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In silico screening of some 
compounds derived from the desert 
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of COVID‑19
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Firoz Ahmed4 & Mohammed N. Baeshen3*

The latest coronavirus pandemic (SARS-CoV-2) poses an exceptional threat to human health and 
society worldwide. The coronavirus (SARS-CoV-2) spike (S) protein, which is required for viral–host 
cell penetration, might be considered a promising and suitable target for treatment. In this study, we 
utilized the nonalkaloid fraction of the medicinal plant Rhazya stricta to computationally investigate 
its antiviral activity against SARS-CoV-2. Molecular docking and molecular dynamics simulations were 
the main tools used to examine the binding interactions of the compounds isolated by HPLC analysis. 
Ceftazidime was utilized as a reference control, which showed high potency against the SARS-CoV-2 
receptor binding domain (RBD) in an in vitro study. The five compounds (CID:1, CID:2, CID:3, CID:4, 
and CID:5) exhibited remarkable binding affinities (CID:1, − 8.9; CID:2, − 8.7; and CID:3, 4, and 5, 
− 8.5 kcal/mol) compared to the control compound (− 6.2 kcal/mol). MD simulations over a period 
of 200 ns further corroborated that certain interactions occurred with the five compounds and the 
nonalkaloidal compounds retained their positions within the RBD active site. CID:2, CID:4, and CID:5 
demonstrated high stability and less variance, while CID:1 and CID:3 were less stable than ceftazidime. 
The average number of hydrogen bonds formed per timeframe by CID:1, CID:2, CID:3, and CID:5 
(0.914, 0.451, 1.566, and 1.755, respectively) were greater than that formed by ceftazidime (0.317). 
The total binding free energy calculations revealed that the five compounds interacted more strongly 
within RBD residues (CID:1 = − 68.8, CID:2 = − 71.6, CID:3 = − 74.9, CID:4 = − 75.4, CID:5 = − 60.9 kJ/mol) 
than ceftazidime (− 34.5 kJ/mol). The drug-like properties of the selected compounds were relatively 
similar to those of ceftazidime, and the toxicity predictions categorized these compounds into 
less toxic classes. Structural similarity and functional group analyses suggested that the presence 
of more H-acceptor atoms, electronegative atoms, acidic oxygen groups, and nitrogen atoms in 
amide or aromatic groups were common among the compounds with the lowest binding affinities. In 
conclusion, this in silico work predicts for the first time the potential of using five R. stricta nonalkaloid 
compounds as a treatment strategy to control SARS-CoV-2 viral entry.

Coronavirus (COVID-19) infection is an acute respiratory tract illness induced by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2). It was initially reported in Wuhan, China, in December 20191. Follow-
ing its onset, a pandemic of SARS-CoV-2 infection caused disturbances to everyday life and economic activity, 
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and great attempts have been made worldwide to develop effective treatments and vaccines to counteract the 
pandemic. Notably, the mortality rate of coronavirus disease 2019 (COVID-19) is higher among individuals with 
obesity and diabetes mellitus and those of older age2. Despite the high mortality and morbidity rates associated 
with COVID-19 infection, no specific therapy is available and the majority of treatment interventions, such 
as ceftazidime which is used as empirical antibiotic therapy for secondary bacterial infections, are supportive, 
appear to exert antiviral effect, and based on treating symptoms3. According to recent studies, third-generation 
cephalosporin antibiotics have addressed potent compounds that block the interaction between spike protein 
and ACE2 by showing their high IC50 values, which support the idea of utilizing ceftazidime as an anti-SARS 
CoV-2. Nevertheless, most drugs that have been used extensively for the treatment of COVID-19 were repurpos-
ing therapeutic candidate drugs, only focusing on a few classic viral sites4,5.

The angiotensin-converting enzyme-2 (ACE2) is a transmembrane protein, which is a receptor of the coro-
navirus’ spike protein binding (SARS-CoV2). The distant S1 subunit of the SARS-CoV-2 spike glycoprotein 
contains the receptor binding domain and is essential to the membrane prefusion state. This glycoprotein is the 
primary target of antibody neutralization during infection and also the target of treatment and vaccine designs6. 
Earlier viral epidemics, such as SARS and MERS, demonstrated the efficacy of targeting viral entry pathways 
as a therapeutic strategy7. On the one hand, entry inhibitors impede viral transmission between persons; thus, 
they can be utilized therapeutically and prophylactically. On the other hand, they could be less toxic since they 
prevent the virus from invading host cells in the first place3.

Interest is growing nowadays toward assaying for phytochemicals as natural antivirals. Plants provide us with 
a range of medicinal compounds that may limit viral reproduction by modulating viral adsorption, attaching to 
cell surface receptors, preventing virus penetration through the cell membrane, and competing for intracellular 
signaling pathways. Polyphenols, alkaloids, flavonoids, saponins, quinones, terpenes, proanthocyanidins, lignins, 
tannins, polysaccharides, steroids, thiosulfonates, and coumarins are all examples of bioactive phytochemicals 
that have been shown to be effective against viral infections8.

