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Abstract

Background: Reverse engineering of transcriptional regulatory networks (TRN) from
genomics data has always represented a computational challenge in System Biology.
The major issue is modeling the complex crosstalk among transcription factors (TFs)
and their target genes, with a method able to handle both the high number of
interacting variables and the noise in the available heterogeneous experimental
sources of information.

Results: In this work, we propose a data fusion approach that exploits the
integration of complementary omics-data as prior knowledge within a Bayesian
framework, in order to learn and model large-scale transcriptional networks. We
develop a hybrid structure-learning algorithm able to jointly combine TFs ChIP-
Sequencing data and gene expression compendia to reconstruct TRNs in a genome-
wide perspective. Applying our method to high-throughput data, we verified its
ability to deal with the complexity of a genomic TRN, providing a snapshot of the
synergistic TFs regulatory activity.
Given the noisy nature of data-driven prior knowledge, which potentially contains
incorrect information, we also tested the method’s robustness to false priors on a
benchmark dataset, comparing the proposed approach to other regulatory network
reconstruction algorithms. We demonstrated the effectiveness of our framework by
evaluating structural commonalities of our learned genomic network with other
existing networks inferred by different DNA binding information-based methods.

Conclusions: This Bayesian omics-data fusion based methodology allows to gain a
genome-wide picture of the transcriptional interplay, helping to unravel key
hierarchical transcriptional interactions, which could be subsequently investigated,
and it represents a promising learning approach suitable for multi-layered genomic
data integration, given its robustness to noisy sources and its tailored framework for
handling high dimensional data.

Keywords: Genomic transcriptional networks, omics-data fusion, Bayesian networks,
Hybrid structure learning algorithm
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Background
The transcriptional regulatory machinery consists of cooperative interactions among

transcription factors (TFs) responsible for regulating the spatial and temporal expres-

sion of genes in response to different cellular stimuli. Dysregulation of such transcrip-

tional programs is one of the key hallmarks of cancer, affecting the clinical progression

and the therapeutic responsiveness of the disease phenotype [1]. A promising approach

for investigating the altered transcriptional response underlying cancer is to reconstruct

the transcriptional dependencies among TFs and their target genes as a network, exploit-

ing the genome-wide scale and the complementary data types offered by high-throughput

technologies, to mine the resulting regulatory structure and extract interactions pattern

from the genomic transcriptional hierarchy of the considered phenotype [2, 3].

Modelling such complex transcriptional regulatory networks (TRNs) represents one

of the most challenging task in Computational Biology, given the high dimensionality

of involved interactors and that their molecular dynamics are not fully understood [4].

For this reason, computational modeling is an essential component in reverse engineer-

ing of transcriptional networks. As He and Tan pointed out in their recent review [5],

among current computational approaches for constructing TRNs, there is a lack of in-

tegrative genome-wide methods which combine omics-data sources to strengthen the

accuracy of the obtained models and to provide novel insights from the inferred net-

work structure. A particularly important issue is to find a method able to deal with the

biological complexity of these systems, and that is sufficiently robust to scale their gen-

omic dimension allowing multiple data integration.

During the last years, this aspect has been increasingly emphasized along with the

rapid growth of high-throughput genomic data types. A variety of approaches have

been exploited to predict the interaction of regulatory elements [6–8], including models

focused on reconstructing physical locations of transcription factors through analysis of

DNA sequence information, either using TFs binding site motifs, or chromatin accessi-

bility data, as measured by DNase I hypersensitivity sites sequencing (DNase-Seq) or by

transposase-accessible chromatin sequencing (ATAC-Seq) [7, 9–11]. Nevertheless, the

regulatory activity that can be predicted from these binding affinities is limited to the

set of TFs whose specific molecular sequences have been characterized, without taking

into account the capability of certain TFs to recognize multiple motifs and the inter-

action with other cofactors, losing a proportion of potential transcriptional dependen-

cies, that may help to depict a more comprehensive regulatory schema [12, 13].

Other computational strategies rely on learning the wiring transcriptional architec-

ture, which orchestrates cellular gene expression, from transcriptomic data (in particu-

lar obtained by microarray experiments, widely available in different conditions and

contexts) as a sole or primary source [14], using mathematical approaches including

Boolean networks, information theoretic or correlation-based methods, differential

equations systems, Bayesian and Neural networks [15–17]. Among these, Bayesian Net-

works (BNs) have become the prominent technique to model TRNs for their probabil-

istic formalism that can reflect the stochastic and combinatorial nature of gene

regulation and for their ability to handle incomplete noisy data [18–20]. In this way,

the network structure, constituted of causal and non-causal regulatory relationships

among biological factors, is learned from genomic expression profiles, within a static or

a dynamic schema. Friedman et al. [21] and Murphy and Mian [22] were among the
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first to apply a Bayesian structure learning strategy on time-series data, trying to

capture transcriptional dynamics in the temporal domain. The limited number of

monitored time points is nevertheless statistically insufficient for reconstructing

even a moderately-sized network, making this approach not suitable for human

genome-wide transcriptional networks. Other methods [20, 23, 24] have focused

their learning procedure only on static gene expression profiles that could produce

unreliable biological transcriptional regulations, due to the noisy nature of this ex-

perimental source. Moreover, learning networks from a single data type gives a

partial picture of the regulatory mechanisms, affecting the truthfulness of inferred

results [25]. Data integration can overcome these limitations, allowing to build

more accurate models, that are less prone to overfitting and more robust to noise

and parameters perturbation [26].

To this aim, BNs provide an ideal probabilistic framework to handle heterogeneous

data integration, and to incorporate biological functional information into the model as

prior knowledge. Several structure learning methods have been tested to include prior

knowledge in their search process, since the reconstruction of regulatory networks is

computationally expensive [27, 28]. For instance, Imoto et al. [29] and Werhli et al.

[30] represented biological priors in terms of energy function to evaluate the fitness of

each learned network to the prior structure. Hartemink et al. [31], instead, included

genomic location data as a model prior, forcing the search procedure to add arcs in a

specific position, and discarding all graphs lacking these recommended edges. However,

application of these algorithms is limited to small networks due to their complexity and

high computational cost [32].

In this work, we present a data fusion approach for learning transcriptional Bayesian

Networks in a high-dimensional space, exploiting heterogeneous omics-data integration,

to determine the transcriptional architecture on a genome-wide scale. Our method im-

plements a hybrid structure learning algorithm able to draw structural priors from

Chromatin ImmunoPrecipitation followed by deep sequencing (ChIP-Seq) data. This

type of epigenomic data produces a binding profile for each considered TF, consisting

of all the target genes for which the TF is the transcriptional regulator. The integration

of multiple genome-wide TF binding profiles allows reconstructing the circuitry of a

regulatory network which captures the natural directionality of transcriptional flow.

Moreover, the algorithm exploits integrated gene expression data as evidence for both

assigning prior probabilities to each individual transcriptional relation, and for learning

the model parameters during its search process. This multi-layered -omics data integra-

tion can reveal topological hierarchies as a reflection of the transcriptional impact on

gene regulation, which, to our knowledge, have not been investigated with a Bayesian

learning strategy on a genomic scale.

