Anti-LC1
antibody titres are associated with disease severity and are
detected in 30-50% of patients with type 2 AIH (157). Type 3
AIH is proposed to be defined by the presence of anti-soluble
liver antigen/liver pancreas antigen antibodies (anti-SLA/LP
antibodies) which are present in 10-30% of AIH patients (157).
50-76% of AIH patients have antibodies against the
asialoglycoprotein receptor (ASGPR) which is a component of
the liver specific lipoprotein (LSP) expressed on hepatocyte
surfaces (157, 163). Disease activity and poor outcome of AIH
positively correlated with titres of anti-ASGPR in this group of
patients (157).

Hepatic destruction in AIH is thought to be driven by T cells,
however, the presence of several autoantibodies suggests a role
for B cells in the pathogenesis of AIH (154). Elevated serum
IgG levels are found in up to 85% of patients with AIH
displaying ongoing inflammation within these patients (164).
AIH liver biopsies showed mixed infiltration of T cells and B
cells, including IgG+ B cells and PCs (157–159, 163, 165). AIH
flare ups show an increased number of T and B cells present
within the liver (159). B cells present self-antigens to autoreactive
T cells which become activated, which then stimulate B cells to
produce autoantibodies (163). Increased expression of CD86 is
seen on B cells from new onset AIH patients, suggesting
that these B cells are primed to co-stimulate T cells (166).
Cytokines produced by Th2 cells also aid in B cell activation
and differentiation via IL-4 production, which was elevated in
AIH (157, 163).

IgG+ cells were significantly higher in AIH liver samples and
were found distributed around the bile ducts and in portal tract
areas, along with IgM+ cells (157, 158, 161, 165). Lymphocytes
target IgG bound to hepatocytes in healthy individuals,
mediating cellular injury and initiating inflammation (75).
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Patients with systemic lupus erythematosus (SLE), an
autoimmune disease driven by a dysregulated B cell response,
frequently develop inflammation of the liver. Hepatic
dysfunction in SLE patients can be caused independently of B
cell responses for example by side effects of medication.
However, two key examples for autoimmune liver conditions
associated with SLE are lupus hepatitis (also known as SLE-
associated hepatitis) and autoimmune hepatitis. Both involve
extensive B cell activation and are often difficult to distinguish.
They are both associated with hyperglobulinaemia but show
differences in the profile of autoantibodies. Since their prognosis
and therapeutic approach differs, it is an important goal to
develop safe diagnostic criteria (167).

AIH is an autoimmune disease with many factors
contributing to disease progression, however the trigger is
unknown. The presence of autoantibodies, targeting many self-
proteins, presents an important role for autoreactive B cells in the
pathogenesis of AIH and suggests an impairment in central B cell
tolerance. The survival and activation of autoreactive T and
autoreactive B cells is a result of a breakdown in self-tolerance
and a reduction in immune regulation.

Primary Sclerosing Cholangitis
Primary sclerosing cholangitis (PSC) is a cholestatic
autoimmune disease in which fibrosis and chronic
inflammation destroy the large bile ducts (157, 168–170). PSC
is associated with inflammatory bowel disease (IBD); 87% of PSC
patients present with ulcerative colitis (UC) and 13% have
Crohn’s disease (CD) (83, 157, 168). Chronic destruction and
scarring of the biliary tree leads to cirrhosis and many patients
will eventually require liver transplants (169).

Anti-neutrophil cytoplasmic antibodies (ANCA) are detected
in 88% of PSC patients however, these autoantibodies are not
specific for PSC, but also seen in AIH and biliary atresia (BA)
(157); PSC-specific autoantibodies have not been identified to
date, but disease-relevant epitopes have been detected (171). PSC
disease severity is associated with concentrations of anti-
cardiolipin antibodies which were present in 2/3 of PSC
patients (157).