Rhazya stricta has traditionally been used to treat a variety of illnesses in a wide range of Middle Eastern and 
South Asian nations. R. stricta is known to be a rich source of several potent compounds, including nonalkaloids 
and alkaloids, which have medicinal applications to treat a variety of conditions, including diabetes, inflammatory 
diseases, sore throat, helminthiasis, arthritis, infectious diseases, and cancer, and several studies have previously 
confirmed its folkloric use9. Many of these medicinal properties have been validated experimentally by several 
investigations. Previous studies have proved the antibacterial activities of nonalkaloid extracts derived from R. 
stricta leaves against multi-drug-resistant (MDR) and Extended-spectrum beta-lactamases (ESBLs) bacteria, 
which make it a drug candidate against several pathogens10. The novel natural drug discovery may recognize 
the new molecular entities that will help even more against variants of SARS-CoV-2.

In the present study, we characterized the R. stricta extract using HPLC–MS/MS analysis and conducted a 
computational study to target the SARS-CoV-2 RBD protein. In addition, molecular docking, dynamic sim-
ulations, binding free energy calculations, and ligand bioavailability were performed to determine potential 
inhibitors. Moreover, we study the structural skeleton similarity of the best-docked compounds to assign their 
Physicochemical properties.

Materials and methods
Collection and preparation of plant samples.  Rhazya stricta was collected from its natural habitat in 
the desert; in the Al Gholah region near Asfan Road (21.9684537, 39.2675785), Jeddah Province. A voucher 
specimen was deposited in the Department of Biological Sciences Herbarium at King Abdulaziz University 
(number 1150/M/75; collected by N. Baeshen, M. Baeshen, and J. Sabir). The plant material was taken to the 
laboratory, and the leaves were cut and washed with running water to remove the dust and left to dry in the 
laboratory at room temperature. A week later, the dry leaves were ground into a fine powder for the extraction 
of compounds and biochemical analysis. The authors confirm that the experiments performed on the plants in 
the present study comply with international and national guidelines.

Alkaloids and nonalkaloids were extracted from R. stricta as described by10. In brief, ten grams of plant 
material was weighed into a clean volumetric flask, and 20 ml of absolute ethanol (99%) was added. The mixture 
was allowed to sit in a refrigerator (4 °C) for two days. The ethanol was removed by placing the mixture over 
Whatman filter paper (0.45 µm) and drying the plant material with nitrogen gas. After that, 5 g of plant material 
was transferred to a clean volumetric flask, and 40 ml of 1 mol/L HCl and 40 ml of HPLC-grade chloroform 
were added. The chloroform layer was collected and filtered through a PTFE disk filter and then transferred to 
an LC vial to analyze the nonalkaloids. For the alkaloids, sodium hydroxide was added to the plant mixture to 
adjust the pH, and then 40 ml of HPLC-grade chloroform was added. The chloroform layer, which contained 
the alkaloids, was filtered through a PTFE disk filter and transferred to a liquid chromatography vial for analysis.

HPLC–MS/MS analysis and data processing.  This study was performed using an HPLC–MS/MS system 
that included an ACQUITY UPLC I-Class (Waters Technologies, USA) instrument coupled to a 6500 Qtrap (AB 
Sciex, Canada). Chromatographic separation was performed using a Zorbax XDB C18 column (2.1 × 150 mm, 
3.5 µm) with a temperature maintained at 40 °C, a flow rate of 300 µL/min and an injection volume of 10 µL. 
Solvents A (0.1% formic acid in HPLC grade water) and B (0.1% formic acid in HPLC grade acetonitrile) were 
used as the mobile phases. The linear elution gradient was as follows: 2% B (from 0 to 2), 95% B (from 2 to 24), 
95% B (held for 2 min), and 4 min of equilibration. The electrospray ionization mass spectrometry (ESI–MS) 
data were collected in positive mode (ES+) with an electrode voltage of 5500 V, a declustering potential (DP) of 
90 V, collision energy of 30 V, and an input potential of 10 V. Nitrogen was used as the nebulizer gas and curtain 
gas at 30 psi. Mass spectrometry (MS) spectra were acquired in the mass range of 100–900 m/z, and a scan rate 
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of 1000 was used to search for enhanced production. For MS–MS data collection, the acquisition rate was set to 
1 spectrum per second with a scan range of 50–1000 m/z in automode according to11.

Upon completion of data collection, the HPLC–MS data files were downloaded in wiff format and then 
converted to Mzml using MSConvert (ProteoWizard 3.0.20270)12. Mzmine (version 2.53) software was used 
to analyze the results13 (https://​github.​com/​mzmine/​mzmin​e2/​relea​ses/​tag/​v2.​53). Following data import into 
Mzmine2, a minimum intensity cutoff of 1,000 was used, and the retention time was set to a tolerance of 0.2 min. 
Then, the adjusted peaks were compiled into a single mass list to enable detection and comparison. The identi-
fication process was performed using the SIRIUS platform coupled with CSI:FingerID for molecular structure 
identification14–16.

