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Immunosenescence in
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chronic viral infections

Atefe Ghamar Talepoor and Mehrnoosh Doroudchi*

Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
Immune system is a versatile and dynamic body organ which offers survival and

endurance of human beings in their hostile living environment. However,

similar to other cells, immune cells are hijacked by senescence. The ageing

immune cells lose their beneficial functions but continue to produce

inflammatory mediators which draw other immune and non-immune cells to

the senescence loop. Immunosenescence has been shown to be associated

with different pathological conditions and diseases, among which

atherosclerosis has recently come to light. There are common drivers of

both immunosenescence and atherosclerosis; e.g. inflammation, reactive

oxygen species (ROS), chronic viral infections, genomic damage, oxidized-

LDL, hypertension, cigarette smoke, hyperglycaemia, andmitochondrial failure.

Chronic viral infections induce inflammaging, sustained cytokine signaling,

ROS generation and DNA damage which are associated with atherogenesis.

Accumulating evidence shows that several DNA and RNA viruses are

stimulators of immunosenescence and atherosclerosis in an interrelated

network. DNA viruses such as CMV, EBV and HBV upregulate p16, p21 and

p53 senescence-associated molecules; induce inflammaging, metabolic

reprogramming of infected cells, replicative senescence and telomere

shortening. RNA viruses such as HCV and HIV induce ROS generation, DNA

damage, induction of senescence-associated secretory phenotype (SASP),

metabolic reprogramming of infected cells, G1 cell cycle arrest, telomere

shortening, as well as epigenetic modifications of DNA and histones. The

newly emerged SARS-CoV-2 virus is also a potent inducer of cytokine storm

and SASP. The spike protein of SARS-CoV-2 promotes senescence phenotype

in endothelial cells by augmenting p16, p21, senescence-associated b-
galactosidase (SA-b-Gal) and adhesion molecules expression. The impact of

SARS-CoV-2 mega-inflammation on atherogenesis, however, remains to be

investigated. In this review we focus on the common processes in

immunosenescence and atherogenesis caused by chronic viral infections

and discuss the current knowledge on this topic.
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Immunosenescence is a widespread
phenomenon

Ageing is defined as progressive physiological changes along

with decline of biological functions in a cell, organ, or the total

organism which is associated with increased risk of debility,

disease, and death (1). Inflammaging is a key underlying

mechanism in processes leading to aging and ageing-related

diseases. The term “inflammaging” refers to a chronic, low level

systemic inflammation that results in overstimulation of the

immune system and elevated mortality and morbidity in elderly

individuals (2). Growing evidence suggests the existence of

interplay between ageing and immune system alterations, which

is called immunosenescence (3). Therefore, immunosenescence is

referred to the gradual deterioration of immune parameters as a

consequence of ageing process. The important hallmarks of

immunosenescence are the followings: [1] reduced frequencies of

naïve T cells, [2] alternation in CD4:CD8 ratio, [3] defective

response to new antigens, [4] accumulation of short-lived

memory T cells, [5] impaired calcium-mediated signaling, and

[6] inflammaging (4–6). Immunosenescence affects both the ability

to respond to infectious agents as well as development of

appropriate and long-term immune responses (7). It has also

been shown that immunosenescence affects adaptive immune

system more than the innate immune system (8). The main

characteristics of immunosenescence with respect to the innate

immunity include reduced number of circulating CD14+

CD16−classical monocytes, macrophages and dendritic cells

(DCs), reduced chemotaxis and phagocytosis of macrophages

and neutrophils, defective reactive oxygen species (ROS)

production by neutrophils, increased neutrophil susceptibility to

apoptosis, elevated levels of inflammatory cytokines and

chemokines, lower expression level of major histocompatibility

complex (MHC) class II by DCs and macrophages, increased

number of natural killer (NK) cells, decreased NK cells

cytotoxicity and impaired antigen presentation by DCs (9–17).

In terms of adaptive immunity, immunosenescence can result in

reduced naive CD4+ and CD8+T cells pools, restricted T cell

receptor (TCR) repertoire, loss of CD28 expression by T cells,

increased frequencies of effector (TEff) and effector memory T

(TEM) cells, decreased accumulation of central memory T (TCM)

cells, elevated accumulation of memory B cells, restricted B cell

receptor (BCR) repertoire, impaired class-switching and somatic

recombination of B cells and defective antibody responses to

ant igens (17–19) . I t has been demonstra ted that

immunosenescence, through stimulating proinflammatory factors

and inflammaging, can drive cellular senescence in other tissues

and development of age-related diseases, such as infections, cancer,

autoimmune disorders and chronic inflammatory and metabolic

diseases (20, 21) in the elderly. Although immunosenescence and

cellular senescence are slightly different in mechanism, they share

several similarities. In the following sections we will describe
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different properties, drivers and regulators of cellular senescence

and immunosenescence with the focus on atherosclerosis.
Overview of cellular senescence

Different types of somatic cells isolated from mammalian

tissues undergo multiple proliferations before they stop growing.

For the first time in 1961, Hayflick and Moorhead discovered

that human fibroblast cells proliferation potency is limited upon

serial culture, and they called this phenomenon “cellular

senescence” (22).