We apply our novel framework to a chronic myeloid leukemia (CML) ChIP-Seq data-

set, for gathering a data-driven prior knowledge to model the underlying transcriptional

genomic interplay, whose overall structural consistency was further assessed through

existing networks within the hematopoietic context. The performance of the proposed

approach is then evaluated with other inference methods using as a benchmark a

literature-derived transcriptional network of the yeast Saccharomyces cerevisiae that,

for our purpose, is the only eukaryotic TRN available as gold standard with transcrip-

tional cooperation level sufficiently complex if compared with ours.
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Results
We applied our data fusion approach to a Chronic Myeloid Leukemia (CML) dataset,

using data-driven prior knowledge gathered from the integration of TFs ChIP-Seq

binding profiles, in order to prove its ability to handle a real genome-wide transcrip-

tional network. Given the noise linked to this experimental data source, we then tested

the robustness of our hybrid learning algorithm to incorrect prior information, evaluat-

ing it on a gold standard regulatory network, from yeast Saccharomyces cerevisiae, and

comparing its learning performance to other inference strategies, as described in the

Methods section. Moreover, to further assess the structural consistency of the CML

transcriptional model, we examined its regulatory patterns comparing them to other

hematopoietic networks derived by another class of inference methods, which use DNA

sequence information to predict TF regulations [6, 9].

Performance assessment on high-throughput data

CML dataset

A collection of 65 TFs ChIP-Seq alignment data was retrieved from the Encyclopedia of

DNA Elements (ENCODE) database [33] for the CML reference cell line K562. The bind-

ing profile of each TF was obtained through a bioinformatics pipeline, which included

MACS2 peak calling [34], replicates consistency evaluation and peak-to-target assign-

ment, in order to evaluate the statistical significance of the detected binding signals along

the genome and to identify target genes. To further assess the consistency of the TF-gene

interactions, each regulatory relationship was quantitatively weighted through a score-

based method, which reflects the confidence of the considered binding event [35], discard-

ing spurious interactions. The computational integration of all of the obtained genome-

wide TFs profiles generated a genomic TRN composed of 20,876 nodes (65 TFs and 20,

811 target genes), and 478,558 directed edges. Each edge was also weighted, using the

score previously mentioned as a measure of the binding strength.

As first step, we dissected this genomic network into a TF-TF Component, character-

ized by 1827 edges between the 65 TFs, and a TF-Genes Component, which included

the remaining network edges. Applying the BN design process (see Methods Section -

Bayesian model definition) to the TF-TF Component, all weights (i.e. binding scores)

associated with the arcs were sorted in decreasing order and evaluated within an itera-

tive process aimed at finding a minimal connected directed acyclic graph (DAG). We

obtained a whitelist of 1763 transcriptional relations and a DAG defined by 65 nodes

and 64 interactions. This DAG was then combined with the TF-Genes Component to

obtain a genomic transcriptional BN (TBN).

As a second omics data source, a compendium of microarray data from 122 CML pa-

tients was generated through the integration of five GE datasets, retrieved from GEO and

ArrayExpress databases (GEO accessions GSE13159 [36], GSE47927 [37], GSE24739 [38])

(ArrayExpress accessions E-MTAB-2581 [39], E-MEXP-480 [40]). These data were nor-

malized with the Robust Multi-array Average (RMA) technique [41], retaining the expres-

sion of those genes expressed in all the considered experiments. The TBN and the related

whitelist were then integrated with this genomic expression panel and only relations

among nodes for which the expression information was available were retrieved. The pur-

pose was achieving a fully observable network, whose underlying distribution will be
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modeled as a joint multivariate Gaussian, where the conditional density of each variable

given its regulators can be represented as a linear Gaussian model (see Methods Section).

The resulting BN consisted of 11,986 nodes (of which 60 TFs) and 282,533 edges rep-

resented the initial structural input of our hybrid learning algorithm, together with the

TF-TF arcs whitelist (1587 edges) for which the Pearson correlation between each TFs

pair was estimated. After 100 runs of the algorithm, we collected 100 transcriptional

BN models; the computational time required for learning all the obtained genomic net-

works on a single multi-core machine is shown in Fig. 1.

In order to obtain a transcriptional consensus BN and find consistencies across the

learned structures, we estimated the robustness of each TF-TF edge from all the

learned networks as a weight using Eq. (8), in order to rank these transcriptional rela-

tions, following the approach described in Methods Section - Consensus Transcrip-

tional BN definition. We chose as a strict confidence threshold the weight value

corresponding to the 5th percentile of the arcs weights distribution, to avoid the inclu-

sion of edges with low confidence. The resulting consensus network was defined by 70

TF-TF edges; of these, 6 were present in the initial DAG but their directionality in the

final TBN was reversed by the algorithm, as an effect of TRN regulatory loops.

The connectivity of each consensus node was then analyzed computing topological

statistics as out-degree and in-degree that evaluate the number of incoming and out-

coming edges for a node, respectively. In particular, these measures were used to calcu-

late for each TF the hierarchy height metric [6], to topologically mine the chain of

command underlying the transcriptional flow of the network. We identified a three-

layered hierarchy, as illustrated in Fig. 2 (II), representing the regulator activity of dif-

ferent TF classes, composed of 20 master regulator TFs, at the top, 16 brokers or mid-

dle managers, and the remaining 24 workhorses TFs, at the bottom.

Fig. 1 Performance evaluation of the hybrid structure learning algorithm on CML network. The execution
time of the search strategy to learn the BN model structures is plotted against the number of edges of
each learned genomic network
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This hierarchical organization was not detectable in the initial TF-TF component, de-

rived from the sole integration of ChIP-Seq binding profiles, and due to the intrinsic

complexity and compactness, the network has a typical “hairball” representation, as

shown in Fig. 2 (I). As demonstrated by its high average node connectivity [42] (kðTF
TFComponentÞ =20), all nodes are consistently interconnected to each other without a

specific topological order. Clearly, the resulting regulatory schema emerged thanks to

the transcriptomics data integration within the structure learning framework, where

gene expression guides the learning phase in two steps of the algorithm search process.

First, the sampling process is led by the arc extraction probability equivalent to the

Pearson correlation calculated between each TFs pair, ensuring that edges tied to high

correlated TFs have a greater probability to be included in the structural model, as re-

ported in Supplementary Figure 2 in Additional File 1. Second, during the learning of

the model structure, gene expression values were used for the estimation of parameters

which define the probability distribution of each node given its parents regulators, as

explained in Methods Section.

Robustness evaluation to false prior information

Benchmark datasets

We retrieved all available transcriptional regulations in yeast among known TFs and

target genes, which map to verified Open Reading Frames (ORFs), from the YEAS-

TRACT [43] and Saccharomyces Genome Database (SGD) [44] repositories.

We used the normalized data from Spellman et al [45] as gene expression (GE) infor-

mation, considering only those genes identified by the authors as cell-cycle regulated,

and with a missing values rate less than 10%. We performed a k-nearest-neighbor im-

putation, obtaining a final complete dataset of 473 cell-cycle related genes expressed in

77 samples.