Ligands and protein preparation.  Hundreds of nonalkaloid compounds were identified in R. stricta by 
HPLC and MS/MS analyses. The structures of the R. stricta nonalkaloid compounds were discovered through 
HPLC analysis, downloaded from the PubChem database (https://​pubch​em.​ncbi.​nlm.​nih.​gov/) as SDF files, and 
then converted into PDB files using PyMOL (Schrödinger, LLC)17,18. The AutoDock 4.2 graphical interface19 
was used to prepare the ligands by adding the computed Gasteiger charge and merging the nonpolar hydrogen 
atoms. Aromatic carbon rings were also detected to set up a torsion tree. The compound files were saved in pdbqt 
format for further screening. The crystal structure of the SARS-CoV-2 spike receptor-binding domain (RBD) 
complexed with ACE2 was retrieved from the RCSB (https://​www.​rcsb.​org) with PDB ID 6m0j21, consisting 
of 193 amino acids for the RBD and 596 amino acids for ACE2 with a resolution of 2.45 Å. The RBD was pre-
pared by deleting the ACE2 atom coordinates and removing ligands, water, and ionic metals from the complex 
structure. Nonpolar hydrogen atoms were merged, and Kollman charges were added to the RBD. The prepared 
protein was saved as a pdbqt file.

Virtual screening.  AutoDock Vina is an open-source program that predicts the binding positions of small 
molecules into the cavity of interest of a target protein in addition to the small molecule binding affinities22. The 
grid box was concentrated with dimensions (50X, 64Y, 22Z) and a grid point of 0.375 Å on the interface of the 
RBD, which contains the involved residues in connection with the ACE2 receptor (K417, G446, Y449, Y453, 
L455, F456, A475, F486, N487, Y489, Q493, G496, Q498, T500, N501, G502, Y505). AutoDock Vina was run 
using an in-house Python script, which prompted the system to the configuration file containing the screening 
parameters. We set the exhaustiveness of the search to 8, and 9 conformation modes were generated for each 
compound.

Molecular docking.  The best-docked compounds (~ 60), which had the lowest binding affinities and RMSD 
values of 0 Å into the RBD interface, were subjected to analysis by ACD/ChemSketch to check for tautomeric 
forms23. Geometry optimization was also conducted using Avogadro software, which has an auto-optimization 
tool24. Structure optimization and energy minimization were performed by the universal force field (UFF) and 
the steepest descent algorithm. To find accurate conformations and positions, we redocked the ligand–protein 
complexes using AutoDock Vina with the grid box dimensions listed above the exhaustiveness of the search set 
to 30. Finally, we concentrated the grid box on the lowest binding affinity position of the best 5 compounds and 
redocked the complexes. To compare our results with those of a drug that has been confirmed to show in vitro 
anti-SARS-CoV-2 spike protein activity, we found that the antibiotic ceftazidime, which is used therapeutically 
to treat bacterial pneumonia, revealed the highest potency among several compounds, with an inhibition rate of 
approximately 80% and an IC50 of 28 µM25. Biovia Discovery Studio Visualizer was used to plot the compounds 
into the pocket residues and PyMOL17,26.

Molecular dynamics simulations.  MD simulations were performed using the Groningen Machine for 
Chemical Simulations (GROMACS) 2020.327. The procedure was conducted as described28. To create the struc-
tural topology, the compound-protein complex coordinates were separated into two PDB files. The protein force 
field parameter was generated using the March 2019 version of Chemistry at Harvard Macromolecular Mechan-
ics (CHARMM 36)29, whereas the ligand was converted to Mol file format using Avogadro24, and the force field 
parameters were generated using the official CHARMM General Force Field server (CGenFF: 30. The system 
was contained within a dodecahedron box with periodic boundary conditions. The box was then solvated using 
a three-site transferable water model (TIP3P)31, which was subsequently neutralized with Na and Cl ions. A 
5,000-step structural optimization using the steepest descent algorithm followed by a 100 ps equilibration in 
the NVT and NPT ensembles utilizing a V-rescale thermostat32 and a Berendsen barostat33 for temperature and 
pressure coupling were carried out to minimize system energy. The van der Waals and electrostatic interaction 
cutoffs were fixed at 1.2 nm, and long-range electrostatic interactions were calculated using the particle mesh 
Ewald method34. The temperature and pressure were maintained at 300 K and 1 bar for the production run. A 
V-rescale thermostat32 with a time constant of 0.1 ps was used to regulate the temperature, while a Parrinello-
Rahman barostat35 with a time constant of 1  ps and compressibility of 4.5 × 10–5  bar-1 was employed to the 
control pressure. The simulation was run for 200 ns, and every 10 ps, the energy and coordinates of the trajec-
tories were recorded. The stabilities of the resultant trajectories were then analyzed using the root mean square 
deviation (RMSD), the root mean square fluctuation (RMSF), the hydrogen bond number, and the final trajec-
tory. The plotting tool Xmgrace was utilized to plot the simulation data36, and PyMOL was used to visualize the 
obtained trajectories17.

