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Noninvasive left ventricular pressure-strain myocardial work in 
patients with well-functioning bicuspid aortic valves and aortic 
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Background: Noninvasive left ventricular pressure-strain myocardial work (MW) is a novel method for 
evaluating left ventricular function that integrates myocardial deformation and afterload and has certain 
advantages over global longitudinal strain (GLS). The study aimed to analyze MW in patients with well-
functioning bicuspid aortic valve (BAV) and explore the influences of aortic dilation and arterial stiffness on 
left ventricular function.
Methods: A total of 104 patients with well-functioning BAVs and 50 controls were enrolled in our study. 
Global work index (GWI), global constructive work (GCW), global wasted work (GWW), global work 
efficiency (GWE), GLS, and aortic stiffness index were measured. Based on the ascending aortic diameter, 
patients with BAV were divided into 3 subgroups (nondilated, mildly dilated, and moderately dilated). 
Results: GWI, GCW, GWW, and aortic stiffness index were significantly increased (P<0.001, P=0.023, 
P<0.001, and P<0.001, respectively), while GWE and GLS were significantly decreased among patients with 
BAV compared with controls (all P values <0.001). Patients with BAV and mildly and moderately dilated 
aortas had an increased GWW and aortic stiffness index but a decreased GWE compared with patients 
with BAV and nondilated aortas (all P values <0.05); meanwhile, GCW and GLS did not differ among 
the BAV subgroups (all P values >0.05). GWI was elevated in patients with BAV and moderately dilated 
aortas compared with patients with BAV and nondilated aortas (P<0.05). On multivariable analysis, the 
aortic stiffness index was an independent influencer of GWI, GCW, GWW, and GWE (P=0.025, P=0.049, 
P<0.001, and P=0.001, respectively). The aortic diameter was highly correlated with the aortic stiffness index 
(r=0.863; P<0.001). 
Conclusions: MW could assess early myocardial impairment in patients with well-functioning BAV. MW 
may help to differentiate the detrimental effect of aortic dilation on left ventricular function, whereas GLS 
may not.
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Introduction

Bicuspid aortic valve (BAV) is a complex and heterogeneous 
disease that can be understood fundamentally as a form 
of valvulo-aortopathy (1). Patients with BAV have altered 
molecular and/or metabolic characteristics in the aortic wall, 
with a loose attachment of vascular smooth muscle cells and 
a higher collagen content and matrix metalloproteinases 
(MMP)-2 expression even without significant valvular 
dysfunction (2,3). Therefore, approximately 70% of 
patients with BAV exhibit ascending aortic dilation and 
arterial stiffness alteration (4). Dilated ascending aorta and 
increased arterial stiffness may impair left ventricular (LV) 
systolic function through ventricular–arterial coupling (5). 
The related research has highlighted that accurate and early 
evaluation of myocardial function is important in patients 
with well-functioning BAV (6). Ejection fraction (EF) and 
global longitudinal strain (GLS) are the mainstay methods 
for quantifying LV function; however, they may be limited 
by the influence of loading conditions (7). Therefore, 
they may function less reliably as markers of myocardial 
function when the LV is under abnormal loading due to 
bicuspid aortopathy, as an increased afterload has already 
been proven to decrease strain (8). Noninvasive myocardial 
work (MW) derived from LV pressure-strain loops, which 
considers both deformation and afterload, is an advanced 
mode of assessment for LV myocardial mechanics. 
Moreover, noninvasive MW has been demonstrated to have 
a robust correlation with invasive MW, myocardial oxygen 
consumption, and local myocardial glucose metabolism 
(9,10), offering comprehensive information for myocardial 
performance. Nonetheless, research into noninvasive 
MW in patients with well-functioning BAV has thus far 
been scarce. Therefore, in this study, we attempted (I) to 
investigate the potential value of noninvasive LV pressure-
strain MW in patients with well-functioning BAV and 
(II) to examine the influence of aortic dilation and arterial 
stiffness on LV function.