Total numbers of B cells were significantly higher in PSC-
derived PBMCs compared with healthy controls (64).
Furthermore, 10% of PSC patients had elevated serum levels of
IgG4 and a significant infiltration of IgG4 PCs (169, 172). IgG4+
PC aggregates were observed in PSC tissues and IgG4+ deposits
were reported (169, 173). Fischer et al., showed that the intensity
of IgG4+ immunostaining was linked to disease progression and
infiltration of lymphocytes in PSC (169). B cells isolated from
PSC liver explants produce a range of autoantibodies when
cultured suggesting, that the targets in PSC are self-antigens or
arise as a result of cross-reactivity of exogenous targets (168).
Approximately 50% of explanted PSC liver specimens displayed
evidence of IgG4+ cells and these tissue infiltrating IgG4+ cells
were associated with a clinically aggressive disease course and a
higher probability of liver transplantation (169). IgG4-related
disease (IgG4RD) is an inflammatory disease associated with
elevated numbers of IgG4-positive PCs which contribute to
chronic damage and fibrosis (174, 175). IgG4RD-associated
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sclerosing cholangitis can be mistaken for PSC, which may
explain the increase in IgG4+ cells seen by Fischer et al. (176).

70% of PSC patients have IBD which is linked to defects in the
intestinal barrier (177). The gut microbiota was altered in PSC
patients when compared to UC and healthy controls (168). Gut-
derived antigens may trigger the autoimmune response in PSC
by allowing the translocation of bacterial and food antigens (78,
168). BECs propagate their own destruction when they are
stimulated by LPS, which induces them to release chemokines
and cytokines (83). These mediators activate various immune
cells which damage the tissue leading to fibrosis and resulting in
an inflammatory cascade (83). Other gut-derived bacterial motifs
also stimulated BECs to drive their own destruction and analysis
from PSC livers showed the presence of bacterial RNA (83).

The pathogenesis of PSC is reviewed by Lleo et al. (178). PSC
may be initiated by a loss of self-tolerance due to bacterial antigens
and the obliteration of BECs, resulting in the expulsion of self-
antigens which activates autoreactive immune cells. Molecular
mimicry may contribute to this initial loss in tolerance. Primed
gut-derived T cells migrate to the liver where they may induce B
cell proliferation and differentiation into IgG4+ secreting PCs (83).
These immune cells will secrete many pro-inflammatory cytokines
contributing to inflammation, the destruction of BECs and the
progression of autoimmunity.

Primary Biliary Cholangitis
Primary biliary cholangitis (PBC) is a progressive autoimmune
disease characterised by immune-mediated destruction of the
intrahepatic small bile ducts (79, 107, 157, 179–182). This
deregulated immune response results in liver inflammation and
damage, causing fibrosis and eventually cirrhosis as an outcome
of the accumulation of bile toxins (79, 183, 184).

There is a profound loss of B cell tolerance associated with
PBC, which is supported by the presence of autoantibodies (83,
180, 185, 186); 90-95% of PBC patients have the presence of
specific anti-mitochondrial antibodies (AMA), directed against
the mitochondrial inner membrane member, 2-oxoacid
dehydrogenase complexes (2-OADC) (79, 107, 157, 179, 181–
183, 185–187). Autoantibodies targeting the E2 subunit of the
pyruvate dehydrogenase complex (PDC-E2) is a major
autoantigen in PBC (157). 50% of PBC patients had antibodies
targeting the nuclear pore complex members; gp210 and p62
(157). The anti-nuclear antibodies (ANAs) targeting gp210,
correlate with disease severity (79, 157, 186). PBC patients had
significantly higher PDC-E2 specific IgM, IgG, and IgA PB
frequency (64). In addition, many PBC patients present with
hyper-IgM expression in their serum (179, 186). Complement
activation via agglutination by IgM plays a crucial role in innate
immunity providing a link between innate and adaptive
immunity as IgM enhances antigen-driven IgG responses (179).