Fig. 2 Comparison of transcriptional interactions models. Panel (I). Transcriptional regulations characterizing
the TF-TF Component derived from ChIP-Seq data integration. Panel (II). Transcriptional hierarchy underlying
the Consensus Bayesian Network. The color intensity and the size of TFs nodes are proportional to the
incoming connectivity (e.g. small size combined with a darker color for a high number of incoming edges)
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Combing the validated transcriptional binding information with GE data, we defined

as ground truth a yeast regulatory network (yTRN) composed of 33 TFs and 437 target

genes, and 3299 transcriptional regulations, 249 of which were TF-TF interactions.

To test the robustness of our method to incorrect prior information, we randomly

added an increasing number of false edges to the yTRN, from 10 to 60% of the total

number of TF-TF regulations. We considered each known interaction as true positive

(TP), and every additional incorrect arc as false positive (FP). The performance of our

method compared to the one of BANJO (Bayesian network interference with Java ob-

jects) [46] and ARACNe-AP [47] was evaluated for each FPs percentage, considering

both the number of false edges included in the final model, and the fraction of true in-

teractions among all inferred ones (precision). BANJO is a structure learning algorithm

which, combining simulating annealing and a greedy search, finds and scores candidate

networks inferring them from discretized expression data. ARACNe-AP uses instead

the mutual information metric estimated from gene expression data input and data

processing inequality to infer relations from a predefined list of TFs to their targets

(see Competing Methods).

The yTRN underwent the BN definition procedure and was decomposed into a TF-

TF Component of 33 TFs and 249 interactions, and a TF-Genes Component with 470

nodes and 3050 interactions. Using the option for unweighted transcriptional data, the

TF-TF component was submitted to the iterative process, and a DAG with 33 nodes

and 32 TF-TF interactions was then obtained. Combining it with the other Component,

we defined the structure of the initialized model, consisting of 470 nodes and 3082

edges. This starting TRN and the arcs whitelist, whose dimension varied according to

the considered FP rate, were used to test the proposed approach in all of the six incor-

rect prior conditions. We collected 100 learned transcriptional BNs for each tested FP

percentage, and we evaluated the computational performance of our learning method

on them, considering the time used by our algorithm to learn all the obtained networks,

as illustrated in Fig. 3. The average computational time estimated on the total number

of transcriptional BN models for all FP levels varied from 1.61 min to 2.00 min.

We then applied the “consensus” approach, described in Methods Section - Consen-

sus Transcriptional BN definition, on each set of learned networks. For all the analyzed

FP percentages, we selected the 25th percentile of the arcs weights distribution to find

the confidence threshold for including only high confidence arcs in the related yeast

Consensus BNs. The performance of our algorithm throughout all tested FP levels is

reported in Table 1A and in Supplementary Figure 1.

BANJO was evaluated in each incorrect prior scenario taking as input data the discre-

tized GE yeast dataset, the same initial DAG structures exploited by our approach on

the yeast dataset, and a blacklist, to avoid gene-gene interactions and unrealistic regula-

tions from genes to TFs. We ran BANJO using default parameters, and a fixed search

time (5 h) as a stop criterion. All results are summarized in Table 1B.

ARACNe-AP cannot be evaluated under these incorrect prior conditions since

it infers the network structure using GE data and a list of regulators (the consid-

ered 33 yeast TFs). Its Consensus network was obtained after 100 bootstraps

from gene expression samples, using a MI threshold of 0.2989 estimated on the

provided GE data. The number of FP edges calculated on the total consensus arcs

is shown in Table 1C.
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Fig. 3 Performance evaluation of the hybrid structure learning algorithm on yeast network. For all the
considered FP levels, we analyzed the execution time of the search strategy to learn the BN model
structures, comparing it to the number of edges of each learned network

Table 1 Summary of all results obtained from the comparison of described methods: (A) Data
Fusion approach, (B) BANJO and (C) ARACNe-AP

Tested FP rate Consensus BN size (#of edges) % FPs added Precision

A. Data Fusion
Performance Results

10% 50 8% 0.92

20% 58 12% 0.88

30% 56 10% 0.88

40% 60 12% 0.88

50% 69 11% 0.88

60% 76 12% 0.88

B. BANJO
Performance Results

10% 69 60% 0.41

20% 69 60% 0.41

30% 69 60% 0.41

40% 69 40% 0.59

50% 69 40% 0.59

60% 69 60% 0.41

C. ARACNe-AP
Performance Results

1003 70% 0.3
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Comparing the Data Fusion (DF) approach with BANJO, which, as our method, ex-

ploits prior knowledge for guiding the learning phase, DF showed a higher precision

and robustness despite the progressively higher FP rate included in each prior. More-

over, it does not require a blacklist, as instead for BANJO, to avoid the inclusion of

unreliable regulations (i.e. relations from gene to TF), that, for this benchmark interac-

tome of moderated size is composed of 205,391 edges. Clearly, for a genomic network

with thousands of nodes, the blacklist definition composed of all relations from genes

to TFs and from gene to gene would become more computationally onerous. DF out-

performed also ARACNe-AP, which reached the lowest precision, highlighting how the

expression alone makes difficult to discriminate between a highly correlated regulator-

target gene pair and a true causal relationship. This learning method indeed relies on a

single data source, and the only “prior” allowed is the list of regulators among which

DPI procedure is applied to infer dependencies.

Comparison with other hematopoietic transcriptional networks

To further assess the effectiveness of our framework and the overall quality of our tran-

scriptional data-driven prior used for determining the final TBN structure, we next

examined the extent to which ChIP-derived transcriptional patterns agreed on existing

networks obtained with a different inference methodology class. Considering the

hematopoietic context, we compared our learned CML interactome with other networks

derived from K562 cell line data through inference methods that exploit genomic loca-

tions information to derive the network backbone [6, 9] but without a structure learning

schema. In this analysis, structural comparisons were performed evaluating all the tran-

scriptional relationships shared by common regulators among the considered networks.

DNaseI-footprinted hematopoietic transcriptional networks

We exploited the transcriptional network obtained from DNaseI footprints of K562 data

integrated with a predictive motif-based search of known TFs binding sites [9]. We ex-

tracted from this interactome all relations driven by the regulators in common with our

TFs set, constituting a subnetwork of 38 TFs nodes and 165 edges, as depicted in Fig. 4,

panel I. Considering all transcriptional dependencies shared by our ChIP-Seq derived regu-

lations and the resulting DNaseI subnetwork, we reached a structural regulatory homology

of about 60%, represented with blue edges in Fig. 4 (I), despite the difference of the applied

inference techniques. In this set of common arcs, transcriptional relations of the final TBN

are also included (red colored edges in Fig. 4 (I)). They represent high confidence arcs as a

result of the selection process to which they underwent within our framework. The choice

of transcriptional relationships is indeed determined by a trade-off between edge prior

probabilities and the inherent ability to explain expression of a target gene in the learning

phase of the hybrid algorithm and within the procedure for the consensus model outlining,

by a quantitative score as a strength measure of dependencies across all learned models.