Cellular senescence is an irreversible cell cycle arrest in the G1

phase, in which the senescent cells remain metabolically active but

they hold a growth arrested status (23). Indeed, upregulation of the

p16, p21 and p53 cell cycle inhibitors lead to the irreversible cell

cycle arrest in the senescent cells (2, 24). Hence, cellular senescence

is different from other non-dividing processes such as quiescence,

exhaustion or terminally differentiation by several markers and

morphological changes (24–26). The replicative senescence (RS),

oncogene-induced senescence (OIS), genotoxicity-induced

senescence (GIS), developmental senescence and tissue repair

senescence are considered different types of cellular senescence in

human (25, 27, 28).

In general, senescence in any cell type is accompanied by

phenotypic alterations including but not limited to cytoplasm

enlargement, flattened, vacuolated, and multinucleated cell

morphologies, depending on cell type, genetic background, and

the type of senescence inducing stimuli (29). In addition,

senescent immune cells show reduced DNA replication,

chromatin remodeling, metabolic reprogramming, increased

resistance to apoptosis, and increased expression of senescence-

associated b-galactosidase (SA-b-Gal) as well as producing a set of
inflammatory secretome (30–32). Moreover, immunoscenesent

cells downregulate surface markers like CD27, CD28, CCR7 and

CD45RO, while they upregulate the Killer cell lectin-like receptor

subfamily G (KLRG-1), CD57, PD-1 and CD153 (29, 33–35).

Senescent immune and non-immune cells produce a

combination of inflammatory factors, called senescence-associated

secretory phenotype (SASP) (36). SASP factors consist of several

interleukins (ILs) including IL-6 and IL-1, and chemokines such as

CXCL-4,-5, -6, -12 and CCL-2, -3, -7, -8, -13, -16, -20 and -26,

proteases, growth factors, bioactive lipids and extracellular vesicles

which are involved in immune cell migration, innate and adaptive

immune responses, modification of the extracellular matrix (ECM),

cell cycle arrest and phagocytosis (24, 37, 38). Particularly, secreted

SASP factors act as paracrine and autocrine mediators that promote

inflammatory responses as well as defective tissue remodeling

which ultimately may lead to chronic autoimmune disorders and

different cancers (39–41). A variety of transcription factors and

signaling pathways like nuclear factor kappa B (NF-kB) and beta

CCAAT/enhancer– binding protein (42, 43), DNA damage (44),
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p38a mitogen-activated protein kinase (MAPK) (45), mammalian

target of rapamycin (mTOR) (46, 47), andmixed lineage leukemia 1

(48) and GATA4 (49) regulate the key effectors of the SASP.

Two major tumor suppressor pathways, p16INK4A/pRB and

p53/p21WAF1/CIP1, through upstream regulators and

downstream effectors along with extensive inter-pathway

crosstalk, are responsible for the stable growth arrest in the

senescence (50, 51). The p16INK4A/pRB pathway mainly acts as a

negative regulator of cell cycle progression by downregulating

cyclin-dependent kinase (CDK) 4/6 activity. As a result, hypo-

phosphorylated Rb binds to E2F complex and leads to repression

of E2F target gene transcription required for cell cycle

progression (52). P53 is activated in response to DNA damage

and induces transcription of cyclin-dependent kinase inhibitors

(CDKIs) and p21CIP1 which triggers growth arrest and cellular

senescence (31, 53). Therefore, overexpression of these four

components including p53, p21CIP1, p16INK4A and PRB are

sufficient to induce and maintain cellular senescence.
Senescence in physiological and
pathological processes

Several studies have shown that cellular senescence

playsphysiological roles in the embryonic and later life

development, wound healing, tissue repair and protective

response to stress (54–57). In addition, as senescent immune

and non-immune cells accumulate in multiple tissues, they may

contribute to regulate the non-pathological and pathological

senescence-related states (39). In some events, acute senescence

exhibits protective effects and thus prevents the progression of the

diseases. For instance, during early stages of tumor, the activation

of oncogenes stimulates cellular senescence in an attempt to

inhibit cell growth and tumor progression (58). In other

circumstances, chronic and aberrant accumulation of senescent

cells in tissues generates a pro-inflammatory environment that

affects the onset, development or progression of several

senescence-associated diseases, such as atherosclerosis,

cardiovascular diseases (CVDs), cancer, hepatic steatosis,

Alzheimer’s disease, fibrotic pulmonary disease, osteoarthritis,

glaucoma, type 2 diabetes and renal dysfunction (59–64).
Senescence and immunosenescence
in atherosclerosis

Atherosclerosis is a chronic inflammatory and age-

associated condition of medium to large arteries which is

linked to the progression of CVDs, such as abdominal aortic

aneurysm (AAA), coronary artery disease (CAD), peripheral

artery disease (PAD), heart failure (HF) and ischemic strokes

(65). Endothelial abnormalities, vascular inflammation,
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secretion, immune cells infiltration, monocytes entry into

intima, engulfment of oxidized low density lipoprotein (Ox-

LDL) and foam cell formation result in atherosclerotic plaque

formation. Subsequently, aberrant efferocytosis, foam cells

apoptosis, migration of vascular smooth muscle cells

(VSMCs) from media to intima, degradation of ECM and

extensive coagulation lead to the rupture and erosion of

atherosclerotic plaques, vessel occlusion and the risk of death

(66–68).

