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The Attention Training Technique (ATT) was developed with the aim of reducing self-
focused attention and increasing executive control as part of metacognitive therapy.
So far there is a paucity of data on the neurophysiological effects of ATT. In the
present study we tested for specific effects to determine if attention control components
of ATT elicit a specific signature that is different from passive listening. Thirty-six
healthy volunteers were randomized to an active (follow instructions) or control (ignore
instructions) condition. Resting state EEG was recorded for 3 min with eyes open and
eyes closed before and after exposure to training, and the power of the theta, alpha,
and beta-bands were analyzed in frontal, midline, and posterior electrodes. The active
ATT condition enhanced alpha and beta-band activity during eyes-open, and frontal
alpha during eyes-closed (p < 0.005). Frontoparietal changes in Alpha were generally
accompanied by changes in Beta in the same brain regions of interest. However,
these associations were largely significant in the active ATT rather than the control
condition. No between-group differences were observed in the Theta-band. These
results suggest a single dose of attention training increases alpha and beta-oscillations
in frontoparietal networks. These networks are associated with top-down attentional or
executive control.

Keywords: attention, attention training technique, therapeutics, psychophysiology, electroencephalography,
executive control, metacognitive therapy

INTRODUCTION

The Attention Training Technique (ATT; Wells, 1990) is a metacognitive treatment strategy
grounded in the Self-Regulatory Executive Function Model (S-REF; Wells and Matthews, 1994,
1996) of psychological disorder. According to S-REF theory, a specific pattern of thinking called the
‘Cognitive Attentional Syndrome’ (CAS) is assumed responsible for the maintenance of emotional
distress. The CAS consists of unhelpful modes of processing including inflexible self-focused
attention, threat-orientated attention biases, and worry and rumination. When activated, the CAS
leads to a loss of cognitive resources and locks individuals into extended patterns of negative
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processing of threat. As a result, psychological change is impeded
because the processing resources required for efficient top-
down self-regulation are reduced. A key feature of metacognitive
therapy (MCT; Wells, 2000, 2009) is the explicit modification of
maladaptive attentional strategies and the knowledge concerning
them. ATT was developed as part of MCT to help moderate
CAS activation by increasing top-down attentional control and
flexibility. ATT consists of auditory attentional exercises that
require individuals to engage in executive control skills including
selective attention, divided attention, and attention switching (for
a comprehensive overview of ATT, see Wells, 2009).

A large body of experimental and clinical data supports
the contention that components associated with the CAS
are linked to negative emotional outcomes. Studies include
those examining worry and rumination (e.g., Nolen-Hoeksema,
1991; Capobianco et al., 2018), inflexible attention (e.g., Liu
et al., 2002; Kolur et al., 2006), attentional biases (e.g., Mogg
and Bradley, 2005; Bar-Haim et al., 2007), and inefficient
cognitive control (e.g., Arnsten and Rubia, 2012; Wiers et al.,
2013). Aside from supporting the S-REF model, such studies
also complement wider views within neuroscience highlighting
the critical role that executive control processes play within
psychopathology. For example, decreased prefrontal function
has been observed across multiple psychiatric conditions and is
thought to reflect inefficiency in top-down regulatory processes
including attentional flexibility, working memory, response
inhibition, and the planning and execution of adaptive responses
(Miller, 2000; Miyake et al., 2000; Porter et al., 2007). An
implication of these results is that treatments integrating
strategies specifically designed to attenuate deficits in executive
control are more likely to prove efficacious (Siegle et al., 2007).
In particular, treatments such as ATT which aim to increase
aspects of attentional control and flexibility are predicted to
yield improved functional and neurocognitive outcomes (Wells,
1990; Wells and Matthews, 1996; Siegle, 1999; Ottowitz et al.,
2002).