Methods

Patient dentification

A total of 104 patients with BAV were included from 

Wuhan Union Hospital. BAV was diagnosed based on 
the left parasternal short-axis views, with the presence of 
2 commissures delimiting only 2 aortic valve cusps with a 
“fish mouth” appearance of the orifice during systole being 
visualized from transthoracic echocardiography (11). The 
definition of well-functioning BAV is less-than-mild aortic 
stenosis (mean gradient <20 mmHg) or regurgitation. The 
exclusion criteria were as follows: (I) patients with more-
than-mild aortic stenosis (mean gradient ≥20 mmHg) 
and/or aortic regurgitation and those with more-than-
mild mitral/tricuspid stenosis and/or mild mitral/tricuspid 
regurgitation; (II) patients with a history of cardiac-related 
interventions or revascularization procedures; (III) patients 
with genetic, hematologic, oncologic, or rheumatic diseases; 
(IV) patients with cardiac arrhythmias; and (V) patients with 
poor acoustic windows. In addition, 50 age and gender-
matched healthy individuals with tricuspid aortic valves 
were selected as controls. This study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013) and was approved by the Human Subjects Review 
Committee at Wuhan Union Hospital (No. UHCT22412). 
Individual consent for this retrospective analysis was waived.

Echocardiography 

All patients underwent comprehensive transthoracic 
echocardiography with a  commercia l ly  avai lable 
ultrasound machine (GE HealthCare, Chicago, IL, USA). 
Echocardiographic data from 5 consecutive cardiac cycles 
were stored digitally in cine-loop format with a frame rate 
>50 frames/s. All conventional echocardiographic parameters 
were measured according to guidelines established by the 
American Society of Echocardiography and the European 
Society of Cardiovascular Imaging (12). EF was estimated 
using Simpson’s biplane method, and LV mass was calculated 
using the relevant formula and indexed for body surface 
area. LV diastolic function was assessed using Doppler mitral 
inflow. The peak early diastolic (E), late diastolic (A) filling 
velocities, and the E/A ratio were calculated. Peak early (e') 
velocities were measured at the septal and lateral aspects of 
the mitral annulus. E/e' was calculated from the E velocities 
and the mean e' velocities obtained from the septal and lateral 
positions of the mitral annulus.
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Aortic diameter in systole (AoS) and diastole (AoD) 
were measured in a parasternal long-axis view leading 
edge to leading edge, 2–3 cm above the aortic annulus. 
The aortic stiffness index was calculated according to the 
ascending aortic diameter and the corresponding systolic 
blood pressure (SBP) and diastolic blood pressure (DBP) 
as follows: aortic stiffness index = ln (SBP/DBP)/[(AoS – 
AoD)] × AoD (13). Based on the ascending aortic diameter, 
patients with BAV were divided into nondilated (ascending 
aortic diameter ≤3.5 cm), mildly dilated (3.5 cm < ascending 
aortic diameter <4.0 cm), and moderately dilated (ascending 
aortic diameter ≥4.0 cm) (14,15).

Left ventricular strain and MW analysis

Workstation software (EchoPAC 204, GE HealthCare) 
was used to analyze cine-loop dynamic echocardiographic 
images offline. MW was quantified using the workstation’s 
semiautomatic software package, which determined aortic 
valve opening and closing times in 3-chamber views. In 
addition to the software’s automatic tracking detection, 
the tracking’s completeness was visually confirmed by 2 
experienced sonographers. If necessary, sonographers could 
adjust the region of interest by manually correcting the 
endocardial border or width. GLS was calculated from the 
average of the peak longitudinal strains in a 17-segment 
model.

The peak systolic LV pressure was assumed to be equal 
to the peak arterial systolic pressure based on the brachial 
blood pressure. After completion of the GLS analysis, the 
brachial blood pressure was input into the software package, 
which could automatically construct a noninvasive LV 
pressure curve based on the synchronizing longitudinal 
strain, blood pressure, and the time of valvular events. The 
4 following parameters of MW were derived.