Several findings showed that cellular senescence in the immune

and non-immune cells are involved in the early and advanced stages

of atherosclerosis (69). Certainly, accumulation of the senescent

endothelial cells (ECs) (70, 71), VSMCs (72, 73), monocytes (74),

macrophages and foam cells (71, 75), fibroblasts (74) and T cells

(76, 77) influence atherosclerosis process by necrotic core

enlargement, ECM destruction, atherosclerotic plaque

calcification, intra- plaque angiogenesis and its rupture (78). ECs,

as the lining of the intima layer, playmajor roles in the maintenance

of the integrity of arteries. Thus, EC dysfunction and senescence,

which can cause elevated blood pressure, increased coagulation and

angiogenesis as well as elevated inflammatory response, contribute

in progression of atherosclerosis (79, 80). It is not clear, however, if

they take part in onset of atherosclerosis, as well. Senescent ECs are

frequently found in atherosclerotic plaques of elderly patients and

senescent cells have been proposed to be a major contributor to

development of vascular diseases (81, 82). ECs in advanced human

plaques show evidence of senescence, including telomere

shortening, increased p53/p21 signaling pathways and elevated

SA-b-GAL activity (83, 84). Senescent ECs are associated with

increased levels of ROS, inflammatory cytokines and extracellular

vesicles secretion as well as vascular calcification (85, 86).

Furthermore, it has been shown that senescent ECs produce

lower levels of nitric oxide (NO) and prostacyclin and thereby

affect vascular homeostasis (87). On the other hand, secretion of

inflammatory mediators and ROS by senescent ECs, retention of

Ox-LDL in the arterial intima, adhesion of monocytes to

endothelium, activation of NF-kB signaling and production of

extracellular vesicles are potent promoters of SASP-mediated

senescence and possibly play a role in the atherosclerotic plaque

development (88–92). Current studies, however, do not provide

information on the senescence of ECs or immune cells in early

onset atherosclerosis and cardiovascular diseases.

VSMCs are located in the arterial media, synthesizing the ECM

and are responsible for the vessel contraction (72). A number of

documents have provided evidence for the occurrence of senescence

in VSMCs during atherosclerosis, such as lower level of

proliferation capacity (93), higher expression levels of p16 and

p21, and decreased telomere length (94) as well as larger and

flattenedmorphology in comparison to cells separated from healthy

arterial media (95). Senescent VSMCs in atherosclerotic plaques

reduce the expression of proteins required for contraction,

including a-smooth muscle actin (a-SMA), smooth muscle
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myosin heavy chain (SM-MHC) and calponin, but they increase

production of inflammatory cytokines (96, 97). Furthermore,

senescent human VSMCs in atherosclerotic lesions exhibit

reduced expression of anti-inflammatory factors and secrete SASP

mediators which induce chemotaxis of monocytes, expression of

adhesion molecules and cytokines by ECs and promote

atherosclerosis progression. Moreover, senescent human VSMCs

can increase plaque vulnerability by producing lower amounts of

collagen (98). In addition to senescent ECs and VSMCs, senescent

immune cells, like macrophages and T cells, mainly contribute to

the development of atheroma and progression of atherosclerotic

plaques (99).

Senescent macrophages characterized by increased SA-b-
GAL activity as well as p53 and p16 expression, display impaired

cholesterol efflux and enhanced senescent-related atherosclerosis

(100, 101). On the other hand Ox-LDL inhibits macrophages

proliferation and migration, induces cellular senescence and

promotes the secretion of inflammatory factors, such as TNF-

a, monocyte chemoattractant protein-1(MCP-1), and IL-1b,
which may create a positive feedback loop (102).

In addition to macrophages, senescent T cells with

CD8+CD57+CD27-CD28null phenotype, through producing

large amounts of IFN-g and TNF-a, promote inflammation

and development of atherosclerosis (103). Furthermore,

telomere shortening in T cells has been observed in patients

with atherosclerosis. Terminal restriction fragments (TRF)

analysis has shown that the mean length of TRF in leukocytes

of CAD patients is shorter than control individuals who had no

family history of CAD (104). It has been found that IFN-g-
producing CD28nullCD4+ T cells accumulate in the heart-

draining lymph nodes of aged mice and adoptive transfer of

these cells results in proinflammatory responses in young mice

(105, 106). It is also shown that senescent CD4+ T cells can

infiltrate to heart and promote myocardial inflammation and

stress response leading to age-related cardiac dysfunction (107).

Additionally, the importance of senescent T cells has been

reported in human hypertension. A higher frequency of

CD57+CD28−CD8+ T cells as well as increased expression of

CXCL11 has been reported in the patients with hypertension

compared to healthy controls, suggesting a role for

immunosenescent proinflammatory cytotoxic CD8+ T cells in

hypertension (108). Interestingly, a higher frequency of

senescent CD57+CD8+ T cells has been observed in patients

with acute myocardial infarction (MI), which correlated with

cardiovascular mortality 6 months after acute MI (109).