GCs are essential for the production of class-switched
immunoglobulins however, they also allow the differentiation
of autoreactive B cells into autoreactive memory and
autoantibody producing PCs in PBC (183, 185, 186, 188). TFH
cells promote GC formation and allow B and T cell interaction
promoting B cell activation, proliferation and differentiation into
affinity matured, long-lived PCs (79, 183). TFH locate B cell
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follicles via the CXCL5 – CXCL13 chemokine axis and were
present in vast numbers near damaged bile ducts, in lymphoid
follicle-like structures (79). In healthy control livers, hepatic TFH
cells were absent (183). PBC-derived TFH cells had a greater
ability to induce B cell differentiation into class-switched
memory B cells and mature PCs (183). Circulating TFH
(cTFH) cell frequency was higher in PBC patients and in
patients who do not respond to ursodeoxycholic acid (UDCA)
treatment compared to UDCA responders (79). cTFH cells
positively correlated with circulating PCs in PBC and secrete
high levels of IL-21 inducing B cell proliferation, differentiation
and secretion of autoantibodies suggesting that TFH cells
contribute to PBC pathogenesis (79, 183, 185). Increased
serum IL-21 levels positively correlated with concentrations of
serum AMA and IgM (185). IL-21 is vital for the development of
TFH cells and induces maturation of B cells in a paracrine
manner whilst enhancing TFH function in an autocrine fashion
(79, 183).

Tissue from the livers of PBC patients showed the presence of
several bacterial products (83). TLR signalling pathway was
activated in PBC patients and hyper IgM production which
may be due to increased bacterial infections (83, 157). Studies
have shown that the induction of PBC occurs due to molecular
mimicry between PDC-E2 and bacterial proteins (79). Molecular
mimicry may be the initial insult in the loss of self-tolerance,
enabling the survival of autoreactive B cells that fail to enter
apoptosis (186). Activation of TLRs induces the proliferation of
B cells and the secretion of pro-inflammatory cytokines. TLR-9
expression was increased in B cells from PBC patients and CpG
stimulation enhanced the secretion of IgM, cytokines and
chemokines (83, 157, 179, 187). Kikuchi et al., showed a
positive correlation between the intensity of TLR-9 expression
and IgM+ memory B cells (83, 179). Bacterial motifs were
required to increase TLR-9 expression on B cells and promote
inflammation (83, 179). Furthermore, CpG stimulation of
PBMCs derived from PBC patients resulted in vast production
of AMAs compared to unstimulated controls (157). TLRs are
also expressed by cholangiocytes which aid in immune activation
and may contribute to PBC pathogenesis. TLR-4 and TLR-9
levels were highly expressed on cholangiocytes in PBC patients
(75). Ma et al., showed increased TLR-4 expression on BECs in
PBC and expression was seen in periportal and interlobular
hepatocytes in patients with advanced disease (83).

BEC themselves may contribute to the initiation and
progression of PBC rather than being the victims of the
immune response. Damage to BEC is a hallmark of PBC and
BEC obtained from PBC livers rapidly undergo apoptosis (186).
BEC can engulf apoptotic BECs and translocate PDC-E2 into
apoptotic bodies (186). The immunologically intact PDC-E2 is
presented to autoreactive immune cells initiating their activation,
secretion of pro-inflammatory mediators and AMA
production (186).

Many factors contribute to the initiation and pathogenesis of
PBC which is reviewed Carbone et al., (189). The initial insult in
PBC is thought to be similar to that of PSC; molecular mimicry
by bacterial motifs, subsequently activating the immune response
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and breaking down self-tolerance. The inflammatory milieu is
further exacerbated by the destruction of BEC, which further
activate autoreactive immune cells via antigen presentation of
PDC-E2 in apoptotic bodies. The ongoing inflammatory cascade
results in additional destruction of bile ducts, activation of
autoreactive immune cells and the production of autoantibodies.

Biliary Atresia
Biliary atresia (BA) affects 1 in 8,000-18,000 neonates and
encompasses a host of potential aetiologies leading to
progressive liver damage (190–192). Obliteration of the
extrahepatic biliary tree and subsequent progressive
destruction of the hepatic ducts leads to fibrosis and cirrhosis
in BA infants (192, 193).