(I)	 Global work index (GWI)—the total  work 
performed by the LV from the mitral valve closure 
to mitral valve opening, which was the sum of the 
MW;

(II)	 Global constructive work (GCW)—the work 
done by LV systolic myocardial shortening and 
isovolumic diastolic myocardial lengthening, 
considered to be the “positive” work contributing 
to LV ejection; 

(III)	 Global wasted work (GWW)—the work done by 
LV lengthening during systole and shortening 
during isovolumic diastole, considered to be the 
“negative” work of LV ejection;

(IV)	 Global work efficiency (GWE)—the percentage 
of total LV work that was useful to contractions 
during systole and relaxation during diastole, 
calculated as GCW/(GCW + GWW) × 100% (16).

Reproducibility of GLS and MW parameters

In the BAV cohort, 20 patients were randomly selected to 
verify the reproducibility of GLS and the MW parameters. 
Among them, intraobserver reproducibility was achieved 
by 2 experienced sonographers evaluating at least 2 weeks  
apart. These 2 experienced sonographers achieved interobserver 
reproducibility using the same method in a double-blind 
situation.

Statistical analysis 

Data analysis was performed using SPSS version 26.0 (IBM 
Corporation, Armonk, NY, USA) and GraphPad Prism 
version 9.0.0 (GraphPad Software, San Diego, CA, USA). 
The Shapiro-Wilk test verified the continuous values for 
the normality of the data distribution. Normally distributed 
continuous variables are expressed as the mean ± standard 
deviation (SD), and nonnormally distributed continuous 
variables are expressed as the median with quartiles. 
Categorical variables are expressed as absolute values and 
percentages. Comparisons of continuous variables between 
groups were performed using 1-way analysis of variance 
(ANOVA) or the Mann-Whitney test, with the Bonferroni 
correction test being used for multiple comparisons. 
Categorical variables were compared between groups using 
chi-squared analysis or Fisher exact test. The relationships 
between aortic stiffness index, MW parameters, GLS were 
calculated using linear regression analysis. Spearman rank 
correlation was used to calculate the association between 
the aortic diameter and aortic stiffness index. Intraobserver 
and interobserver variability were calculated using interclass 
correlation coefficient (ICC), with the excellent agreement 
being an ICC greater than 0.75. All tests were 2-tailed, and 
a P value <0.05 was considered statistically significant.

Results

Patients demographics and echocardiographic parameters

The study population consisted of 154 individuals:  
104 patients diagnosed with BAV (mean age 45.89±12.79 years;  
75% men) and 50 healthy controls (mean age 46.16± 
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9.97 years; 64% men). Demographics and echocardiographic 
parameters of the total BAV population and controls are 
presented in Table 1. Compared with controls, patients 
with BAV showed increased GWI, GCW, and GWW 
but decreased GWE and GLS (all P values <0.05). SBP, 
ascending aortic diameter, aortic stiffness index, and LV 
mass index in patients with BAV were higher than those in 
controls (all P values <0.05). 

Demographics and echocardiographic parameters of 
patients with BAV stratified by ascending aortic diameter 

Data on demographics and echocardiographic parameters 

in the BAV subgroups stratified by ascending aortic 
diameter are described in Table 2. GWW was increased, 
and GWE was decreased in BAV patients with mildly 
or moderately dilated aortas as compared with those 
with nondilated aortas (all P values <0.05), whereas 
GCW did not differ among the BAV subgroups (all 
P values >0.05). GWI was increased in patients with 
BAV with moderately dilated aortas compared with 
those with nondilated aortas (P<0.05). There was no 
significant difference in the GLS and EF between the 
BAV subgroups (all P values >0.05). The distributions 
of GWI, GCW, GWW, and GWE among the BAV 
subgroups are shown in Figure 1.