Moreover, to further demonstrate the consistency of the transcriptional information

enclosed in our prior, the comparative analysis was extended considering cross-regulatory

interactions among the major transcriptional factors TAL1/SCL, SP1/PU.1, ELF1, HES1,

MYB, GATA1 and GATA2, which have been extensively characterized for their lineage

commitment role on hematopoietic cells [48, 49]. Examining the related networks
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obtained from the DNaseI footprinted interactome and our data, we obtained a structure

similarity of 59%, as shown in Fig. 5. For SP1/PU.1, ELF1, HES1 and MYB, we cannot

infer regulations (dashed grey arcs in Fig. 5), since we do not have the related ChIP-Seq

binding profiles. On the other hand, some transcriptional relationships reconstructed only

from our data (solid grey arcs in Fig. 5) are verified in literature within the hematopoietic

context. For example, GATA2 play an essential role for the maintenance and proliferation

of hematopoietic progenitor cells through tightly regulated interactions with other

hematopoietic-associated TFs, including HES1 [50, 51], TAL1/SCL and MYB [52–54],

patterns that, if altered, commonly lead to leukemogenesis. Another key factor is TAL1/

SCL whose regulatory circuit, in which ELF1 and MYB take part, directs the expression of

genes involved in the differentiation of blood cells types [48, 55–57]. These transcriptional

dependencies are instead absent in the DNaseI derived network, highlighting the limita-

tion of a knowledge-based transcriptional network reconstruction that, in this case, is con-

strained by the availability of known TF recognition sequences.

Given these considerations, we have also evaluated the subnetwork composed of all

transcriptional interactions involving TAL1/SCL, GATA1 and GATA2, for which the

binding profiles can be mined from both our data and the DNaseI derived network.

Examining common regulations from shared TFs, we gained a 63% of structural con-

cordance as represented in Supplementary Figure 3 in Additional File 1, and a 75% of

edges as further source of transcriptional information included in our prior but missing

in the DNaseI inferred regulations. Details about this analysis are reported in Add-

itional file 1 (Major hematopoietic regulators subnetwork comparison).

TF co-association based hematopoietic transcriptional network

In order to perform this comparison, we considered the transcriptional network recon-

structed from a TF co-association model learned from K562 ChIP-Seq co-binding

Fig. 4 Structural comparison of K562 data derived transcriptional networks. (I). DNaseI-footprinted
subnetwork. (II). TFs co association-based subnetwork. Common transcriptional dependencies are
highlighted with blue edges and with red edges if the relationship is also included in the final TBN model.
Orange bordered nodes are TFs considered only as targets in the TFs co-association network and not as
source regulators like in the TBN
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matrix with a discriminative machine learning approach [6]. Evaluating common regu-

lators between this network and our TFs group, we defined a core of 39 TFs and 464

edges, as depicted in Fig. 4, panel II, in which almost the entire interactions (~ 93%) are

shared between the considered transcriptional models. To further highlight this struc-

tural overlap, we have also investigated the underlying regulatory hierarchy using both

the hierarchical score, applied on the TFs co-association derived network, and the hier-

archy metric, used on our model. We obtained again a high degree of similarity in

terms of level assignment, confirming our structural regulatory diagram. Results of this

analysis are described in Additional file 1 (TF co-association based hematopoietic tran-

scriptional network: Hierarchical comparison).

Among common interactions, consensus relationships verified in the previous ana-

lyses were also supported by this comparison. TAL1-CEBPB-GATA2 are primary-

interacting partners of GATA1 which guide lineage-specific differentiation of

hematopoietic cells. GATA1 has been shown to recruit TAL1 at several erythroid en-

hancers [58], regulating gene expression after being directed to a distinct subset of gen-

omic binding sites in multi-lineage cells via its association with different complexes

containing master regulators such as GATA2, CEBPB and RUNX1 [59, 60]. Moreover,

GATA1 has a competitive behavior for the binding in regulatory complexes with

GATA2, with which it is frequently co-associated [61]. Together with MAX, these fac-

tors constituted a regulatory circuit involved in erythrocyte and myeloid differentiation

[62]. In addition to TAL1-CEBPB, another novel pairing CCNT2-HMGN3, identified

and validated in the Gerstein et al. study [6], is also present in our final model. The Ac-

tivator protein-1 (AP-1) complex consists of JUND-JUN-FOS factors, all of which are

known to form heterodimeric protein aggregates with each other, which promote

Fig. 5 Major hematopoietic TFs network comparison. Shown are regulatory networks comprising edges
among seven hematopoietic regulators derived by DNaseI footprints (left panel) and our proposed
integrative framework (right panel). Transcriptional relationships are red colored to indicate common
regulations or grey colored if they are specific for the considered network. Dashed grey arcs represent
dependencies for which binding data are not available
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myeloid differentiation, and genetic lesions affecting their expression have been associ-

ated to the leukemogenesis process [63, 64].

Furthermore, in the TF co association-based network, three of the 39 core TFs were

considered as targets (POLR2A, TBP and SETDB1, orange bordered nodes in Fig. 4, II)

and not as source TFs which can regulate other nodes like in our network, missing a

part of regulatory information. POLR2A and TBP are key component of the core tran-

scriptional machinery whose interaction with other hematopoietic co-regulators such

as CEBPB, SP1, RUNX-related factors can modulate gene expression programs during

myelopoiesis [65]. SETDB1 is instead a gatekeeper of tumor survival whose chromatin

remodeler role is recently emerged as a potential therapeutic target for immunotherapy

to avoid leukemic cells evasion from immune system [66, 67].

Discussion
In the era of ‘Omics’, data integration represents a challenging tool to deliver more

comprehensive insights into the biological system under study, helping to translate

novel molecular knowledge into improved disease understanding. In particular, going

deeper into cancer deregulated gene expression programs, investigating their first level

of regulation, where the transcriptional determinants act on a genome-wide scale, may

help to define the molecular signatures driving the patient’s phenotype. To this aim,

the development of a robust computational approach able to deal with omics data het-

erogeneity and with this biological complexity is mandatory.

In this work, we proposed a data fusion approach which exploits multi-layered gen-

omic data integration, allowing to model large-scale transcriptional networks within a

Bayesian formalism. Our hybrid structure learning strategy allows to use ChIP-Seq

transcriptional binding profiles as prior information, to both initialize the model struc-

ture and to constrain the search space. In particular, it models the natural directionality

of the transcriptional flow, also evaluating edges which belong to feedback regulatory

loops, and whose direction may be reversed by the algorithm. The learning procedure

also exploits gene expression (GE) data integration, which acts on the initial search

phase, (i) with the correlation, as a sampling probability tied to the arcs whitelist, allow-

ing that a higher correlation will be translated into a greater prior probability for a tran-

scriptional dependency to be included in the final model; and then (ii) on the

estimation of the model parameters, specifying how combination of TFs functionally

regulates the expression of their targets. We proposed a prior-based approach that it

first reconstructs the regulatory skeleton and then refines the network structure using

condition-specific expression data, prioritizing the underlying regulators. Using this

joint learning schema, we obtain increased accuracy of the reconstructed transcrip-

tional networks compared to those approaches which rely only on a single data source

(i.e. GE data), such as ARACNe-AP. Despite these inference methods are widely used,

as already pointed out [68], the expression alone makes it difficult to gain mechanistic

insight between a highly correlated regulator-gene pair and a true causal relationship

between them. In this framework, learnt models that are generated from each learning

run of the algorithm underwent to a “Consensus” definition procedure, which ensures

that only consistent dependencies appear in the final transcriptional model, reducing

the occurrence of weak relationships. In addition, the estimated correlation is converted
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in probability linked to each edge, as a further measure of ‘robustness’ of the considered

binding event.