Binding energy calculations.  Binding free energy calculations for all docked complexes were conducted 
using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) approach in the g_mmpbsa 

https://github.com/mzmine/mzmine2/releases/tag/v2.53
https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org
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module. The g_mmpbsa scripts utilized were widely sourced from the GROMACS machine and APBS packages 
to integrate the molecular dynamics simulation trajectories with the binding energy calculations. A total of 500 
snapshots of the complex trajectories were obtained. Electrostatic interactions, van der Waals interactions, polar 
salvation energy, and nonpolar solvation energy were calculated using the g_mmpbsa module37,38.

Drug‑likeness analysis.  To investigate the oral bioavailability of the top 5 compounds, Lipinski’s rule of 
five39 was applied, which considers the following parameters: molecular weight, lipophilicity, number of hydro-
gen bond donors, and number of nitrogen and oxygen atoms. To predict the drug-likeness profile of the com-
pounds with the lowest binding affinities from the docking results, the PDB files of the compounds were sub-
mitted to SwissADME, which is a webserver that calculates the physiochemical properties of compounds and 
applies drug-likeness parameters40. Moreover, the results were compared to the injectable antibiotic ceftazidime.

Toxicity risk prediction.  ProTox-II is a website that predicts the acute oral toxicities of small molecules and 
places them into classes according to the globally harmonized system of classification and labelling of chemicals 
(GHS)41. Canonical Smiles of the compounds were obtained from the PubChem database and inputted into the 
webserver. The compound toxicity classes and LD50 predictions were generated as output results.

Structural skeleton similarity analysis.  To find the common structural skeleton similarity of the com-
pounds of interest, we utilized DataWarrior software, which is a multipurpose chemical data visualization and 
analysis tool that is interactive and chemistry-aware42. Forty compounds with a 7.1 (kcal/mol) binding affinity 
cutoff were submitted to DataWarrior for structure analysis. We counted and analyzed the presence of 8 struc-
tural parameters: aromatic carbon atoms, carbo rings, electronegative atoms, H-acceptor atoms, H-donor atoms, 
heterorings, ring closures, and rotatable bonds.

Results and discussion
HPLC–MS/MS analysis.  The nonalkaloids from R. stricta were isolated using HPLC. Separation using 
HPLC confirmed the existence of nine nonalkaloid compounds and seven additional alkaloids as minor com-
ponents (Fig. 1).

Virtual screening and molecular docking.  Virtual screening is a fast-scanning method that can dock a 
library of ligands into the active site of the protein of interest and reduce the library by eliminating those with the 
highest binding energies. In our study, after we screened the compounds obtained from the phytochemical analy-
sis, the compounds with the lowest binding affinity were optimized, redocked, and prepared for further analysis. 
The involved residues and number of bonds formed by the 5 best compounds (Table 1) and the compound con-
trol ceftazidime are presented in Table 2. Compound CID:1 demonstrated a binding affinity of − 8.9 (kcal/mol) 
and formed six conventional hydrogen bonds with RBD interface residues ARG346, ASN448, LYS444, GLN493, 
and SER494. In addition, four hydrophobic interactions were observed of the types pi—pi stacked, pi—alkyl, 
and alkyl in contact with PHE490, TYR449, and LYS444 residues. Compound CID:2 showed a binding affin-
ity of − 8.7 (kcal/mol) and formed seven hydrogen bonds with residues TYR449, GLN493, SER494, ARG403, 
and TYR453. Moreover, six hydrophobic interactions of the types pi—pi stacked, pi—alkyl and alkyl involved 
with the SARS-CoV-2 RBD residues PHE490, LEU452, and LYS417. Compounds CID:3, CID:4, and CID:5 

Figure 1.   3D chromatogram of the representative extracts using 3D visualizer. RED, alkaloid extract; BLUE, 
nonalkaloid extract. The X-axis shows the retention time, the Y-axis shows the m/z value, and the Z-axis shows 
the intensity.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11120  | https://doi.org/10.1038/s41598-022-15288-2