Although originally developed as part of MCT, ATT has
since been recognized as an effective stand-alone treatment
for both anxiety and depressive disorders (e.g., Fergus and
Bardeen, 2016; Knowles et al., 2016). Furthermore, a number
of efficacy trials have demonstrated that the specific attentional
processes targeted by the technique (e.g., inflexible self-
focused attention, attentional bias) are associated with improved
executive control and symptom relief (e.g., Sharpe et al., 2010;
Callinan et al., 2014; Fergus et al., 2014; Nassif and Wells,
2014). In addition to this clinical and experimental data,
a small number of studies are also beginning to uncover
the neurophysiological effects of the technique. For example,
initial neuropsychological and functional magnetic resonance
imaging (fMRI) data suggests that Cognitive Control Training,
which combines ATT with a working memory task, enhances
activity within the dorsolateral prefrontal cortex (dlPFC),
improves executive control, and disrupts amygdala activity in
unipolar depression (Siegle et al., 2007, 2014). Furthermore,
initial data from functional near-infrared spectroscopy (fNIRS)
studies has also demonstrated increased blood oxygenation
in the right inferior frontal gyrus, the right dorsolateral

prefrontal cortex, and the superior parietal lobule during ATT
in comparison to a control condition (Rosenbaum et al.,
2018).

In the present study, we sought to provide further insight
regarding the neurophysiological effects of ATT by using
electroencephalography (EEG) to evaluate change in oscillatory
activity across the scalp. EEG methodology was selected for
two primary reasons: first, we were interested to see whether
change in tonic frequency power following exposure to ATT
would yield increased activity in known areas associated with
top-down executive control. For example, it is well established
that alpha and beta oscillations are generated by frontoparietal
executive control networks (e.g., Capotosto et al., 2009; Sauseng
et al., 2009; Thut et al., 2011) and are thought to reflect
engagement of executive skills including attentional control
and the regulation of working memory (e.g., Hanslmayr et al.,
2007; Klimesch et al., 2007; Haegens et al., 2011; Handel et al.,
2011). It was therefore hypothesized that engagement of ATT
would yield increased changes in alpha and beta-band activity
in frontoparietal regions. Second, we were interested to learn
whether the effects of ATT would yield a different oscillatory
signature to other known forms of attention modification. For
example, although increased theta activity has been traditionally
linked to short and long-term memory (e.g., Fell et al., 2003;
Vertes, 2005), it has also been reliably observed to reflect a
relaxed, drowsy state during mindfulness and meditation-based
techniques (for reviews, see Cahn and Polich, 2006; Ivanovski and
Malhi, 2007; Chiesa and Serretti, 2010; Travis and Shear, 2010). It
was therefore hypothesized that in comparison to these findings,
the effects of ATT would yield little or no change in theta-band
activity.

In order to test our predictions, we designed a randomized
controlled comparison in which participants were assigned to
either an active (follow ATT instructions) or control (listen
passively but do not follow ATT instructions) condition. Resting-
state EEG data were recorded before and after exposure to
the ATT and tonic power change was investigated in the
three frequency bands of interest: alpha, beta, and theta. This
allowed us to separate the presumed mechanistic effects of ATT
(engaging in attentional control strategies) from simple exposure
to a therapeutic listening task. Hence, in doing so, this design
provided us with a structurally equivalent control condition that
allowed EEG within and between-group changes to be attributed
to manipulation of the IV (engaged vs. passive exposure to
ATT). Furthermore, as this was one of the first known EEG
studies to evaluate the effects of ATT, we recruited a non-clinical
group of healthy subjects whom were naïve to the technique.
Thus, participants were not socialized to the metacognitive model
as would normally be expected in routine clinical practice.
This helped us protect against possible measurement bias and
placebo effects, and also prevented the investigated mechanism
(engagement of ATT’s attentional exercises) from being disturbed
by the influence of medication and/or psychopathology. From an
ethical point of view, it is also important to first establish non-
clinical neurophysiological effects which future clinical samples
can be compared against (thus avoiding unnecessary testing of
the latter group).
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MATERIALS AND METHODS

This study was conducted in accordance with the Declaration of
Helsinki (World Medical Association, 1964) and was approved
by the University of Manchester Ethics Committee (ref number:
13214).

Participants
Thirty-six student volunteers (22 female, 24.33 ± 6.99) gave
written informed consent to take part in the study. Participants
were recruited from the University of Manchester via poster
advertisement and received either course credits or monetary
remuneration for taking part. All participants had normal or
corrected vision, were right-handed, and had no current or
historical neurological or psychiatric conditions.