However, it is still unclear whether accumulation of senescent

T cells is the cause or the result of atherosclerosis. In this regard,

it has been hypothesized that senescent T cells, through secreting

large amounts of IFN-g, are directly involved in the macrophages

activation, metalloproteinases production, ECM destruction and

thereby pathophysiology of atherosclerosis (110). In addition,

senescent T cells may participate in VSMC and ECs lysis by
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atherosclerosis progression (98).
Drivers of immunosenescence
and atherosclerosis

Both immunosenescence and atherosclerosis are multifactorial

conditions which share common stimulators, including Ox-LDL

(111, 112), inflammation (113, 114), ROS (115, 116), cigarette

smoke (117, 118), hypertension (119, 120), hyperglycaemia (121,

122), viral infection (123, 124), mitochondrial failure (125, 126) and

genomic damage (127, 128) (Figure 1). Certainly, various drivers of

senescence induce SASP secretion and thereby stimulate chronic

and low-grade inflammation that participates in atherosclerosis

development, and in turn, diverse stimulators of atherosclerosis

induce cellular senescence and SASP production.

One of the most important causes of immunosenescence,

which also may participate in atherosclerosis development/

progression, is viral infection. Chronic viral infections can

trigger cellular senescence directly and indirectly mainly via

inducing DNA damage and prolonged cytokine signaling,

respectively (129, 130). It has been shown that viruses,

through induction of senescence affect proliferation capacity

and function of T cells, quality, and quantity of innate and

adaptive immune responses, recruitment of immune cells and

secretion of proinflammatory mediators. Therefore,

accumulation of viral-induced senescent cells in blood and

tissues may contribute to senescence-associated inflammatory

onditions, such as atherosclerosis (4, 131–134). Indeed, virus

infections through different mechanisms can induce

immunosenescence and atherosclerosis (Table 1). In the

following sections, we will discuss different chronic human

infections with DNA and RNA viruses which play parallel

roles in the immunosenescence and atherosclerosis processes.
Cytomegalovirus

CMV is an enveloped, double stranded DNA b-herpesvirus
which establishes lifelong latent infection in the population with

sporadic reactivation in immunocompromised patients (161).

The CMV infection/reactivation is mainly controlled but not

eradicated by IFN-g-producing CD4+ and CD8+ T cells in

healthy immunocompetent individuals (162). Between 10-30%

of memory T cells in the peripheral circulation of infected

individuals are found specific to CMV epitopes (163, 164).

CMV-specific CD8+ and CD4+ T lymphocytes display

hallmarks of senescence defined by CD57 expression that is

associated with decreased proliferation capacity and function of

these cells (165). It is assumed that continued antigen exposure

during CMV infection results in telomere erosion and replicative
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senescence generally in CD8+ cytotoxic T lymphocytes (CTL)

(166–168). CMV-specific T lymphocytes also exhibit higher

levels of proinflammatory cytokines, such as IFN-g and TNF-a
and lower proliferative responses upon stimulation, possibly due

to the their telomeres shortening (169).

Recent cohort studies revealed that the excess mortality rate in

CMV-seropositive elderly subjects is primarily related to

senescence-associated vascular disease (135, 136). Several studies

found relationships between increased inflammatory mediators and

CVD-related deaths in CMV-infected elderly individuals (136, 170).

It has been shown that CMV infection is correlated with increased

risk of multiple senescence-associated comorbidities, especially

diabetes, atherosclerosis, and CVDs (171). Furthermore, DNA

and proteins of CMV have been found in human atherosclerotic

plaques (137). It is also suggested that CMV can participate in

atherosclerosis by inducing vascular endothelial dysfunction and

apoptosis, reduced matrix metalloproteinase 9 (MMP9) activity,

increased coagulation and thrombosis, elevated release of

proatherosclerotic or proinflammatory molecules, increased

intimal thickening and lipid deposition (138). Therefore, systemic

inflammation as well as increased circulating senescent and

proinflammatory CD8+ T cells during CMV infection may

underlie proper condition for initiation and progression

of atherosclerosis.
Epstein-Barr virus

EBV is an enveloped double stranded DNA, B lymphotropic g-
herpesvirus that causes an acute infection known as infectious

mononucleosis. However, EBV establishes a latent infection in

human hosts that is associated with a variety of malignancies,
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Angioimmunoblast T-cell lymphoma, Hodgkin’s lymphoma and

Post-transplant lymphoproliferative disease (172, 173). EBV specific

humoral and cellular immune responses are particularly important

for controlling and treating EBV-induced acute lymphoproliferative

diseases (174). It has been found that EBV infection induces B cell

hyper-proliferation via upregulating the viral latency proteins,

EBNA2 and EBNA-LP, which results in replicative stress, DNA

damage, activation of the DNA damage response (DDR) pathway

and eventually, cellular senescence (139, 140, 175–177). A previous

study reported that EBV-infected B cells trigger G1 phase cellular

arrest (141). Even early EBV-infected B cells exhibit increased

markers of OIS, including H3K9me3 senescence-associated

heterochromatic foci as well as higher levels of p16, p21 and p53

(178). EBV-infected cells also undergo metabolic reprogramming

such as decreased oxidative phosphorylation and purine nucleotide

pools, which contribute to increased replication stress and

establishment of persistent DNA damage (178). Additionally,

antigen-specific T cells isolated from the peripheral blood of EBV

and CMV positive patients have higher expression levels of several

senescence-associated markers; including KLRG-1 while exhibit

reduced antigen-specific T cell repertoire diversity (179). These

data suggest that chronic EBV infection may participate in

replicative and oncogene-induced cellular senescence.