There are two forms of BA; acquired and congenital (194,
195). 80% of BA patients have the acquired form and 20% have
the congenital form, both are characterised by destruction of bile
ducts and fibrosis, with various degrees of inflammation (191,
195, 196). BA infants with the congenital form also present with
other genetic abnormalities (195, 196). Kasai portoenterostomy
(Kasai) is a surgical treatment performed at diagnosis in over
95% of BA infants (190). The Kasai procedure removes the
damaged bile ducts and anastomoses the jejunum to patient
intrahepatic bile ducts to allow bile flow from the liver to the gut;
despite successful surgery, 80% of BA patients will require a liver
transplant (191, 197). Medical management post-Kasai involves
the use of antibiotics, vitamin supplementation, nutritional
support and administration of UDCA to encourage bile flow
(192). Kelly and Davenport show that having specialised centres
for portoenterostomy surgery has improved survival to over 90%
in the UK. This study also showed a reduced need for liver
transplantation due to the centralisation of surgery (192).

BA livers showed increased immune infiltration and elevated
lymphocyte activation in the portal tracts (191, 193). There was
an increased presence of intrahepatic periductal B cells in BA
patients at diagnosis and at the time of transplant (190). These
activated B cells secrete IgM and IgG antibodies and Lu et al.,
found that IgG from the sera of BA patients reacted with the
cholangiocyte cytosol (198, 199). Furthermore, 40% of BA
infants had deposits of IgM and IgG along the basement
membrane of the bile duct epithelia (190, 198, 200). Infants
with BA show increased levels of high-affinity pathogenic IgG
antibodies and a reduction in the level of natural IgM, which
plays a protective role in immune function and the development
of autoimmune disease (201). Anti-a-enolase and ANCA
autoantibodies are observed in BA neonates and were detected
in the sera of BA patients (190, 198). Anti-a-enolase IgM and
IgG antibodies can be found in BA children who still have their
own livers suggesting a role for B cells in BA pathogenesis (199).

There are various animal models of BA (195, 202) however
the commonly used model is the rhesus group A-rotavirus
(RRV)-induced mouse model of BA (193, 199, 203, 204).
RRV-induced mice are able clear the virus by 2 weeks
however, they show signs of extrahepatic bile duct obstruction
and progressive inflammation, which leads to liver failure (199).
Despite the evidence of viral insult in mouse models of BA, there
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are conflicting studies detecting the presence of rotavirus in BA
patient samples. One study shows the presence of type C
rotavirus RNA in 10 out of 20 BA liver samples (205) whereas
Bobo et al., did not detect any rotavirus RNA from their BA liver
cohort (n=10) (206).

To summarise the trigger for BA is unknown; viral,
environmental, genetic and autoimmune factors are thought to
contribute to BA pathogenesis (196, 198). A proposed theory for
the pathogenesis of some types of BA is an initial infection with a
cholangiotropic virus which may damage the bile duct epithelia
directly, however this virus is still unidentified (195) (Figure 5).
This initiates an immune response resulting in an exaggerated
inflammatory response that further damages BEC (196). The
injured bile ducts release altered self-antigens and may express
self-antigens on their surface (194, 207). APCs recognise these
self-antigens as foreign molecules subsequently, activating
autoreactive T cells, mediating inflammatory destruction of the
bile ducts (194). Activated autoreactive T cells also stimulate
autoreactive B cells, augmenting the production of inflammatory
mediators and initiating B cell differentiation. Despite the
clearance of the virus, persistent inflammation contributes to
the obliteration of the bile ducts leading to fibrosis and liver
failure (199). It is important to stress, that inflammation is
evident in a subsection of patients, and some children with BA
show no inflammatory histological findings at Kasai or at end
stage disease explant tissue. Histological characterisation of the
Frontiers in Immunology | www.frontiersin.org 12
immune compartment in BA may aid our understanding of
disease pathogenesis.

Table 2 provides a brief summary of clinical features and
immune involvement in liver diseases.