Participants completed a number of validated self-report
measures prior to the trial to ensure equivalence between
independent groups on measures of attentional control,
metacognition, and current mood: the Attentional Control
Scale (ACS: Derryberry and Reed, 2002), the Metacognitions
Questionnaire-30 (MCQ-30: Wells and Cartwright-Hatton,
2004) and the UWIST Mood Adjective Checklist (UMACL:
Matthews et al., 1990). The UWIST was also measured post-ATT
in order to establish whether any change in mood occurred
as a result of the technique (see Results). Participants also
completed a post-manipulation check immediately after the
study. This measure consisted of two questions: (1) ‘How
much did you find yourself moving your attention around as
instructed during the audio recording?’ and (2) ‘How much
did you find yourself listening passively without moving your
attention around during the audio recording?’ Participants were
required to record their responses on a 0–100% Visual Analogue
Scale (VAS).

Experimental Procedure
Participants were randomly assigned1 to an Active Condition
(AC; n = 18, 10 female) or a Control Condition (CC;
n = 18, 12 female) and all listened to the ATT recording.
Those in the AC were required to follow ATT instructions
(participant instructions: ‘Please listen to the audio recording.
You are required to follow the instructions’) and those in
the CC were required to ignore the instructions (participant
instructions: ‘Please listen to the audio recording. You are
required to listen passively without following the instructions’).
Participants were required to complete the post-manipulation
check and a measure of current mood (UWIST) following ATT.
The duration of the experiment was approximately 24 min:
pre-resting state (6 min), ATT (12 min), post-resting state
(6 min). Participants were debriefed following the study. There
were no differences between groups on any of the pre-trial
measures.

EEG Recording
Continuous EEG was recorded at rest before and after
exposure to ATT. Each recording lasted approximately 6 min

1http://www.randomizer.org/

in duration, with 3 min eyes-open (EO), and 3 min eyes-
closed (EC). The order of EO and EC was randomly assigned
and then counterbalanced across participants. The experiment
was conducted in a light- and sound-attenuated, electrical
shielded room at ambient temperature. Participants were seated
comfortably on a chair and were requested to minimize eye-
blinks and physical movements during recording. Participants
were monitored during recording to ensure they did not fall
asleep. EEG data were recorded using a 64-electrode BioSemi
ActiveTwo amplifier conforming to the international 10–20
system (Jasper, 1958). Electrodes were attached in standard
formation (details of BioSemi referencing and grounding
conventions2). The signal was digitized at 512 Hz with an open
passband from 0.01 to 100 Hz. Horizontal and vertical electro-
oculograms were recorded using separate electrodes placed above
and below the right eye and at the outer canthi of both
eyes.

Spectral Analysis
Continuous EEG data were imported into BrainVision Analyser
(Brain Products GmbH, 2015). Data were re-referenced to the
common average of electrodes across the scalp. Independent
Components Analysis (ICA) was used across all for recordings
(12 min in total) to remove ocular artifacts. Data were then
reconstructed and segmented into 1s epochs, and spectral
analysis was conducted using Fast-Fourier transformation (FFT)
within pre-defined bands: Theta (4–7 Hz), Alpha (8–12 Hz), Beta
(13–30 Hz). This yielded FFT average power values for each EEG
frequency band expressed in log units, 10∗log10(µV2/Hz), as a
measure of frequency density (activity) in all four recordings
(pre-resting state EO/EC, post-resting state EO/EC).

Three topographic regions of interest (ROIs) were calculated
by averaging power values across the following electrode sites:
Anterior (AF7, Fp1, Fpz, Fp2, AF8, AF3, AFz, AF4, F7, F5,
F3, F1, Fz, F2, F4, F6, and F8), Midline (FT7, FC5, FC3, FC1,
FCz, FC2, FC4, FC6, FT8, T7, C5, C3, C1, Cz, C2, C4, C6, T8,
TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, and TP8), Posterior
(P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4,
PO8, O1, Oz, and O2). Prior to statistical analysis, all data
were normalized using natural logarithm (In) transformation and
then pre-to-post resting-state change indices were calculated for
each condition (i.e., post-minus pre-baseline resting state values).
These represented unitary values of tonic power change following
exposure to ATT and were assumed to reflect the extent to
which neuronal synchrony was increased or decreased. The use
of unitary index values was also selected in order to reduce the
error variance for statistical analysis.