www.nature.com/scientificreports/

CID PubChem CID Formula Structure

1 11585544 C28H32ClN7O6S2

2 1677463 C29H18Cl3N3O4

3 137148428 C28H14Cl3FN6O5S2

4 135501155 C29H29N7O4

Continued
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showed binding affinities of − 8.5 (kcal/mol) with various numbers of hydrogen bonds and other interactions. 
Compound CID:3 formed six hydrogen bonds with the active site residues TYR449, GLN493, and GLY496. 
In addition, four hydrophobic interactions of the types T-shaped pi-pi, amide pi-stacked, alkyl interactions 
with TYR449, TYR505, LEU452, and GLN493, and two halogen bonds with GLN493 and LEU492. Compound 
CID:4 formed five hydrogen bonds with the RBD binding site residues GLN493, SER494, and GLY496 and six 
hydrophobic interactions of the types—pi–pi stacked, pi—alkyl, and alkyl with key residues ARG403, TYR449, 
PHE497, TYR505, and TYR495. Compound CID:5 formed seven hydrogen bonds with residues ARG403, 
TYR453, GLY496, and GLN498 and seven hydrophobic interactions of the types T-shaped pi–pi, pi—alkyl, and 
alkyl with residues TYR449, TYR505, LYS417, and LEU455. In addition, one pi – cation electrostatic interaction 
was formed with ARG403. Ceftazidime was considered a control, giving a binding affinition of − 6.2 (kcal/mol), 
and formed six conventional hydrogen bonds with residues ARG403, TYR453, GLY496, TYR449, and GLN498. 
In addition, attractive electrostatic forces, one pi – alkyl interaction with residues ARG403 and TYR449, and 
hydrophobic interactions were involved in the ceftazidime-RBD interaction. In addition to the mentioned con-
tacts, the six compounds interacted with the interface residues by van Der Waals forces (Figs. 2 and 3).

In addition to the reference compounds, the five compounds formed many bonds with key residues LYS417, 
TYR453, TYR505, ASN501 GLN493, GLY496, TYR449, GLN498, and LEU455 of the SARS-CoV-2 RBD, which 
may interrupt the viral host cell recognition process. The 5 phytochemical compounds investigated through 
molecular docking simulations here revealed significantly better binding energy. In contrast to the reference 
compounds, these five compounds established networks of hydrophobic interactions that contribute to the bind-
ing affinity of the predicted complexes.

MD simulations and binding free energy calculations.  We further used GROMACS 2020.3 to run 
MD simulations on the five RBD-ligand complexes as well as the control compound on a 200 ns time scale to 
investigate the dynamic binding interactions and calculate the binding free energies.

RMSD and RMSF.  The root mean square deviation (RMSD) is a critical measure for analyzing the equilibra-
tion of MD trajectories and determining the stability of protein–ligand complex systems during the simula-
tion process. This value was calculated for each compound and compared to that of ceftazidime with respect 
to the initial pose as a reference frame. All compounds retained their docking position with some deviation 
(Fig. 4). Ceftazidime showed insignificant deviation (~ 0.18–0.27 nm) and high stability with rare major vari-

Table 1.   The 2D structures, PubChem CIDs, and formulae of the best docked compounds and the control 
compound ceftazidime.

CID PubChem CID Formula Structure

5 3282882 C27H23Cl2N7O6S2

6 5481173 C22H22N6O7S2 (ceftazidime)
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No. Binding affinity (kcal/mol) Residues Bond distance (Å) Category Type