The effect of EBV to increase the risk of atherosclerosis CAD has

been studied in detail. Some studies showed higher levels of EBV-

specific antibodies in patients with atherosclerosis (142, 180).

Moreover, it has been found that following reactivation of latent

virus, EBV-encoded deoxyuridine-5’-triphosphate nucleotidohydrolase

(dUTPase) can induce proinflammatory cytokines secretion from

peripheral blood monocytes which is associated with atherosclerosis

progression (181). EBV may also be involved in the atherosclerosis by
FIGURE 1

The drivers of immunosenescence and atherosclerosis.
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triggering IL-6 and TNF-a secretion by macrophages, intercellular

adhesion molecule-1 (ICAM-1) expression on ECs and lipid profile

alternations in blood (143).
Hepatitis B virus

HBV is an enveloped, double stranded DNA virus of the

Hepadnaviridae family that attacks the liver, triggering both acute

disease and chronic disease such as cirrhosis, liver cancer and liver

failure (182). Recently it has been found that 60% of hepatocellular

carcinomas (HCCs) and more than 80% of liver cirrhosis cases

exhibited features of replicative senescence as compared to 10% in

normal liver (183, 184). In addition, there is higher level of SA-b-
Gal activity in cirrhotic hepatocytes as compared with large-cell

dysplasia (144, 184). Elevated expression levels of p21, reduced

telomere length and lower levels of S, G2 and M phase markers in

hepatocytes of chronic HBV-infected patients is also reported which

correlated with liver fibrosis (185). Furthermore, in chronic human

infection, HBV inhibits Top 1 protein and leads to topological DNA

damage and telomere attrition in CD4+ T cells (145). Therefore,

Top 1 inhibition by the virus is correlated with premature T cell
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immunosenescence (145). Several studies indicated that HBx

protein of HBV, a transcriptional transactivator for virus

replication, can carry out pro-senescent roles by increasing the

expression levels of p16 (INK4a) and p21 (Waf1/Cip1) and

reducing phosphorylation of Rb (146, 186). Additionally,

increased secretion of SASP components, including IL-6 and

angiogenin-2, has been reported in chronic HBV infection (187).

The association between HBV infection and CVDs remains

controversial. Recent reports revealed that patients with HBV

infection exhibited more subclinical atherosclerosis and carotid

plaques as compared with non-infected controls (188, 189). A

significant association between liver damage, as an independent

factor, and development of subclinical atherosclerosis has also

been shown (190). A previous study showed that HBV surface

antigen (HBsAg) is a major contributor of atherosclerosis (147),

but two other studies found no significant association between

chronic HBV infection and development of carotid

atherosclerotic plaques (191, 192). Moreover, a significant

negative correlation between serum levels of triglycerides and

HBV infection is also reported (148). In contrast, results of a

meta-analysis study represented that exposure to HBV led to

increase atherosclerosis-associated morbidity rate (193).
TABLE 1 Induction of atherosclerosis and immunosenescence by different viruses.

Virus Atherosclerosis Immunosenescence References

CMV Expression of cytokines and chemokines
Expresion of cellular adhesion molecules
Proliferation and migration of VSMCs
Molecular mimicry
Inhibition of apoptosis
Inflammatory reactions
Endothelial injury
Coagulation and thrombosis
Lipid accumulation

Decreased frequency of naïve T cells
Decreased expression of CD27 and CD28
Increased expression of KLRG-1 and CD57
Re-expression of CD45RA
Production of granzyme B
Induction of inflammaging

(135–138)

EBV Secretion of pro-inflammatory cytokines
Expression of ICAM-1
Proliferation of VSMCs
Induction of blood monocytes
Alteration in lipid metabolism

Replicative stress
G1 phase cellular arrest
DNA damage
Alteration in metabolic pathways

(139–143)

HBV Alteration in macrophage phenotype?
Induction of chronic inflammation
Induction of fatty acid oxidation

Increased expression of p16 INK4a and p21
G1 phase cellular arrest
DNA damage

(144–148)

HCV Increased production of IL-1b and TNF-a
Induction of chronic inflammation
Increased synthesis of MMP-9
Generation of ROS

Decreased expression of CD27 and CD28
Increased expression of KLRG-1 and CD57
Increased expression of TIM-3 and P16INK4a

Telomere shortening

(149–152)