RESULTS

All analyses were performed using IBM SPSS v22 (IBM Corp,
2013). The initial phase of analysis evaluated whether any
differences were observed between or within groups on the
pre-selected measure of mood state (UWIST), and whether

2http://www.biosemi.com/faq/cms&drl.htm
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any between-group differences were observed on the post-
manipulation check (which was designed to assess compliance
with the task instructions). This was followed by a planned
evaluation of differences between groups on EEG tonic power
changes across the frequency bands (alpha, beta, and theta).
Here, the primary variable of interest in the EEG data was the
effect of engagement with ATT (active condition) on spectral
power in comparison to non-engagement/passive listening of
ATT (control condition). Finally, an unplanned exploration of
the correlation coefficients between band-power changes across
both conditions was also conducted in order to learn more
about whether ATT yielded a different oscillatory signature
in comparison to that reported for other forms of attention
modification (such as mindfulness and meditation). Given the
pilot nature of these data, no specific corrections were employed
for multiple comparisons during phase 2 and 3 of the analysis:
this decision was taken to reduce the possibility of Type 2
errors given the relatively small sample size obtained. While
we recognize that this limits the reliability of our findings, we
felt that this was the most appropriate action to take given
that the use of corrections may have obscured any possible
effects.

Phase 1: In order to examine pre-to-post change in mood
state, a 2 (condition) × 2 (time) mixed analysis of variance
(ANOVA) was conducted on the four subscales comprising
the UWIST – Tense Arousal (TA), Energetic Arousal (EA),
Hedonic Tone (HT), and Anger Items (AI) – where condition
was a between-subjects factor, and time was a within-subjects
factor. No significant main or interaction effects were observed
on any of the subscales (all p > 0.05) indicating that mood
state did not differ between time points. In order to assess
whether participants followed experimental instructions, one-
way ANOVAs were conducted on the post-manipulation checks.
A significant difference was observed between groups on
Question 1 [F(1,35) = 300.32, p < 0.001], with those in the
AC (83.33 ± 11.11) yielding higher scores than those in the
CC (19.83 ± 10.87). In contrast, a significant difference was
observed between groups on Question 2 [F(1,35) = 141.99,
p < 0.001], with those in the AC (19.17 ± 11.66) yielding lower
scores than those in the CC (77.94 ± 17.38). These differences
suggest that participants in each condition followed the respective
instructions.

Spectral EEG
Phase 2: In order to evaluate differences between groups on
EEG tonic power changes across the frequency bands, a series
of 2 (Condition: AC and CC) × 3 (ROI) mixed ANOVA’s were
conducted on tonic change indices for each frequency band
(Alpha, Beta, and Theta) during EO and EC – where condition
was a between-subjects factor, and ROI was a within-subjects
factor.

Alpha: a significant main effect of condition was observed
[F(1,34) = 4.25, p = 0.04] indicating elevated change in global
Alpha activity for the AC in comparison to CC during EO.
Despite a insignificant interaction (p = 0.37), inspection of
the between-group comparisons confirmed that this effect was
most evident in the Midline ROI [F(1,34) = 4.66, p = 0.04,