CID:1 − 8.9

ARG346 2.94 Hydrogen Bond Conventional

ARG346 3.05 Hydrogen Bond Conventional

ASN448 3.37 Hydrogen Bond Conventional

LYS444 3.16 Hydrogen Bond Conventional

GLN493 3.09 Hydrogen Bond Conventional

SER494 3.31 Hydrogen Bond Conventional

PHE490 4.10 Hydrophobic Pi—Pi Stacked

TYR449 4.76 Hydrophobic Pi—Pi Stacked

PHE490 4.34 Hydrophobic Pi—Alkyl

LYS444 4.49 Hydrophobic Alkyl

CID:2 − 8.7

TYR449 2.79 Hydrogen Bond Conventional

TYR449 3.19 Hydrogen Bond Conventional

GLN493 2.99 Hydrogen Bond Conventional

GLN493 3.32 Hydrogen Bond Conventional

SER494 3.04 Hydrogen Bond Conventional

ARG403 2.80 Hydrogen Bond Conventional

TYR453 3.30 Hydrogen Bond Pi—Donor HB

TYR453 4.83 Hydrophobic Pi—Pi Stacked

LEU452 4.56 Hydrophobic Alkyl

LEU452 4.67 Hydrophobic Alkyl

LEU452 4.56 Hydrophobic Pi—Alkyl

PHE490 4.77 Hydrophobic Pi—Alkyl

LYS417 5.15 Hydrophobic Pi—Alkyl

CID:3 − 8.5

TYR449 3.16 Hydrogen Bond Conventional

TYR449 3.71 Hydrogen Bond Pi—Donor HB

GLN493 3.27 Hydrogen Bond Conventional

GLN493 3.79 Hydrogen Bond Pi—Donor HB

GLY496 2.93 Hydrogen Bond Conventional

GLY496 3.11 Hydrogen Bond Conventional

TYR449 5.06 Hydrophobic Pi–Pi T-shaped

TYR449 5.39 Hydrophobic Pi–Pi T-shaped

TYR505 5.02 Hydrophobic Pi–Pi T-shaped

LEU452 4.99 Hydrophobic Alkyl

LEU492 3.62 Halogen Fluorine

GLN493 3.27 Halogen Fluorine

CID:4 − 8.5

GLN493 2.98 Hydrogen Bond Conventional

GLN493 3.06 Hydrogen Bond Conventional

SER494 3.09 Hydrogen Bond Conventional

SER494 3.55 Hydrogen Bond Pi—Donor HB

GLY496 3.42 Hydrogen Bond Pi—Donor HB

TYR449 4.45 Hydrophobic Pi—Pi Stacked

ARG403 4.30 Hydrophobic Alkyl

TYR449 5.32 Hydrophobic Pi—Alkyl

PHE497 4.71 Hydrophobic Pi—Alkyl

TYR505 5.11 Hydrophobic Pi—Alkyl

TYR495 5.26 Hydrophobic Pi—Alkyl

Continued
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ance. During the MD simulations, compounds CID:1 and CID:3 showed acceptable deviations (~ 0.28–0.4 
and 0.2–0.35 nm, respectively) and stability with major variance in some frames. Compound CID:2 exhibited 
moderate deviations during the first and last 50 ns (~ 0.2–0.26 nm), and higher deviations between 50–150 ns 
(~ 0.3–0.4 nm) were observed. In addition, compound CID:2 showed high stability in both poses, and no major 
variance was observed. Compound CID:4 showed insignificant deviation (~ 0.15–0.24 nm), high stability and 
no variance. Although compound CID:5 had a high deviation (0.34–0.42 nm), it also had high stability with no 
undesired variance. To understand the behavior of the ligand atoms, the root mean square fluctuation (RMSF) 
during the MD simulations of the 5 compounds and ceftazidime were analyzed. All compounds experienced a 
certain amount of fluctuation (Fig. 5), and the atoms of CID:4 fluctuated the least (~ 0.05–0.25 nm) compared 
with the atoms of the other compounds, indicating that CID:4 did not undergo major conformational changes. 
The atoms of ceftazidime, CID:2, and CID:3 fluctuated in the range of ~ 0.1–0.35 nm. The RMSF of CID:1 and 
CID:5 reflected the RMSD results, as these two compounds were exposed to conformational changes (~ 0.15–
0.55 and 0.1–0.45 nm, respectively).

Hydrogen bonds.  The number of hydrogen bonds that a compound forms with protein residues plays a critical 
role in enhancing complex stability. The cutoff angle and distance for H-bond analysis were set to 30° and 3.5 Å 
(Fig. 6). Ceftazidime formed 1–7 hydrogen bonds, and the average of 0.317 hydrogen bonds per timeframe 
was calculated. CID:1 and CID:3 showed 1–5 hydrogen bonds bound to the RBD with average numbers of 
hydrogen bonds per timeframe of 0.914 and 1.566, respectively. CID:2 and CID:4 formed 1–3 hydrogen bonds 
for averages of 0.451 and 0.149 hydrogen bonds per timeframe, respectively. CID:5 had the highest number of 
hydrogens (1–8) that formed and an average of 1.755 hydrogen bonds per timeframe.

Trajectory.  The compound positions and the interacting residues during the MD simulations were visualized 
by extracting the final frame. In addition to ceftazidime, the docked MD simulations poses of compounds 
CID:1 CID:2, CID:3, CID:4, and CID:5 were nearly identical to the redocked poses with the exception of 
CID:3, which abandoned its polar interactions with ASN501 to TYR505. Notably, the resulting docked posi-
tion of ceftazidime was compatible with a previous investigation, which revealed that the residues SER494 and 
TYR505 play critical roles in the binding of SARS-CoV-2 to the hACE2 receptor23 (Fig. 7).

Binding energy calculations.  The MM-PBSA analyses were performed by extracting 500 snapshots of the stabi-
lized frames for the 5 complexes as well as the control complex to calculate the binding energy average. A highly 
negative binding energy indicates stable binding of a small molecule to a protein. Compared to the RBD-ceftazi-
dime complex (− 34.495 kJ/mol), the resulting binding free energies of the five ligand complexes gave values that 

Table 2.   List of the interactions and binding affinities between the selected 5 compounds and SARS-CoV-2 
RBD residues found during visualization of the complex structure by discovery studio visualizer.

No. Binding affinity (kcal/mol) Residues Bond distance (Å) Category Type

CID:5 − 8.5

TYR453 2.83 Hydrogen Bond Conventional

TYR453 2.97 Hydrogen Bond Conventional

ARG403 2.89 Hydrogen Bond Conventional

GLY496 3.07 Hydrogen Bond Conventional

GLY496 3.37 Hydrogen Bond Conventional

GLN498 2.73 Hydrogen Bond Conventional

GLN498 3.16 Hydrogen Bond Conventional

ARG403 4.57 Electrostatic Pi—Cation

TYR449 5.55 Hydrophobic Pi–Pi T-shaped

TYR505 5.09 Hydrophobic Pi–Pi T-shaped

TYR505 5.20 Hydrophobic Pi–Pi T-shaped

LYS417 3.99 Hydrophobic Alkyl

LEU455 4.86 Hydrophobic Alkyl

LYS417 5.22 Hydrophobic Pi—Alkyl

LEU455 5.49 Hydrophobic Pi—Alkyl

Ceftazidime − 6.2

ARG403 2.95 Hydrogen Bond Conventional

ARG403 3.45 Hydrogen Bond C–H Bond

TYR453 3.02 Hydrogen Bond Conventional

GLY496 3.07 Hydrogen Bond Conventional

TYR449 3.07 Hydrogen Bond Conventional

GLN498 3.26 Hydrogen Bond Conventional

ARG403 5.15 Electrostatic Attractive

TYR449 5.00 Hydrophobic Pi—Alkyl



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11120  | https://doi.org/10.1038/s41598-022-15288-2