Table 1 Conventional baseline and echocardiographic parameters

Variables Control (N=50) All patients with BAV (N=104) P value

Age (years) 46.16±9.97 45.89±12.79 0.897

Men, n (%) 32 (64.00) 78 (75.00) 0.157

Heart rate (bpm) 74.08±9.13 75.40±10.22 0.438

Body surface area (m2) 1.66±0.17 1.70±0.17 0.213

Systolic blood pressure (mmHg) 120.66±8.00 124.22±10.61 0.037

Diastolic blood pressure (mmHg) 79.10±9.06 81.20±8.54 0.163

Hypertension, n (%) 0 (0.00) 30 (28.85) <0.001

Interventricular septum index (cm/m2) 0.45±0.07 0.47±0.11 0.105

End-diastolic volume index (mL/m2) 55.12±16.13 60.41±16.11 0.059

EF (%) 65.47±1.54 65.07±1.72 0.165

LV mass index (g/m2) 62.42±7.22 78.07±14.01 0.000

E/A 1.22±0.21 1.18±0.20 0.261

E/e' average 7.03±0.94 7.17±1.22 0.450

Ascending aortic diameter (cm) 3.08±0.26 3.76±0.68 <0.001

Ascending aortic diameter index (cm/m2) 1.87±0.21 2.23±0.44 <0.001

Aortic stiffness index (β) 3.97±0.36 5.30±1.50 <0.001

GLS (%) 22.07±0.53 19.42±0.92 <0.001

GWI (mmHg%) 1,749.34±95.74 1,838.47±113.14 <0.001

GCW (mmHg%) 2,096.46±121.29 2,159.20±173.85 0.023

GWW (mmHg%) 57.64±15.74 98.08±29.05 <0.001

GWE (%) 96.92±0.75 95.04±1.19 <0.001

Normally distributed continuous variables are expressed as the mean ± SD. Categorical variables are expressed as absolute values and 
percentages. BAV, bicuspid aortic valve; LV, left ventricular; EF, ejection fraction; E, peak early diastolic mitral flow velocity; A, late diastolic 
mitral inflow velocity; e', peak early diastolic mitral annular velocity; GLS, global longitudinal strain; GWI, global work index; GCW, global 
constructive work; GWW, global wasted work; GWE, global work efficiency.
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Linear relationship between stiffness index and MW 
parameters and GLS

The aortic stiffness index showed significant correlations 
with GWI, GCW, GWW, and GWE in a univariate 
linear analysis. In the adjusted multivariable analysis for 
confounding factors (age, sex, hypertension, SBP, E/A, E/
e' average, LV mass index, GLS, EF), the aortic stiffness 
index remained an independent influencer of GWI, GCW, 
GWW, and GWE (Table 3).

The distribution of GLS and ascending aortic diameter 
or the aortic stiffness index is shown in Figure 2. There was 
only a weak correlation between GLS and ascending aortic 

diameter (r=–0.346; P=0.001) or the aortic stiffness index 
(r=–0.328; P<0.001).

Association between aortic stiffness index and ascending 
aortic diameter

In the different BAV subgroups, the aortic stiffness index 
gradually increased with greater ascending aortic diameter 
(nondilated: 3.98±0.33; mildly dilated: 5.12±0.83; moderately 
dilated: 7.11±1.04). Figure 3 shows the correlation between 
ascending aortic diameter and the aortic stiffness index 
(r=0.863; P<0.001), with the scattering of values.

Table 2 Characteristics of patients stratified by ascending aortic diameter

Variables
Control  
(N=50)

BAV with nondilated 
aorta (N=39)

BAV with mildly dilated 
aorta (N=33)

BAV with moderately 
dilated aorta (N=32)

Age (years) 46.16±9.97 37.15±12.23! 50.58±12.01* 51.72±7.53*

Men, n (%) 32 (64.0) 31 (79.5) 25 (75.8) 22 (68.8)

Heart rate (bpm) 74.08±9.13 75.03±8.86 76.09±10.96 75.16±11.24

Body surface area (m2) 1.66±0.17 1.64±0.13 1.77±0.20!* 1.69±0.15

Systolic blood pressure (mmHg) 120.66±8.00 120.03±9.59 124.42±9.28 129.13±11.21!*

Diastolic blood pressure (mmHg) 79.10±9.06 77.85±8.02 81.97±6.60 84.5±9.61!*

Hypertension, n (%) 0 (0) 7 (17.9)! 10 (30.3)! 12 (37.5)!