HIV Production of inflammatory mediators
Secretion of MCP-1/CCL2 chemokine
Expression of adhesion molecules
Activation the macrophage inflammasome
Foam cell formation

Decreased CD4/CD8 ratio
Increased CD28−CD8+ T cells
Increased expression of TIM-3 and P16INK4a

Increased levels of IL-6 and TNFa
Decreased T cell repertoire
T cell Telomere shortening

(153–156)

SARS-CoV-2 Cytokine storm
Endothelial injury
Thromboinflammatory response
Alteration in lipid metabolism

Increased expression levels of p16, p21, SA-b-Gal in ECs
SASP production

(157–160)
fr
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Hepatitis C virus

HCV is an enveloped, positive sense single-stranded RNA virus

that causes liver inflammation, leading to serious liver damage and

hepatitis (194). Chronic HCV is a long-lasting infection, ranging in

severity from a mild illness to a serious disease including liver

cirrhosis and cancer (195). Several studies reported that chronic

HCV infection can trigger cellular senescence by inducing higher

concentrations of ROS, secretion of proinflammatory cytokines and

growth factors, G1 cell cycle arrest, DNA damage, as well as

epigenetic modifications of DNA and histones (149, 150, 196–200).

In addition, it has been found that HCV-associated liver

inflammation can promote the telomere shortening process and

finally replicative senescence and HCC (184). Isolated memory T

cells fromHCV-positive patients exhibit shorter telomeres compared

to healthy subjects (201). Additionally, CD8+ T cells isolated from

peripheral blood of HCV-infected subjects show higher levels of

DNA damage and hypophosphorylated signal transducer and

activator of transcription 1 (STAT1) and STAT5 in response to IL-

6 or IL-2 stimulation, respectively (202). Altogether, these data

suggest that chronic HCV infection results in cellular senescence,

and since these senescent cells are non-functional, they may

predispose HCV-infected individuals to HCC (203).

Growing evidence suggestsmetabolic reprogramming and chronic

hepatic and systemic inflammation induced by HCV can be involved

in the development of atherosclerosis (204–207). It has been shown

that HCV can live and replicate in the carotid plaques and is associated

with arterial inflammation through increased levels of proatherogenic

chemokines and cytokines as well as triggering proatherogenic

metabolic factors (151, 208, 209). Furthermore, structural and non-

structural proteins of HCV induce ROS generation and interfere with

glucose and lipid metabolism leading to chronic inflammation, insulin

resistance (IR), diabetes and fatty liver, which are known as major

atherosclerosis risk factors (152). A higher TNF-a/adiponectin ratio in
HCV-infected subjects is shown to be correlated with the development

of IR and atherosclerosis (210). A recent multicenter study reported

that direct-acting antiviral agents (DAAs) therapies in HCV-infected

patients led to eradication of HCV as well as improvement in carotid

atherosclerosis, reduction in carotid thickness and alternation in

patients’ plaques value (211). The most surprising results of cohort

studies have been published recently in which DAA treatments

significantly reduced the risk of CVD outcomes in HCV-infected

patients (212, 213). Therefore, a strong association between HCV

infection and the atherosclerosis process exists.
Human immunodeficiency virus

HIV is an enveloped, diploid positive sense single-stranded RNA

retrovirus from Retroviridae family that mainly attacks CD4+ T cells

and results in progressive loss of T cell subsets. HIV infection results

in immunodeficiency, increased susceptibility to opportunistic

infections as well as certain types of cancer such as Kaposi
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sarcoma and B cell lymphoma, and ultimately a syndrome defined

as acquired immune deficiency syndrome (AIDS) (214). Recently, it

has been found that HIV-infected individuals display T cell

properties similar to those identified in elderly; i.e. decreased

expression of CD28, lower naive/memory T cell ratios and

hyporesponsiveness to vaccine (215). Growing evidence revealed

higher expression level of p16 in active HIV-infected subjects as

compared with healthy controls that is not correlated with the age of

patients, suggesting that HIV infection is associated with cellular

senescence. Also, anti-retroviral therapy (ART) decreased the

expression levels of p16 in the CD4+ T cells population compared

to healthy controls (153, 154). Moreover, results of a cohort study

elucidated that corneal ECs of HIV-infected patients exhibit features

of senescence, including decreased cell density as well as variation in

cell size and shape as compared with the uninfected subjects (216). In

a cohort in sub-Saharan Africa, higher expression levels of p16 and

decreased telomere length in peripheral blood leukocytes of HIV

infected patients is found (217).

In view of persistent inflammation and immune activation,

HIV-positive individuals may have increased risk of HIV-related

comorbidities and atherosclerosis-related risk factors such as

hypertension, diabetes, and dyslipidemia (218, 219). The higher

levels of IL-6 protein and mRNA in HIV-infected individuals can

stimulate the production of several acute phase proteins, including

C-reactive protein (CRP), serum amyloid A (SSA) and fibrinogen.