www.nature.com/scientificreports/

Figure 2.   Redocking positions of the selected compounds into SARS-CoV-2 RBD protein pocket generated by 
AutoDock Vina. (A) Ceftazidime. (B) CID:1. (C) CID:2. (D) CID:3. (E) CID:4. (F) CID:5.
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were more negative, indicating that these 5 compounds established strong interactions. CID:4 showed the lowest 
negative value (− 75.448), followed by compounds CID:3 (− 74.926 kJ/mol), CID:2 (− 71.579 kJ/mol), CID:1 
(− 68.788 kJ/mol), and CID:5 (− 60.865 kJ/mol) (Table 3).

The MMPBSA-based binding energy values of the identified ligands toward the SARS-CoV-2 RBD reflect 
that each ligand binds efficiently. This conclusion is further supported by data from other parameters, such as 
the RMSD, RMSF, number of HBs, and average number of HBs per frame calculated from the MD trajectories.

Drug‑likeness and toxicity predictions.  Drug-likeness predictions were conducted using SwissADME 
to calculate the physiochemical properties and then applying Lipinski’s rule of five for comparison with ceftazi-
dime, which is an injectable broad-spectrum antibiotic used to treat bacterial infections including lower respira-
tory tract pneumonia43. Violation of the implemented parameters of Lipinski’s rule of five suggests increased 
absorption and permeation difficulties if the compounds are administered orally39. All compounds as well as 
the control compounds violated the molecular weight parameter (662.18, 578.83, 643.88, 539.59, 676.55, and 

Figure 3.   3D visualization showing the redocking poses of the selected compounds and ceftazidime. The white 
cartoons represent the RBD, and interposes with white sticks represent the contacted residues. The ligands are 
represented as green sticks. (A) Ceftazidime. (B) CID:1. (C) CID:2. (D) CID:3. (E) CID:4. (F) CID:5.
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546.6 g/mol for CID:1, CID:2, CID:3, CID:4, CID:5 and ceftazidime, respectively). In addition, the parameter for 
the number of H-bond acceptors was violated by the investigated compounds with the exception of compound 
CID:2, which had 7 H-bond acceptor atoms (Table 4). In addition to the drug likeness predictions, drug toxicity 
was predicted using the ProTox-II webserver. The quantities of each substance that resulted in death to 50% of 
the population (LD50) were determined and categorized according to the globally harmonized system of clas-

Figure 4.   Root mean square deviations (RMSDs) of the ligand–protein complexes generated during the MD 
simulations.
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sification and labelling of chemicals. The LD50 values of compounds CID:1, CID:2, and CID:4 (464, 705, and 
1300 mg/kg, respectively) were predicted to belong to class 4 (300 < LD50 ≤ 2000). Compound CID:3 showed 
less toxicity with an LD50 of 3016 mg/kg and was categorized into class 5 (2000 < LD50 ≤ 5000). CID:5 was 
labeled as nontoxic compound with an LD50 of 10,000 mg/kg, and classified as class 6 (LD50 > 5000) (Table 5).

These results suggest that the bioactive compounds CID:1, CID:2, CID:3, CID:4, and CID:5 have lower 
gastrointestinal absorption properties compared with ceftazidime. In contrast to CID:5 and ceftazidime, which 
were predicted to be nontoxic substances, CID:1 and CID:2 may possess toxicity risks, and CID:4 and CID:3 
are associated with less risk.

Figure 5.   Root mean square fluctuations (RMSFs) of the ligand–protein complexes generated during MD 
simulations.
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Structural skeleton similarity analysis.  The 40 compounds that gave best binding affinities were 
submitted to DataWarrior software analysis, which was utilized to count and categorize 8 structural skeleton 
parameters and investigate their similarities (Fig. 8). To define the flexibility of the compounds, we counted the 
number of intramolecular rotatable bonds and found that 29 of the compounds were composed of 5–9 rotatable 
bonds, including 7 out of the best 10 compounds. Electronegative atoms (N, O, S, F, Cl) within small molecules 
play critical roles in forming hydrogen bonds with protein residues; at least 7 of these atoms were counted in 
CID:16, and 28 compounds had 11–15 electronegative atoms. To determine the form of the electronegative 
atoms, we counted the number of H-bond donors and H-bond acceptors. Twenty-eight compounds contained 
2–4 H-donor atoms, including 7 of the best docked compounds. In contrast, at least 4 H-acceptor atoms were 
counted in CID:27, and 28 compounds, including 7 of the best docked compounds, contained 9–13 H-acceptor 
atoms. Ring closures, which are mostly composed of carbon atoms involved in hydrophobic and electrostatic 
interactions, were counted, and we found 33 compounds containing 4 or 5 rings, including the best 9 com-
pounds. To determine the form of the ring closures, we counted both carbo- and heteroring closures. Among 

Figure 6.   Number of hydrogen bonds in the ligand–protein complexes generated during the MD simulations.
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Figure 7.   Docked positions of the ligand–protein complexes after MD simulations generated by extracting the 
last frame of the simulation. (A) Ceftazidime. (B) CID:1. (C) CID:2. (D) CID:3. (E) CID:4. (F) CID:5.