We applied our data fusion method to a CML -omics dataset, to test its computa-

tional ability to learn a genomic transcriptional network and model its complex tran-

scriptional interplay. Although the mutational causative event of the considered disease

is known to be the BCR-ABL1 gene fusion, the underlying transcriptional architecture

has not been deeply investigated yet. Therefore, we wanted to mine the molecular

mechanisms linked to the considered disease maintaining a genome-wide overview. To

this end, we used integrated ChIP-Seq binding profiles from K562 cell line that is a rep-

resentative in-vitro model of the CML, combining the resulting functional readouts

with gene expression data from untreated CML patients, allowing to emerge only dis-

ease linked processes. The proposed learning strategy enabled us to identify a stratified

hierarchy in the final consensus transcriptional Bayesian Network, representing the

overall system-level regulatory wiring, which was undetectable in the initial CML tran-

scriptional network. Indeed, the starting TRN, obtained from the integration of a single

data type, the ChIP-Seq binding profiles, showed a high compactness and a complex

connectivity, emerging from TF-TF interactions, due to the cooperative behavior of

TFs, difficult to translate into a meaningful biological inference. The three-layered hier-

archy instead can be interpreted as the effect of regulator impact of different TF classes

(master regulators, middle managers and workhorses) on gene expression cellular pro-

grams, since the learning phase of the hybrid algorithm is driven by the transcriptome

expression. These specified TF levels collectively control the non-regulator gene targets,

lying in a lowest fourth layer that, due to its large size, cannot be graphically showed.

The correlation between the topological and functional aspects of TF, established

within this hierarchy in a genome-wide perspective, represents an interesting novel

result for the considered disease that could be further experimentally investigated. A

pivotal role of the epigenetic regulation is also emerged from these transcriptional in-

teractions, whose importance and implications for leukemia have been recently empha-

sized [69]. Moreover, most of these transcriptional dependencies were confirmed in

other hematopoietic transcriptional networks differently inferred from K562 data

sources. For example, the SETDB1 TF that in this context has been topologically classi-

fied as a master regulator (MR), is characterize also by an epigenetic activity, regulating

gene expression via chromatin remodeling. Aberrant SETDB1 functionality and the

related altered epigenetic changes have been shown to promote silencing of tumor sup-

pressor genes, and thus contributes to enhance tumor growth and metastasis [70].

Moreover, SETDB1 maintains hematopoietic stem cells, restricting the activation of

non-hematopoietic genes in normal conditions [71] while, when deregulated, it enables

leukemia cells to evade innate immune controls allowing them to expand [66]. Our re-

sult highlights the importance of this TF, confirmed by its emerging role as a promising

therapeutic target for several types of cancer [72, 73], including other forms of acute

and chronic leukemia.

Another MR, the CEBPB TF, within the hematopoietic system is effectively indicated

in the literature with as playing the role of MR, expressed at high levels to regulate

genes involved in immune and inflammatory responses. Under stress conditions, such

as cancer microenvironments, CEBPB is involved in BCR–ABL1 mediated myeloid ex-

pansion and leukemic stem cell exhaustion in the CML chronic-phase [74]. The MR
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ZNF143 was observed to bind CEBPB and other C/EBP factors, whose interactions are

required for a balanced expression in myeloid cells and for granulocytic differentiation

of myeloid progenitors [75]. Members of the Jun family (JUN and JUND), that are key

subunits of the transcription factor AP-1, are designated as MRs in healthy and cancer

cells [76], given their crucial role in cell cycle progression, differentiation and pro-

grammed cell death. Not surprisingly, they are frequently overexpressed in leukemia,

and their leukemogenesis actions are BCR-ABL1-induced [77]. Despite RAD21 and

SMC3 TFs belonging to the same cohesin complex involved in DNA damage repair

and whose composing genes are frequently mutated in myeloid neoplasms [78], these

regulators are located at different network layers as a result of their different effects on

their regulating modules. The same observation can be drawn for the heterodimeric

complex composed of MAX and MYC genes, situated in the central and lower part of

the hierarchy, representing their sequential recruitment necessary for regulating

hematopoietic homeostasis [79]. Furthermore, MYC maps in the same layer of YY1, an-

other known cooperating partner, whose expression alteration impacts on the MYC

oncogene function. CTCF also co-localizes with RAD21 and together with SMC3 are

commonly associated with insulator elements to mediate long-range interactions affect-

ing the higher-order chromatin structure [80]. SMARCB1 and SMARCA4 interacting

TFs lie in the same hierarchical level; both belong to the SWI/SNF complex as chroma-

tin remodelers, playing an important function in pluripotency and cellular reprogram-

ming. Recently, their involvement in maintaining oncogenic gene expression program

in myeloid leukemia, in particular for the tumor suppressor SMARCB1, have been

demonstrated [81]. GATA1 and GATA2 are two fundamental TFs which play a crucial

role in gene regulation during development and differentiation of hematopoietic cells.

They belong to the same hierarchical layer, reflecting their sequential molecular re-

cruitment; it is indeed know that GATA2 binds the promoter region of GATA1 whose

expression can be repressed in the hematopoietic stem and progenitor cells [53]. ATF1

is a master regulator, as detected in our model, often traslocated or overexpressed in

blood malignancies, promoting leukemic cells expansion and resistance [82]. TBL1XR1

is a factor required for the activation of multiple intracellular signaling pathways im-

portant for hematopoietic cells fate, not surprisingly identified in this context as master

regulator. A variety of genomic alterations was identified on this gene in several forms

of leukemia, and its loss observed in recent studies has been proposed as a potential

therapeutic target [83]. E2F4 and E2F6 play an essential function in specifying lymphoid

subtype, orchestrating the activation of essential cell cycle progression genes and other

key TFs, such as EBF1, required for normal and malignant B-lymphocyte development

[84, 85]. Moreover, these E2F proteins have been found to co-associate with HCFC1/

HCF-1, another TF that, in our hierarchy, was classified as master regulator, inducing

histone methylation and transcriptional activation and contributing to leukemogenesis

[86]. Recently, it has been shown that expression of the BCLAF1 MR is increased in

leukemia blasts relative to normal precursor populations and suppression of this TF

highlighted its potential in neoplastic self-renewal program, causing reduced prolifera-

tion and leading to induction of differentiation to a dendritic cell fate [87, 88]. HMGN3

belongs to a family of chromatin remodeling proteins that are enriched in aggressive

cancers and stem cells, due to their role in maintaining nuclear organization critical for

stem cell properties, both during development and oncogenesis. These factors are

Sauta et al. BMC Bioinformatics          (2020) 21:219 Page 14 of 28



frequently overexpressed in leukemia, enhancing aberrant gene transcription [89, 90].

Underlying this proposed regulatory schema clearly emerged a key role of the epigen-

etic regulation, whose involvement in leukemia-related processes has become of clinical

relevance in the last years.