d = 0.80]. In addition, a significant condition by ROI interaction
effect was observed [F(2,68) = 4.02, p = 0.02] for Alpha during
EC. Univariate analysis confirmed that this was caused by a
significant group difference in the Anterior ROI [F(1,34) = 4.74,
p = 0.04, d = 0.76] indicating elevated change in Alpha activity
for AC in comparison to CC. No differences were observed for
Midline or Posterior ROIs (p’s > 0.05) during both EO and EC.
Beta: no significant main or interaction effects were observed
for Beta-band activity during EC (p’s > 0.05). However, a
significant main effect of condition was observed [F(1,34) = 4.91,
p = 0.034] indicating elevated change in global Beta activity
for AC in comparison to CC during EO. Theta: no significant
main or interaction effects were observed for Theta-band activity
during EO or EC (p’s > 0.05) – Figure 1 displays topographic
plots representing the significant between-group differences in
tonic change for Alpha during EO and EC and Beta during
EO. To help supplement further interpretation of the overall
between group differences, the means, standard deviations,
and between-group Cohen’s d effect sizes and 95% confidence
intervals (CI) were calculated (see Table 1). Inspection of the
means indicated that in general, the AC yielded a positive
(increase) change in spectral band power across a majority of
the ROIs for both the EO and EC conditions. In contrast,

FIGURE 1 | Topographic plots of tonic power change in Alpha and Beta, with
AC to the left of the figure and CC to the right. Power values are expressed in
log units of 10∗ log10(µV2/Hz).
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TABLE 1 | Means and standard deviations of tonic power change across eyes-open and eyes-closed ROIs.

Active Condition (n = 18) Control Condition (n = 18)

Condition Band ROI Mean SD Mean SD Cohen’s d 95% CI

Eyes Open

Alpha Anterior 0.0008 0.0019 −0.0001 0.0019 0.487 0.467, 0.488

Midline 0.0005 0.0009 −0.0002 0.0009 0.800∗ 0.800, 0.801

Posterior 0.0000 0.0005 −0.0001 0.0010 0.130 0.130, 0,131

Beta Anterior 0.0013 0.0005 0.0001 0.0018 0.567 0.566, 0.568

Midline 0.0005 0.0026 −0.0010 0.0032 0.529 0.528, 0.530

Posterior −0.0002 0.0009 −0.0003 0.0009 0.114 0.114, 0.115

Theta Anterior 0.0000 0.0026 −0.0009 0.0030 0.330 0.329, 0.331

Midline −0.0003 0.0014 −0.0004 0.0019 0.062 0.061, 0.062

Posterior −0.0002 0.0007 −0.0004 0.0010 0.238 0.238, 0.239

Eyes Closed

Alpha Anterior 0.0009 0.0033 −0.0019 0.0042 0.763∗ 0.762, 0.764

Midline 0.0005 0.0014 −0.0004 0.0025 0.457 0.456, 0.458

Posterior −0.0003 0.0015 0.0004 0.0019 −0.421 −0.420, −0.421

Beta Anterior 0.0004 0.0015 −0.0011 0.0043 0.479 0.478, 0.480

Midline 0.0003 0.0015 0.0002 0.0028 0.229 0.228, 0.230

Posterior −0.0001 0.0004 0.0002 0.0020 −0.214 −0.214, −0.215

Theta Anterior 0.0002 0.0012 −0.0014 0.0050 0.453 0.452, 0.454

Midline −0.0001 0.0011 0.0003 0.0026 −0.206 −0.206, −0.207

Posterior 0.0000 0.0008 0.0003 0.0018 −0.222 −0.221, −0.222

∗P < 0.05. Negative values indicate a decrease in power, and positive values indicate an increase in power. Between-group Cohen’s d effect sizes and 95% CIs are
presented to the right of mean values and standard deviations. ROI = Region of Interest.

the CC appeared to yield a negative (decrease) change in
spectral band power across a majority of ROIs for EO and
almost half the ROIs for EC. These data thus indicate that
the direction and pattern of change largely differed according
to group: for the AC, greater positive change was observed to
occur in the Anterior, followed by the Midline, followed by
the Posterior ROIs in both Alpha and Beta across EO and EC.
Theta, on the other hand, demonstrated minimal change across
ROIs for both EO and EC. In contrast, the CC showed less
consistency between ROIs in Alpha and Beta during EO and
EC, and demonstrated greater negative ROI change in Theta-
band activity across EO and EC (with the Anterior ROI most
pronounced).