Table 3.   Average binding energies of the ligand–protein interactions calculated using the g_mmpbsa tool by 
extracting 500 snapshots from the MD simulation trajectories.

Compound

Binding energy

Binding energy (kJ/
mol) SASA energy (kJ/mol)

Polar solvation energy 
(kJ/mol)

Electrostatic energy 
(kJ/mol)

van der Waals energy 
(kJ/mol)

CID:1 − 68.788 ± 35.876 − 15.580 ± 0.973 83.490 ± 36.496 − 9.369 ± 7.338 − 127.330 ± 8.552

CID:2 − 71.579 ± 27.997 − 15.799 ± 1.109 179.500 ± 26.762 − 62.060 ± 10.516 − 173.220 ± 12.079

CID:3 − 74.926 ± 15.849 − 15.799 ± 1.109 174.336 ± 12.529 − 60.002 ± 9.974 − 173.460 ± 11.956

CID:4 − 75.448 ± 12.148 − 15.074 ± 1.034 84.417 ± 14.235 − 20.594 ± 5.837 − 124.197 ± 9.626

CID:5 − 60.865 ± 38.282 − 18.880 ± 1.518 186.375 ± 37.195 − 54.743 ± 12.287 − 173.616 ± 16.981

Control − 34.495 ± 26.438 − 15.799 ± 1.109 47.016 ± 31.186 − 14.287 ± 12.453 − 51.425 ± 16.130
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the carbo rings, we found 29 compounds containing 1–2 rings. In contrast to the carborings, 33 compounds 
contained 2–4 heterorings, including 7 of the best 10 compounds. Finally, we counted the number of aromatic 
carbon atoms, and the 40 compounds were distributed among 15 categories. Twenty-seven compounds were in 
the range of 17–27 aromatic atoms, including 8 of the ten best compounds.

After we characterized and analyzed the 40 compounds that gave an affinity binding score of − 7.1 (kcal/mol) 
or less, we found no direct or inverse relationship between the parameters that we investigated and the binding 
affinities of the compounds. In addition, the desired range and cutoff of some of the parameter combinations 
could lead to an increase in the binding affinity of small molecules to the SARS-CoV-2 RBD, such as at least 7 
electronegative atoms, 5–9 rotatable bonds, 4–2 H-donor atoms, at least 7 H-acceptor atoms, 1–3 carbo rings, 
and 2–4 hetero rings.

Conclusion
Our study aimed to find a prospective drug against SARS-CoV-2 and examine the similarities among the investi-
gated compounds by utilizing compounds derived from the medicinal plant R. stricta. Applying a virtual screened 
approach, we identified five compounds from the R. stricta nonalkaloid extract. In comparison to the reference 
control (ceftazidime), the lead compounds exhibited remarkable binding affinities and strong interactions with 
key residues of the SARS-CoV-2 spike protein. The findings of this in silico study suggest that these compounds 
can be considered potential antiviral drugs to treat SARS-CoV-2 by interfering with the viral ACE2 recogni-
tion process. However, more experimental validation is required to confirm the antiviral activity of the selected 
compounds against the SARS-CoV-2 RBD. The two main outcomes from the structural skeleton analysis could 
help researchers design or narrow their search to find bioactive compounds targeting the SARS-CoV-2 RBD: 
electronegative atoms are preferable in the H-acceptor form, and ring closures are preferable in heteroatom form. 
However, a large compound population and more structural skeleton parameter analyses are required to reveal 
more recommended characteristics and confirm our findings.

Table 4.   Molecular weights (MWs), number of oxygen and nitrogen atoms, number of hydrogen bond 
acceptors (–H), and lipophilicity (LogP) of the selected compounds and the control.

Compound
500 ≤ MW (g/
mol) 10 ≤ N or O 5 ≤ NH or OH 4.15 ≤ MLogP

CID:1 662.18  13 2 2.87

CID:2 578.83  7 2 4.11

CID:3 643.88  11 4 3.66

CID:4 539.59  11 2 2.45

CID:5 676.55  11 4 2.65

Ceftazidime 546.6  11 3 0.59

Table 5.   LD50 values of the selected compounds and their respective classes.

Compound LD50 (mg/kg) Class

CID:1 464 4

CID:2 705 4

CID:3 3016 5

CID:4 1300 4

CID:5 10,000 6

Ceftazidime 10,000 6



16

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11120  | https://doi.org/10.1038/s41598-022-15288-2

www.nature.com/scientificreports/

Figure 8.   Distribution of the compounds into numeric groups based on their structural skeleton parameters.
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