We then benchmarked our procedure against the yeast transcriptional network, dem-

onstrating the robustness of the method to an increasing amount of false positive prior

information that can also interpreted as a noisy source, intrinsic characteristic of ex-

perimental data. The validation of our procedure was performed only on the yeast data-

set, because only a few experimentally verified eukaryotic transcriptional networks are

commonly available as gold standards, like yeast S. cerevisiae and E. coli. This last one

has a transcriptional network not sufficiently large and complex to apply our hybrid

learning strategy, since the TF-TF counterpart with 214 TF-TF interactions annotated

with strong evidence in RegulonDB database [91] is poorly enriched of TFs coregula-

tions. The proposed data fusion technique is tailored for investigating complex tran-

scriptional networks enriched of many coregulatory interactions, as human

transcriptional networks, since these co-binding events are initially exploited by the al-

gorithm to define its structural priors and the Bayesian model, and during the learning

phase to add or reverse an existent arc. This implicates that the final probabilistic

model will include only high confidence and consistent relations across all learned

structures, as a selection of all initial coregulations.

Given the peculiarity of the proposed structure learning strategy, it is difficult to find

similar published approaches for the validation process. Despite some common fea-

tures, we excluded a recent Bayesian structure learning tool, bnlearn, since it forces

arcs designed as structural prior (specified through a whitelist) to be included in the

final model, preventing the addition of any other extra transcriptional regulation. For

these reasons, we performed a comparison with the hybrid search algorithm imple-

mented in BANJO, and with ARACNEe-AP, an ARACNe based approach for recon-

structing transcriptional regulatory network. Our algorithm outperforms both methods,

producing a significant improvement in structural accuracy, even with a progressively

higher FP rate.

ARACNe-AP bases its structural reconstruction only on a single source of data (GE

data), and this penalizes the correctness of the inferred transcriptional relations, 70% of

which are FP predicted interactions. On the other hand, BANJO allows specifying a

structural prior, but its implemented constraints and parameters, whose setting is not

trivial (i.e. initialTemperature, coolingFactor, reannealingTemperature, etc.), does not

enable to perform an accurate learning.

From a computational perspective, our approach is fast and scales well, thanks to its

search method, particularly appropriate for parallel computation, and for the learning

phase, based on local learning, while most Bayesian reconstruction methods, which use

prior knowledge, are not practical for large networks. Our algorithm does not constrain

the number of interacting variables or the maximum number of parents for each vari-

able, as done in other methods [31, 92] and in BANJO, for which is advised to set this

threshold less than seven, due to memory requirements needed for the learning. More-

over, it does not require a list of forbidden arcs (blacklist), like BANJO or bnlearn,

whose definition for large-scale transcriptional networks is equivalent to 2n (where n is

the number of genes) interactions to exclude.
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This data fusion method is designed to exploit data integration at different levels ana-

lyzing the resulting combined information in a unified framework, to gain insights into

molecular signatures potentially driving disease phenotypes. In this study, we used

high-throughput genomic datasets as the case of greatest complexity to present the

ability of the approach in handling genome-wide transcriptional networks, whose mod-

eling represents a novelty in the field of Bayesian structure learning algorithms.

The proposed methodology was conceived to use a genomic transcriptional interac-

tome, classically enriched of co-regulations among TFs, as a primary integrative source

for Bayesian model initialization and structural priors definition. Interactions among

TFs, the main property of transcriptional networks, is the only feature required for the

input transcriptomics data, making the learning algorithm highly adaptable to different

transcriptional sources that infer TF binding events either with a direct approach (e.g.

ChIP-Seq) or with an indirect one. Indeed, given the experimental heterogeneity and

availability of published transcriptional data, the starting transcriptional network can be

built in different ways, not only pooling together several ChIP-binding profiles, as was

done in this study, but for example integrating ChIP data with TF-TF regulations de-

rived from biological interactions databases such as STRING [93] or BIOGRID [94], or

with motif-based search to find core regulators of the network, also combined with ac-

cessible chromatin profiles obtained from ATAC-Seq and DNase-Seq assays. The

adaptability of our prior-based approach allows to integrate different –omics types of

regulatory evidences to infer a genome-wide transcriptional network, whose structure,

defined by TF dependencies, is then refined with condition-specific expression data,

performing a comprehensive characterization of the potential factors driving disease

transcriptional signatures.

Conclusions
In this work, we proposed a data fusion-based approach that, exploiting -omics data in-

tegration, is able to reconstruct genome-wide transcriptional networks and, using

Bayesian modeling, enables a probabilistic assessment of the underlying structure

within the hybrid learning algorithm. An innovative aspect of our method is that the

structural properties of the initial reconstructed network are defined from ChIP-Seq

data and are used as prior knowledge. Combining such informative priors with a search

and score schema both at the local and global levels of the structure model, the algo-

rithm efficiently handles genome-scale networks. Moreover, the “consensus” approach

allows including only high confidence learned interactions in the final transcriptional

BN.

We studied the transcriptional landscape of chronic myeloid leukemia, which, to our

knowledge, has not been investigated at a genome-wide level with a multi-layered

Bayesian framework. The obtained findings demonstrate that our method uncovers in-

teresting transcriptional interactions, relating the effective regulatory impact of TFs on

gene expression with topological network properties.

The validation results showed the robustness of the proposed approach to noisy data,

such as omics sources, and to prior knowledge with limited reliability, here given as in-

creasing fractions of false transcriptional interactions in the priors.

The developed method is divided into well-defined steps in order to be applicable to

other case studies, e.g. adapting the iterative procedure for finding the initial DAG to
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weighted or unweighted arcs while the TRN reconstruction phase, or the score thresh-

old as ending criterion of the learning algorithm, varying the sampling edges set size, or

the confidence threshold for the “consensus” approach.

This makes the developed data fusion approach an ideal framework for integrating

potentially noisy complementary data, and a data-driven platform for transcriptional

regulatory network inference.

Methods
In this section, we present our data fusion approach, whose main steps are depicted in

Fig. 6. Its multi-step procedures rely on –omics data integration, exploiting data com-

plementary to jointly investigate transcriptional regulations at genomic level under a

unified Bayesian framework. The proposed method firstly uses ChIP-Seq data to recon-

struct a genomic regulatory skeleton, from which the implemented hybrid algorithm

draws structural priors and evidence from integrated expression data to probabilistically

assess the transcriptional network structure. The final evaluation on transcriptional re-

lations obtained from all the learned models ensures that only consistent dependencies

will characterize the final transcriptional Bayesian model.

The following sections provide a description of the aforementioned Bayesian frame-

work in which our developed hybrid algorithm lies, of its structural constraints defin-

ition and of the learning strategy.

Bayesian modeling framework

A Bayesian network model is a graphical representation of the joint probability distri-

bution of a set of random variables X = {X1,…, Xn}. The encoding of this probability dis-

tribution is defined by a network structure S and a set of model parameters Θ, which

Fig. 6 Overview of the Data Fusion approach. The procedure is structured on three main parts defined as
(i) the reconstruction of the transcriptional network and its Bayesian modelling (upper panel), (ii) the model
integration with transcriptomics data for its probabilistic assessment through the hybrid structure learning
algorithm (central panel), and (iii) the consensus definition process aimed at identifying high confidence
interactions among all learned transcriptional dependencies
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describe the probability distribution of model’s variables [95]. Model structure S is rep-

resented as a directed acyclic graph (DAG), whose vertices (or nodes) are the random

variables, and whose conditional dependencies are described by directed edges. In par-

ticular, each variable is assumed to be independent of its non-descendants given its set

of parents, denoted as pa(Xn). Under this Markov assumption, the joint probability dis-

tribution of all nodes of the model is given as

P Xð Þ ¼
Yn
i¼1

P Xið jpa Xið Þ ¼
Yn
i¼1

θXijpa Xið Þ ð1Þ

where each variable Xi is described by a set of parameters (θi) which defines the vari-

able distribution conditional on its parents.