Phase 3: In order to evaluate associations of band-power
change within and across ROIs, a series of exploratory bivariate
correlational analysis were conducted across EO and EC for both
conditions. Positive frontoparietal associations were observed
between Alpha and Beta during EO, but these were only
found to be significant in the AC (r’s = 0.83 and 0.50, for
Anterior and Midline respectively). In addition, the AC yielded
significant positive frontoparietal associations between Alpha
and Beta during EC (r’s = 0.58 and 0.77, for Anterior and
Midline respectively), which were only observed in the Anterior
ROI for the CC (r = 0.84). These data thus indicate that the
frontoparietal changes in Alpha were generally accompanied by
changes in Beta in the same ROI. However, these associations
were largely significant in the AC rather than the CC. In
addition, inspection of within group correlations between ROIs
for both Alpha and Beta were investigated to determine level of

oscillatory synchrony between frontoparietal areas. As suspected,
significant positive associations were observed between Anterior
and Midline ROIs for Alpha during EO and EC in the AC
(r = 0.68 and 0.66, respectively) but not the CC (r’s = 0.16
and 0.31, respectively). Similarly, significant positive associations
were also observed between Anterior and Midline ROIs for Beta
during EO and EC in the AC (r’s = 0.7 and 0.8, respectively)
but not the CC (r’s = 0.02 and −0.25, respectively). These
data indicate that frontoparietal changes in Alpha and Beta
were highly correlated between Anterior and Midline ROIs,
however these associations were only significant in the AC
rather than the CC. Finally, level of asymmetry between alpha
ROIs was investigated to determine whether enhancement of
Anterior regions led to suppression over Posterior sites. Both
the AC and the CC demonstrated Alpha asymmetry (negative
correlation), but this effect was again only significant in the AC
(r = −0.92).

DISCUSSION

The present study is the first to demonstrate that a single
dose of the Attention Training Technique enhances resting
alpha and beta-oscillations in frontoparietal networks known
to be implicated in top-down attention and executive control.
As predicted, participants in the AC showed significant
elevated change in frontoparietal alpha and beta-band activity.
Furthermore, anterior and midline ROIs in both alpha and beta
were significantly correlated in the AC indicting greater degrees
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of neuronal synchrony. In contrast, limited theta-band activity
was observed in both the AC and CC. This oscillatory signature
distinguishes ATT from other forms of treatment that employ
attention modification tasks. For example, studies evaluating
the effects of autogenic relaxation training and mindfulness-
based techniques have shown increased theta-band activity in
association with relaxed, drowsy states (e.g., Brown, 1974; Austin,
1999; Chan et al., 2011); a finding also commonly associated with
various forms of meditation (e.g., Delmonte, 1984; Andresen,
2000; Travis and Shear, 2010). In addition, such studies also
tend to report either little to no change in beta-band activity
(Dunn et al., 1999; Cahn and Polich, 2006) and/or decreased
frontoparietal beta-band activity (e.g., Ikemi, 1988; Jacobs et al.,
1996).

The role of beta-band activity has received growing interest
due to a wealth of animal and human studies indicating that
beta-band enhancement reflects engagement of frontoparietal
networks assumed to be involved in top-down attentional control
(e.g., Bisley and Goldberg, 2003; Gross et al., 2004; Basile
et al., 2007; Swann et al., 2009). In addition, alpha and beta-
band enhancements are observed to co-occur during tasks
involving information retrieval and selective attention (Zanto
and Gazzaley, 2009), and both are reported to strongly correlate
in recent biologically plausible neural network models evaluating
working memory abilities (Lundqvist et al., 2011). These findings
have given rise to the hypothesis that both frequencies may
serve similar neurocognitive functions (Waldhauser et al.,
2012). Given that ATT is designed to improve top-down
attentional control and flexibility over competing sources of
information, the observed combination of enhanced alpha, and
beta sits in agreement with these findings. From a conceptual
point of view, these findings also provide support for the
hypothesis that ATT’s neuronal mechanism of change may lie
in the training of frontoparietal areas associated with top-down
executive control. Indeed, recent imaging studies evaluating ATT
have also reported similar findings; Rosenbaum et al. (2018)
interpreted their results as evidence of ATT increasing areas
of the cognitive control network and dorsal attention network
(they also go on to point out that aberrant functioning in
both these areas are known to lead to negative emotional
outcomes).