Targeting B Cells in the Liver - Rituximab
Treatment
Originally developed for the treatment of B cell lymphoma,
rituximab is a human/murine chimeric monoclonal antibody
that targets specifically the cell surface glycoprotein CD20 (208).
CD20 is universally expressed by normal B cells through all
stages of development from late pre-B cells in the bone marrow
and right before terminal differentiation to plasma cells.

The true role of CD20 remains poorly understood; it has no
known natural ligand, however its association with the BCR
suggests a role in B cell signalling. CD20 is not immediately
internalised upon antibody binding (209, 210), and thus
monoclonal antibodies raised against it cannot be used to
deliver cytotoxic moieties into the cell. As a result, the mode of
action of anti-CD20 antibodies relies on the subsequent
recruitment of the host immune response to opsonisation.

Multiple modes of actions have been proposed for rituximab
mediated B cell depletion. Rituximab colocalises CD20 to lipid
rafts (211), and through this induces B cell killing by NK cells
through antibody-dependent cellular cytotoxicity (212). Efficacy
of rituximab, however, differs greatly among different
FIGURE 5 | Inflammatory-mediated damage in biliary atresia. In some children with BA, damage to the extrahepatic bile ducts may occur due to cholangiotropic
viruses or autoimmunity (1), resulting in the expulsion of viral or self-antigens. These antigens are engulfed by antigen presenting cells (2) and presented to T cells (3).
Autoreactive T cells that recognise self-antigens stimulate autoreactive B cells (4). Activated B cells then migrate to secondary lymphoid tissues and undergo germinal
centres reactions (5) where B cells with increased affinity receptors differentiate into memory B cells and PCs (6). The secretion of inflammatory mediators and
autoantibodies from memory B cells and PCs further damage BECs (7). Created with BioRender.com.
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autoimmune diseases. Amongst these, Rituximab is approved for
treatment of rheumatoid arthritis, granulomatosis with
polyangiitis and microscopic polyangiitis and pemphigus
vulgaris (213–215). In SLE, pilot trials and observational
studies were initially promising but larger scale clinical trials
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did not show a clear benefit. Recent trials of a combination of
Belimumab, which targets the cytokine BLyS with Rituximab,
however, show promise in SLE (216). Direct cross-linking of
CD20 on B cell tumour cell lines was shown to be sufficient for
the induction of apoptosis through MAP kinase activation (212,
TABLE 2 | Key clinical features and immune involvement in liver diseases.

Disease Clinical features Immune involvement References

Alcohol related liver disease
(ArLD)

• Hepatocyte damage
• Steatosis
• Fibrosis
• Cirrhosis
• Lipogenesis
• Accumulation of fat in the liver
• High levels of IgA, IgG and IgM
• Lipopolysaccharide circulation
• Portal and lobular inflammation

• Liver inflammation
• Altered B cell compartment
• Increased plasmablasts
• Decreased regulatory B cells
• Reduction in circulating B cells

(86, 103–108)

Non-alcoholic fatty liver
disease (NAFLD)

• Steatosis
• Hepatic inflammation
• Fibrosis
• Hepatocyte damage
• Cirrhosis
• Lipid influx
• Portal and lobular inflammation
• Altered distribution of adipose tissue
• Elevated levels of endotoxin
• Raised IgG titres

• Liver inflammation
• Damage by reactive oxygen species, lipotoxicity

and inflammatory mediators
• Infiltration of activated immune cells
• Increased B cells associated with disease severity
• Ectopic B and T cell aggregates
• LPS stimulates B cells to secrete inflammatory

mediators

(80, 86, 114–118)

Viral hepatitis • Antibodies against viral epitopes
• Formation of immune complexes

• Progressive inflammation and liver damage
• Accumulation of circulating B cells within the liver
• Elevated levels of activated B cells
• Dysfunctional B cells
• Expansion of exhausted memory B cells
• Enrichment of atypical B cells
• Increase in IL-10 producing regulatory B cells
• B cells can act as vehicles for HCV transmission

(71, 75, 121–123, 131, 133, 134,
136, 138, 139)