Within our transcriptional network context, a BN model represents the regulatory re-

lationships among transcription factors (TFs) and from TFs to genes. An edge denotes

an observed transcriptional regulation relationship between the considered nodes. All

the variables of the model are real valued, and the joint distribution is assumed to be a

multivariate Gaussian [96]. The conditional density of each variable Xi given its parents

pa(Xi) = {U1,…,Uk}, can be represented as a linear Gaussian model Eq. (2).

P Xiju1;…;ukð Þ � N a0 þ
X

i
ai∙ui; σ

2
� �

ð2Þ

That is, Xi is normally distributed around a mean that depends linearly on the values

of pa(Xi); the variance of this Normal distribution is independent of the parents’ values.

In this representation θXijfu1;::;ukg ¼ <; a0;…; ak ; σ>.
Given a dataset D = {D1,…,Dn} where D is an instantiation of all the variables in X,

learning BN structure from D corresponds to finding a model structure that best fits

the observed data.

Finding the optimal BN represents an NP-hard (nondeterministic polynomial-time)

problem that has been approached with constraints-based and score-based structure

learning methods [97]. The former strategy exploits conditional independence tests to

construct a partially oriented graph, retaining or rejecting candidate edges; the latter

uses a scoring function to assign a network score reflecting its goodness of fit, which

the algorithm then attempts to maximize. Both strategies scale to large networks

poorly, because the number of possible graph structures or tests rises exponentially as

the size of the network increases.

Hybrid algorithms, which are another class of structure learning methods, combine

the characteristics of both aforementioned approaches to maximize their advantages.

Typically, they start with a constraint-based search to find the skeleton of the network

and then employ a score-based scheme to identify a high-scoring network structure.

Our algorithm follows this search and score paradigm, optimizing the learning in order

to manage genome-scale networks.

The hybrid Bayesian network structure learning algorithm

The learning procedure is preceded by two fundamental phases of omics-data fusion in

order to gather informative priors from genome-wide binding data and to define the

parameters space from integrated gene expression profiles.
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The starting point of this framework is a Transcriptional Regulatory Network (TRN)

obtained from the integration of TF binding data. It is defined as a directed graph

TRN = ⟨V, E⟩, where V is the set of TFs and genes vertices, and E is a set of ordered

pairs of edges composed in turn by two subsets, describing the regulatory interactions

between TFs (E1) and from TFs to genes (E2).

TRN ¼ V ; Eh iwhere
V ¼ TF1;…;TFi;G1;…;Gkf g

E ¼ E1 ¼ TF1;TF2ð Þ;…; TFi;TF j
� �� �

∀i∀ j; i≠ j
E2 ¼ TF1;G1ð Þ;…; TFi;Gkð Þf g

� 	

First, the TRN is converted into a Bayesian model, defining its structural constraints.

The obtained transcriptional BN is then integrated with an expression data compen-

dium, to achieve a fully observable network whose structure and parameters will be

learned by our algorithm.

Bayesian model definition

The Bayesian learning procedure starts from an initial directed acyclic graph (DAG),

which does not allow loops. Transcriptional networks are characterized by many loops

of regulation, a typical characteristic of the dynamic crosstalk among TFs, through

which they modulate both the expression and the activity of other TFs [98]. Since the

TRN is enriched in these regulatory patterns, to match the acyclicity Bayesian con-

straint, the proposed approach exploits the property of TRNs, whose regulations can be

divided in turn in two subsets, defining the interactions between TFs and between TFs

and genes, respectively.

Fig. 7 Transcriptional BN definition. Decomposition of a genome-wide Transcriptional Regulatory Network
(TRN) allows to operate on the TF-TF Component, characterized by many regulatory loops, e.g. feedback
loop (as shown in the magnifying glass) to initialize the BN structure model and its structural constraints.
The obtained DAG is then combined with the TF-Genes Component to define a genome-scale
transcriptional BN
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T F−T FComponent

T FC ¼ <VT FC ;ET FC > where

(
ET FC ¼

VT FC ¼ fT F1;…;T Fig
fðT F1;T F2Þ;…; ðT Fi;T F jÞg ∀i∀ j; i≠ j

)

T F−GenesComponent

T FGC ¼ <VT FGC
;ET FGC

>where
(
VT FGC

¼ fT F1;…;T Fi;G1;…;Gkg
ET FGC

¼ fðT F1;G1Þ;…; ðT Fi;GkÞg

)

As shown in Fig. 7, the TRN is decomposed into its fundamental parts, in order to be

transformed into a BN: a TF-TF Component, consisting in TF-TF edges (which may con-

tain regulatory loops), and a TF-Genes Component, consisting of edges from TFs to genes.

The former then undergoes an iterative process aimed at initializing the model structure

and defining the priors of the algorithm, while removing loops. Within this scheme, the pro-

cedure first evaluates the edges between TFs, ranking and sorting them in decreasing order

if they are weighted, otherwise it shuffles all the arcs and assigns an equal weight to them.

The process then removes one arc at a time, starting from edges with lower weight (if arcs

are weighted), otherwise randomly extracting an arc, and checking, at every iteration, if the

TF-TF Component is still full connected. The procedure ends when at least a minimal con-

nected DAG is found. All the TF-TF edges excluded from this structure initialization consti-

tuted an arcs whitelist (W), which will represent the search space of the algorithm.

The resulting DAG is joined with the TF-Genes Component, to obtain again a gen-

omic transcriptional network, but designed as a Bayesian model (TBN). As a second

step, the TBN is then integrated with gene expression (GE) data, as shown in Fig. 8

below, in order to obtain a fully observable BN. This transcriptomic data source is also

used to calculate the correlation between TFs included in the whitelist, since this meas-

ure will be exploited as a sampling probability for each whitelisted arc extracted by the

hybrid algorithm and evaluated in the TBN.

Fig. 8 GE data integration of the transcriptional BN. GE data were integrated in the Transcriptional BN (TBN)
and in the related arcs whitelist, defining them as inputs to the search algorithm. The box on the right
highlights a peculiarity of the learning procedure, described in the Methods Section
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The structure learning strategy

The hybrid algorithm developed in the current study proposes a heuristic search over

the space of all possible structures derived from the whitelist, which encloses the in-

formative structure priors concerning the TF-TF relations. All steps of the learning

process are referenced below and are presented in Fig. 9, in which the pseudo code of

the algorithm, implemented in Matlab language, is reported.

The learning procedure is designed for parallel computing and it has been tested both

on a single multi-core machine (P7 CPU 4.0 GHz, 32 GB RAM) and on a high-

performance computing environment, the University of Florida HiPerGator 2.0 cluster

(52,000 cores, with 4GB RAM per core).