In addition to identifying ATT’s oscillatory profile, the current
findings also highlight the important implication of engaging
with the ATT instructions. As predicted by S-REF theory,
those who passively experienced ATT without engaging in the
technique (CC) showed static or decreased change in anterior and
midline ROIs for both alpha and beta. This may suggest that it is
not exposure to ATT per se which yields neurocognitive change,
but the degree to which individuals engage in the attentional
tasks. This finding was further supported by significant alpha
asymmetry observed in the AC in contrast to the CC. Evidence
suggests that alpha enhancement of frontoparietal networks
associated with sustained and directed attention correlates
negatively with posterior amplitude (e.g., Corbetta and Shulman,
2002; Jensen and Mazaheri, 2010). Greater alpha asymmetry in
the AC is therefore interpreted as reflecting greater levels of
engagement in the attentional tasks. Furthermore, the presence

of significant alpha asymmetry again separates ATT from
other forms of attention modification, such as mindfulness and
meditation, that tend to show aligned anterior-posterior alpha
symmetry (e.g., Satyanarayana et al., 1992; Lagopoulos et al.,
2009) and/or midline-posterior asymmetry (e.g., Ivanovski and
Malhi, 2007; Chiesa and Serretti, 2010).

These findings also have an important clinical implication
when considered in the context of reduced prefrontal
functioning, which has been widely observed across multiple
psychiatric conditions (e.g., MacDonald and Carter, 2003;
Blumberg et al., 2004; Meyer et al., 2004; MacDonald et al.,
2005). For example, prefrontal dysfunction characterized by
diminished tonic alpha power has been reliably observed in
schizophrenic patients (e.g., Sponheim et al., 1994, 2000) and
in studies investigating the neurophysiology of depression and
anxiety (e.g., Henriques and Davidson, 1990; Thibodeau et al.,
2006). However, common psychological treatments such as
cognitive remediation (for reviews, see Kurtz, 2003; Bellack,
2004) and computerized attention modification paradigms
(e.g., Amir et al., 2009; Bar-Haim, 2010) regularly struggle to
yield superiority above treatment as usual and often fail to
explicitly link change in neurophysiology with the techniques
being applied (Siegle et al., 2007). In contrast, ATT is a clinically
reliable strategy aimed at enhancing global top-down attentional
and executive control which has now been shown to enhance
tonic alpha and beta power in frontopareital networks. Although
the current results were not directly evaluated in association
with clinical phenomena, it seems reasonable to assume that
the neurophysiological effects of ATT may be implicated in the
improvement of prefrontal functioning.

This study has some important limitations. First, as noted
above, these results are unable to determine whether the
observed neurophysiological changes are accompanied by
symptom reductions in clinical populations. Assessing this
prospect will involve repeated measurement of tonic alpha
and beta-band change during a full course of ATT treatment
with a clinical sample in comparison to a control. This
will also help determine whether ATT yields a dose-response
effect in parallel with increased symptom change. Second,
although this study was able to control for trait measures
of attentional control and flexibility, and a state measure of
current mood, we did not employ an attention-related behavioral
measure. Furthermore, despite efforts to ensure successful
randomisation and counterbalancing, this study was unblinded
to the experimenter. Thus, future replications will benefit from
blinded replications with supplemented measures of top-down
attentional control. Third, given the small sample size, we are
unable to determine whether some of the negative findings are
false negatives; the trends toward significance here may reach
significance with larger sample sizes.

CONCLUSION

To our knowledge this is the first EEG study to evaluate the
neurophysiological effects of ATT. A single dose of the treatment
was observed to yield significant tonic alpha and beta-band
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enhancement in frontoparietal networks known to be implicated
in top-down attentional and executive control. The specific
effect of enhanced frontoparietal alpha and beta-band activity in
combination with static theta-band activity suggests ATT yields
a different oscillatory signature to other forms of intervention
such as mindfulness and meditation-based strategies. There
is growing clinical and analog evidence to suggest that
ATT exerts strong therapeutic effects. These preliminary data
suggest that the biological effects of ATT can be readily
detected, may be equally promising and present an exciting
opportunity for new lines of enquiry examining its neural
substrates.
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