Autoimmune hepatitis (AIH) • Associated with other autoimmune
diseases

• Necro-inflammatory disease
• Destruction of the hepatic parenchyma

and hepatocytes
• Fibrosis
• Cirrhosis

• Increased immune infiltration
• Presence of autoantibodies
• Elevated serum IgG levels
• B cells are primed to co-stimulate T cells via CD86

interaction

(154, 159, 162, 164, 166)

Primary sclerosing
cholangitis (PSC)

• Fibrosis
• Destruction of the large bile ducts
• Associated with IBD
• Cirrhosis
• Destruction of the biliary tree
• Defects in intestinal barrier
• Altered gut microbiota

• Presence of autoantibodies
• High numbers of B cells
• IgG4+ plasma cell aggregates and deposits in

some PSC patients

(64, 157, 168–170, 172, 177)

Primary biliary cholangitis
(PBC)

• Affects small bile ducts
• Fibrosis
• Accumulation of bile toxins
• Presence of several bacterial products

• Immune-mediated destruction of intrahepatic small
bile ducts

• Liver inflammation
• Loss of B cell tolerance
• Presence of autoantibodies
• Hyper-IgM expression in the serum
• Complement activation via agglutination by IgM

(83, 157, 179, 181, 184, 186)

Biliary atresia • Progressive liver damage
• Obliteration of the extrahepatic biliary

tree and hepatic ducts
• Fibrosis
• Cirrhosis

• Increased immune infiltration
• Elevated lymphocyte activation in the portal tracts
• Increased presence of intrahepatic periductal B

cells
• IgM and IgG deposits
• High levels of high-affinity pathogenic IgG antibodies
• Autoantibodies may be present

(190, 191, 193, 199, 201, 207)
September 2
A brief summary of the clinical features and immune compartment involvement in adult and paediatric liver diseases.
021 | Volume 12 | Article 729143

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Patel et al. B-Cell Subsets in Liver Diseases
217). Rituximab may also induce complement dependent
cytotoxicity (212, 217, 218). In a mouse model, Kupffer cells
within the hepatic sinusoids have been shown to capture anti-
CD20 antibody coated B cells (219).

During differentiation into mature antibody-secreting plasma
cells, CD20 expression is lost (220). Due to this absence of CD20,
rituximab treatment does not affect the production of long-lived
PCs (221, 222), as rituximab does not deplete long-lived PCs. In
multiple diseases where rituximab treatment has been trialled,
90-100% of peripheral B cells were depleted (223).

Efficacy of rituximab, however, differs greatly among different
autoimmune diseases. Amongst others, rituximab has been
shown to be an effective treatment for rheumatoid arthritis
(224), systemic lupus erythematosus (225), thrombocytopenic
purpura (226), and autoimmune haemolytic anaemia (227). B
cells have now begun to be targeted in CLD (3).
Rituximab in Viral Hepatitis
Rituximab has been shown to be the most widely used treatment
for HCV patients with cryoglobulinemia vasculitis (148, 228).
One cycle of low-dose rituximab achieved a complete clinical
response in 22 out of 31 (70.96%) of MC patients (229). Clinical
manifestations of cryoglobulinemia such as skin ulcers, renal
manifestations and sensitive-motor neuropathy have improved
through the use of rituximab (228). Rituximab treatment reduces
serum levels of cryoglobulins and rheumatoid factor through the
clonal B cell depletion in the bone marrow (230).
Rituximab in Autoimmune Hepatitis
Non-specific immunosuppression using prednisolone and
azathioprine has improved symptoms and subsequently survival
in patients with AIH (231). However, some patients either
develop adverse side effects and as a consequence discontinue
treatment or exhibit a suboptimal response to this standard
therapy (232). As a result, more targeted immunotherapies for
this disease are needed.

In a mouse model of AIH, administration of anti-CD20
antibodies resulted in a significant reduction in liver
inflammation and ALT levels, but there was no reduction in
the total IgG levels or autoantibody titres (233). The depletion of
B cells resulted in a significant increase in naïve CD4+ and CD8+

T cells and a reduction in antigen-experienced T cells. In this
model of AIH, B cells played an active role in disease
pathogenesis through the antigen presentation process and
modulated T cell functions (233).