Fig. 9 Pseudo code of the hybrid algorithm for learning a transcriptional BN structure
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At each iteration, the algorithm randomly draws a set of arcs (w) (i.e. one hundred)

from the whitelist to test them in the transcriptional BN (step 5). This sampling process

is guided by correlation, which is exploited as an extraction probability associated to

each whitelisted edge. The algorithm adds every sampled arc, one by one, to the BN

model, learns the model parameters from gene expression (GE) data, and evaluates the

newly obtained BN using the Bayesian Information Criterion (BIC) scoring metric

(steps 6–7). Exploiting the decomposability property of this scoring function [99], the

score of a network (G) given the data (D) can be written as the sum of scores of indi-

vidual variables, where the score of each variable is calculated considering only the vari-

able and its parents, as reported in Eq. (3).

Score G j Dð Þ ¼
Xn
i¼1

FamScore Xi pa
G Xið Þ

 

D� � ð3Þ

In particular, since the TBN distribution is assumed to be jointly multivariate Gaussian,

the BIC score can be expressed in terms of the residual sum of squares (RSS)

BIC ¼ nlog RSS=nð Þ þ klog nð Þ ð4Þ

where n is the number of observations (the GE dataset size), and k is the number of pa-

rameters in the model.

Determining the optimal structure G* from a finite set of model structures requires

selecting a model that maximizes Eq. (3), as

G� ¼ argmax
G

Score Gð j DÞ ð5Þ

Assuming that each variable of the BN model is linearly dependent upon its continu-

ous parents, we consider the BN as the sum of all local models.

Thus, we modeled two BIC scores, a local one that is used to assess the local im-

provement in the network before and after a whitelisted arc addition, and a global one

which represents the BN score computed as the sum of all BIC scores from local

models, as shown in Eq. (6) and Eq. (7), respectively.

BIClocal ¼ ΔBIC ¼ BICold−BICnew ¼ nlog
RSSold
RSSnew

� �
−Δk� log nð Þ ð6Þ

BICglobal ¼
Xm
i¼1

BIC ð7Þ

where m denotes the number of local models composing the transcriptional BN.

The second term in Eq. (6) is a penalty term that takes into account the edge

changes; since many of the whitelisted arcs come from TRN regulatory loops, the algo-

rithm can add a new arc between two nodes (Δk = 1) or reverse the directionality of an

existing BN arc (Δk = 0), as illustrated in the box of Fig. 8.

Our learning scheme is designed for parallel computing, allowing to test all the arcs

extracted from the whitelist simultaneously. The algorithm evaluates all the computed

BIClocal, selects as best model the solution that maximizes Eq. (6) (step 8), and then in-

cludes the corresponding arc into the model (step 9). The BN structure and its new

score (BICglobalnew) are updated, and the process moves forward (steps 9–11) until the
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stop criterion (defined at the step 4) is met. The algorithm ends its iterations when the

new model score does not improve more than a fixed threshold compared to the score

of the previous network (BICglobalold). This threshold is estimated as 10 ∗ (BICglobal)
−1

calculated on the initial TRN, given as input of the hybrid algorithm.

The learning procedure also provides a strategy to prevent the search phase from get-

ting trapped in a local optimal network (steps 13–14). When the stop condition is veri-

fied, the algorithm tries to move out of this potential local minimum for 10 consecutive

times, combining an increased arc sampling size (wi) (for instance, if dim(w) = 100, the

dimension of wi is doubled as dim (wi) = 200) with a correspondingly augmented pro-

portion of arcs to test. We save the BICglobal computed on the model before starting

this procedure as BICglobalold; if in any of these steps the BICglobal for the new solution

(BICglobalnew) is not better than the BICglobalold, at the last iteration, the algorithm

stops, otherwise it accepts the new model structure and continues the search process.

At the end of each algorithm run, the heuristic procedure returns as output a learned

transcriptional BN.

Consensus transcriptional BN definition

In order to obtain a final robust transcriptional model including the regulatory depend-

encies consistently found across all the learned TBNs, as pointed out in [100], we de-

fined a “consensus approach” to identify structural consistencies among all the models

gained from several runs of the learning algorithm. We determined a confidence

threshold, as the minimum degree of confidence for an edge to be significantly ac-

cepted in a final Consensus Bayesian Network. For each learned TF-TF edge (eij), we

compute its strength (wij) considering the BN models (m), in which this transcriptional

relationship appeared, and their related scores (BICglobal).

wij ¼
Xn
m¼1

BICglobal mð Þ� � ð8Þ

Edges with high confidence (significant edges present in more than half of the learned

network structures, and in the best scenario, present in all the network structures) are

strongly weighted and more likely to be included in the final consensus model.

The percentile distribution of the edge weights combined with the edge frequencies

were used to rank all the considered arcs and to assess a confidence threshold, ensuring

that the obtained transcriptional consensus BN is acyclic and fully connected.

Competing methods

The peculiarities of our novel approach optimized for learning large-scale transcrip-

tional BNs make finding other similar methods difficult, especially in the class of hybrid

BN learning algorithms, which exploit prior knowledge, directed regulations, tran-

scriptomics and epigenomics data. To evaluate the performance of our method, we

selected the SAGA (Simulated Annealing with a Greedy Algorithm) algorithm [46], the

only approach with some common grounds with our strategy, and ARACNe (Algo-

rithm for the Reconstruction of Accurate Cellular Networks), which is the most widely

used technique for regulatory network reconstruction from gene expression data [101].

Another tool for learning BN structures and estimating their parameters is the R
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package bnlearn [102], which however cannot be used for our purposes. Bnlearn imple-

ments the Max-Min Hill-Climbing as hybrid algorithm, but to reconstruct the network

from GE data, it forces all the arcs of the structural prior, specified as a DAG within a

whitelist, to be included in the final network, preventing the addition of any other extra

transcriptional relationship. This constraint makes this approach not appropriate to

handle transcriptional networks, and in particular our type of whitelist given the pres-

ence of regulatory loops.

SAGA is a hybrid Bayesian learning algorithm, implemented in the BANJO (Bayesian

Network Inference with Java Objects) software [103], which combines Simulated An-

nealing with a greedy search, using Bayesian Dirichlet equivalence as a scoring metric

to evaluate the generated network. It allows arc addition and reversal, and the possibil-

ity to specify a structural prior as well as a list of forbidden arcs that must not be added

(blacklist) to the model. This method does not exploit an arcs whitelist strategy, but it

infers the network structure from discretized gene expression data. BANJO ends its

search when one of the termination criteria are met (i.e. fixed number of explored net-

works, search threshold time, maximum number of restarts reached), and returns as

output the learned network with the best score.

ARACNe is an information-theoretic based approach that implements Data Process-

ing Inequality on each connected gene triplet from the GE dataset, to remove the least

significant edge in mutual-information (MI) relevant networks. For our test, we used

the last version of this algorithm, ARACNe-AP [47], that works on reconstructing tran-

scriptional networks taking as inputs a GE dataset and a predefined list of regulators

(TFs). Its strategy consists of computing MI only for every TF/target pair, and recon-

structing MI networks from bootstrapped GE samples. A consensus network is then

generated from the significant edges detected across all bootstrap runs.
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