The elevated levels of these inflammatory mediators have been

associated with increased cardiovascular mortality in patients with

HIV (155, 220, 221). Moreover, it has been reported that the HIV

Tat protein induces endothelial dysfunction and MCP-1 secretion

in porcine coronary arteries (156, 222). The gp120 protein of HIV

has also been found to increase the levels of TNF-a and

subsequently retention and oxidation of LDL in the arterial

intima (223). The HIV Nef protein is also identified as an

activator of macrophages by increasing CD36 expression, and it

promotes macrophages transformation to foam cells through

decreasing cholesterol efflux from these cells (224, 225).
Severe acute respiratory syndrome
coronavirus 2

SARS-CoV-2 is an enveloped, positive-sense, single-stranded

RNA, highly infectious beta-coronavirus, which has been described

as the causative agent of upper respiratory tract infections and

subsequently coronavirus disease 2019 (COVID-19) (157). A recent

study found that COVID-19 patients exhibited features of

senescence in their airway mucosa (157). Increased secretion

levels of SASP factors in patients with COVID-19 resulted in

complement mediated lysis, SASP-induced paracrine senescence

of ECs, macrophage and neutrophil infiltration, endothelial damage

and extensive thrombosis in SARS-CoV-2- infected lung tissues

(157). It has been found that SARS-CoV-2 leads to increased

expression levels of senescence markers such as p16, p21 and
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Lamin B1(LMNB1) as well as SASP factors in cultured human

bronchial epithelial cells 14 days after infection when the virus was

undetectable (158). These results suggest that SARS-CoV-2 can

provoke paracrine senescence through sustained production of

virus-induced inflammatory mediators, even after SARS-CoV-2 is

no longer detectable (158). Furthermore, other studies indicated

that administration of senolytic drugs, including Navitoclax,

Dasatinib and Quercetin can inhibit cellular senescence and

therefore alleviated COVID-19-related lung disease and reduce

inflammation in SARS-CoV-2-infected hamsters and mice (157,

158, 226). Additionally, it has been indicated that the spike protein

of SARS-CoV-2 stimulates senescence phenotype in ECs by

increasing p16, p21, SA-b-Gal (158).
COVID-19 infection is primarily considered as a destructive

disease of the respiratory system, but its complications also lead to the

cardiovascular system damage and occurrence of a variety of CVDs,

including myocarditis, myocardial damage, heart failure and

myocardial infarction (227, 228). It has been found that

angiotensin-converting enzyme 2 (ACE2), one of the most

important receptors for SARS-CoV-2 entry, is expressed on the

cardiomyocytes (229). Furthermore, higher serum levels of troponin

and N-terminal pro-brain-natriuretic peptide (NT-proBNP) were

reported in severe COVID-19 patients, which were associated with

more disease manifestation and mortality rate (159). Another

observational study revealed the effect of SARS-CoV-2 infection on

lipid metabolism and atherogenesis (22). In this regard, higher serum

levels of free fatty acids, lysophosphatidylcholine,

lysophosphatidylethanolamine, phosphatidylglycerol and

subsequently increased presence of CVDs in recovered SARS

infected patients were found (230). Moreover, two other studies

represented that SARS-CoV-2 infection, through activating the

coagulation pathway, secreting inflammatory cytokines and

chemokines by ECs, inducing production of fibrinogen,

antithrombin and D-dimers and eventually triggering disseminated

intravascular coagulopathy (DIC), may affect the onset or

development of atherosclerosis in severe COVID-19 individuals

(231, 232). The induction of senescence in immune cells, especially

in patients with Long COVID, however, remains to be investigated.
The role of viral co-infections in the
immunosenescence and atherosclerosis

The interplay between different viral co-infections and their

synergistic effect on immunosenescence has been under investigation,

recently. Viral co-infections such as in the case of CMV or HCV

infection with HIV synergistically increase immunosenescence

progression in patients (233–235). A previous study showed

decreased telomere length within CD4+, CD8+ and immature

(CD27+CD57+) T cell subsets in HIV/HCV co-infected Injecting

Drug Users (IDU) as compared to HCV mono-infected and healthy

subjects (233). This report is in line with the higher level of IL-6 in the

same group which independently correlated with HIV/HCV co-
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infection and increasing age (236). Moreover, higher expression levels

of immunosenescence markers, CD57 and P16INK4a, were observed in

the liver tissue of HIV/HCV co-infected individuals compared to

healthy controls (237). In addition, HIV co-infection increases DNA

methylation and accelerated epigenetic ageing in chronic HCV patients

compared to mono-infected patients (238). Similarly, higher levels of

inflammatory markers such as IP-10, TNF-RII, and D-dimer are

elevated in HIV/CMV co-infected individuals compared to HIV-

mono-infected subjects or healthy controls (235).

In a similar manner, mounting evidence suggest that chronic

viral co-infections may accelerate atherosclerosis. A cross sectional

study showed higher prevalence of subclinical carotid plaque in

relatively young (aged 46 years) HIV/HCV co-infected

patientscompared to HIV mono-infected patients (239).

Moreover, higher soluble vascular CAM-1 (sVCAM-1) and

intercellular CAM-1 (sICAM-1) levels, as pro-atherosclerotic

inflammatory biomarkers, have been reported in HIV/HCV co-

infected patients as compared to HIVmono-infected patients (240).