Rituximab has been trialed in both adult and paediatric
patients with AIH which was unresponsive to prior treatments
(234, 235). Rituximab was well tolerated, and complete remission
was achieved and maintained. Serum IgG levels were also
reduced, and ANA titres were decreased in 2 out of 6 subjects,
becoming negative in one (234). More recently a multicentre
retrospective study reported clinically meaningful reductions in
liver enzyme values following the administration of rituximab in
22 patients with difficult to manage AIH (236). After treatment,
71% of patients were free from AIH flares (236).
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Rituximab in Primary Biliary Cholangitis
Currently, therapy for PBC is limited to UDCA and, for patients
with end-stage liver disease, liver transplantation. Although
UDCA has demonstrated cl inica l benefi ts in l iver
biochemistries (237), up to 40% of patients have a suboptimal
response to UDCA and 10% will go on to die or require liver
transplantation (238).

At present, trials for the efficacy of rituximab in PBC have
primarily enrolled patients who have demonstrated an
unsatisfactory response to UDCA. Six patients with incomplete
responses to UDCA were recruited in an open-label study (239).
Patients were given 2 doses of rituximab separated by 2 weeks
and followed for 52 weeks. This study showed a significant
reduction in serum AMA titres and a reduction in ALP up to
36 weeks after treatment. A subsequent open-label study using
the same method of treatment enrolled 14 patients with PBC
refractory to UDCA (240). B cells were effectively depleted in 13
of the patients, and a reduction in serum AMA levels was
observed at 6 months follow-up. However, the improvements
in liver biochemistry were limited. Rituximab has also been used
in a randomised trial of 57 PBC patients suffering with severe
fatigue (241). Despite evidence to suggest that rituximab was
effective for reduction of fatigue in a number of conditions
including primary sjogrens syndrome (pSS) (242–245), a
condition associated with PBC, this study showed no evidence
of effectiveness for the treatment of fatigue in PBC.

Although these studies showed the limited efficacy of
rituximab in PBC, they demonstrated that the drug is well
tolerated by patients. This is in direct contrast to a study with
a xenobiotic induced murine model of human PBC (246), where
anti-CD20 treatment exacerbated liver pathology despite
successful depletion of B cells and reduction in the production
of AMAs (247). Conversely, in the genetic animal model of PBC,
the dnTGF-bRII mouse (248), anti-CD20 treatment was effective
at attenuating liver damage but exacerbates colitis (249).
Moreover, this reduction in liver inflammation was only seen
in young mice, as B cells depletion in old mice did not modify the
course of liver disease (249). Interestingly, double transgenic
mice with PBC and B cell depletion (lgm-/-dnTGF-bRII mice)
developed a more severe form of cholangitis (250), suggesting
that during the initial inflammatory response in this model of
PBC, B cells have a suppressive effect.

Rituximab in Primary Sclerosing
Cholangitis
A lack of understanding of PSC pathogenesis has prevented the
development of effective therapies. Transplantation was
established as the only curative treatment option for PSC in
1983. A few years later, recurrence after liver transplantation was
noted in some patients (251). It is estimated that recurrent PSC
occurs in 20-25% of patients over a 10-year period after
transplantation (252). A small study of 5 PSC patients who
underwent ABO incompatible liver transplantation and were
treated with rituximab, found that graft survival rate was 100%
with no cases of recurrence over the median follow-up period of
7.2 years (253).
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CONCLUSION

Despite advances in liver T cell biology, B cell biology and subset
characterisation remains understudied in the context of chronic
liver disease. Deep phenotyping approaches such as single cell
RNA sequencing and spatial transcriptomics have yielded
valuable information on liver immunity in the context of
various liver cell types (254), and similar approaches are much
needed for B cell biology. Mapping the B cell compartment in
liver diseases will provide a better understanding of the roles of B
cells in disease progression and offer new opportunities for
therapeutic intervention.
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