Increased morbidity and mortality rate and subclinical carotid

artery diseasein HIV/HCV co-infected women were also

associated with higher CMV IgG levels (241). However, another

study on women found that HIV/HCV co-infection was not

associated with greater carotid artery intima-media thickness (242).
Chronic viral infections,
immunosenescence, CVDs and
premature biological ageing

The premature biological ageing process is defined as age-

related changes in function and composition of the human body.

This process is characterized by chronic systemic immune

activation, elevated inflammatory and coagulation markers (243,

244), decreased leukocyte telomere length (217), mitochondrial

DNA mutations (245), cell senescence, impaired autophagy (246),

epigenetic alterations and higher DNA methylation levels (247),

which are correlated with onset of age-related comorbidities such as

diabetes, CVDs, or obesity (248). Chronic viral infections are

probably one of the most important drivers of premature

biological ageing. Previous studies found increased age

acceleration and higher DNA methylation in both blood cells and

brain tissues of chronic HIV-infected patients compared to HIV-

negative individuals (247, 249, 250). Another study on PBMCs of

122 nonagenarians and 21 young controls represented increased

DNA methylation in chronically CMV infected individuals

irrespective of age. Their findings also indicated a significant

correlation between CMV seropositivity and higher epigenetic age

in both groups (251). Another study confirmed a positive

correlation between the host cell methylation state and CMV

seropositivity, as well (252).

Such ageing related epigenetic alterations were also

reported in COVID-19 survivors under 60 years of age (253).

These individuals represented accelerated telomere shortening
frontiersin.org

https://doi.org/10.3389/fimmu.2022.945016
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ghamar Talepoor and Doroudchi 10.3389/fimmu.2022.945016
and increased DNA methylation in CpG islands of leukocytes

and lymphocytes (253). This is noteworthy in the sense that

SARS-CoV-2 infection is currently considered an acute

viral infection.

The accelerated biological ageing induced by viruses can be a

risk factor for vascular diseases and the subsequent cardiovascular

and cerebrovascular events (254). The associations between age-

related telomere shortening and CAD as well as CVD-related

mortality have already been investigated (255–257). In addition,

structural alterations in biologically ageing arteries such as elastin

fragmentation (258), collagen accumulation (259), decreased

vascular compliance (260) and increased arterial stiffness (261) as

well as elevated blood pressure (262) are reported as the

consequence of chronic viral infections, too. Premature ageing

may impose similar risks of developing CVDs in younger

individuals. In this regard, a previous study investigated the

association between biological age acceleration and carotid

intima-media thickness, in a 21-year follow-up cohort. Their

results showed that 5-years increase in the epigenetic age in the

whole blood was related to approximately 0.01 mm greater carotid

intima–media thickness suggesting a potential contribution of

biological age acceleration to the development of CVD (263). A

shorter telomere length of the buccal epithelium in CVD patients is

also shown to be associated with biological ageing (264).
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FIGURE 2

The relation between chronic viral infection-induced immunosenescence and ath
responses and immune functions over the time course of infection. The hallmark
arrest, SASP secretion, mitochondrial dysfunction, telomere shortening, and immu
atherosclerosis even in younger adults, thereby; in a positive feedback loop inflam
DC, dendritic cell; Ag, antigen; TLR, toll-like receptor; MHC, major histocompatibi
traps; NK, natural killer; BCR, B cell receptor; Ab, antibody; TCR, T cell receptor; S
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Conclusion

Immunosenescence is the hallmark of many inflammatory and

autoimmune diseases that is stimulated by multiple factors. Recent

data indicate that chronic viral infections manipulate the pathways

involved in replicative senescence (RS), oncogene-induced senescence

(OIS), and possibly genotoxicity-induced senescence (GIS) in immune

and non-immune cells. The senescence pathways induced by

infectious agents are shared with other senescence inducing stimuli.

The induction of senescence in immune cells is more robust in chronic

viral infections due to direct stimulation of the immune systemby viral

antigens. From early childhood, the immune cells of human-beings are

challenged with viral infections and fortunately enough, in most cases

the virus is contained and even eradicated by immune system.

However, continuous encounter with viruses and especially

establishment of chronic viral infections in the body results in a

state of more inflammatory and less protective immune response. In

atherosclerosis, as one of the old inflammatory conditions and the

mother of cardiovascular and cerebral stroke, immunosenescence is

induced both in immune and non-immune cells. Therefore, chronic

viral infections, through induction of immunosenescence, may directly

or indirectly play a role in development or progression of

atherosclerosis (Figure 2). The premature ageing as a result of viral

co-infections may also accelerate immunosenescence and
erosclerosis development. Chronic viral infections modify immune
of most chronic viral infections is inflammaging, which triggers cell cycle
nosenescence. Such alterations are accompanied by acceleration of
maging accelerates atherosclerosis and ageing of the immune system.
lity complex; ROS, reactive oxygen species; NET, neutrophil extracellular
ASP, senescence-associated secretory phenotype.
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inflammatory diseases. In this article, we reviewed evidence of the

possible role of chronic viral infections and co-infections in the

induction of immunosenescence as a contributor in atherosclerosis.
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