Interventricular septum index (cm/m2) 0.45±0.07 0.45±0.09 0.46±0.10 0.52±0.11!*

End-diastolic volume index (mL/m2) 55.12±16.13 57.24±15.25 61.56±12.73 63.07±19.71

EF (%) 65.47±1.54 65.32±2.03 65.02±1.63 64.82±1.36

LV mass index (g/m2) 62.42±7.22 71.18±10.17! 78.46±14.26! 86.07±13.78!*

E/A 1.22±0.21 1.23±0.20 1.17±0.19 1.14±0.22

E/e' average 7.03±0.94 7.11±1.22 7.13±0.82 7.29±1.54

Ascending aortic diameters index (cm/m2) 1.87±0.21 1.88±0.22 2.16±0.26!* 2.73±0.30!*†

Aortic stiffness index (β) 3.97±0.36 3.98±0.33 5.12±0.83!* 7.11±1.04!*†

GLS (%) 22.07±0.53 19.62±0.93! 19.50±0.83! 19.10±0.94!

GWI (mmHg%) 1,749.34±95.74 1,794.95±101.03 1,849.85±91.21! 1,879.78±130.97!*

GCW (mmHg%) 2,096.46±121.29 2,106.69±189.60 2,181.82±134.60! 2,199.88±178.70!

GWW (mmHg%) 57.64±15.74 79.64±20.21! 97.48±23.68!* 121.16±27.32!*†

GWE (%) 96.92±0.75 95.77±0.84! 95.03±0.98!* 94.16±1.17!*†

Normally distributed continuous variables are expressed as the mean ± SD. Categorical variables are expressed as absolute values and 
percentages. !, P<0.05, significantly different from control; *, P<0.05, significantly different from BAV with nondilated aorta; †, P<0.05 
significantly different from BAV with mildly dilated aorta. BAV, bicuspid aortic valve; LV, left ventricular; EF, ejection fraction; E, peak early 
diastolic mitral flow velocity; A, late diastolic mitral inflow velocity; e', peak early diastolic mitral annular velocity; GLS, global longitudinal 
strain; GWI, global work index; GCW, global constructive work; GWW, global wasted work; GWE, global work efficiency.
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Figure 1 Myocardial work parameters of controls and patients with BAV stratified by ascending aortic diameter. *, P<0.05. BAV, bicuspid 
aortic valve; GWI, global work index; GCW, global constructive work; GWW, global wasted work; GWE, global work efficiency.

Table 3 Univariate and multivariate linear regression analysis of the aortic stiffness index for the myocardial work parameters

Variables
Univariable Multivariable*

Standardized beta 95% CI P value Standardized beta 95% CI P value

GWI 0.20 0.33 to 29.32 0.045 0.25 2.37 to 34.73 0.025

GCW 0.21 2.00 to 46.41 0.033 0.21 0.07 to 48.32 0.049

GWW 0.54 7.30 to 13.68 <0.001 0.37 3.22 to 10.99 <0.001

GWE −0.54 −0.56 to −0.29 <0.001 −0.36 −0.45 to −0.13 0.001

Univariate linear regression analysis of the aortic stiffness index and myocardial work parameters. *, multivariate linear regression analysis 
was adjusted for the conventional risk factors of age, sex, hypertension, systolic blood pressure, and echocardiographic parameters 
related to myocardial work parameters (E/A, E/e' average, left ventricular mass index, global longitudinal strain, ejection fraction). GWI, 
global work index; GCW, global constructive work; GWW, global wasted work; GWE, global work efficiency; E, peak early diastolic mitral 
flow velocity; A, late diastolic mitral inflow velocity; e', peak early diastolic mitral annular velocity.
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Reproducibility of GLS and MW analysis

Both the intraobserver and interobserver ICCs of the GLS 
and MW parameters exhibited excellent agreement. The 
ICCs for interobserver reproducibility for GLS, GWI, 
GCW, GWW, and GWE were 0.88, 0.80, 0.90, 0.79, and 
0.77, respectively; meanwhile, the ICCs for intraobserver 
reproducibility for GLS, GWI, GCW, GWW, and GWE 
were 0.91, 0.79, 0.85, 0.83, and 0.81, respectively.

Discussion

The primary findings of the present study can be 
summarized as follows: (I) the total BAV population showed 
impaired MW parameters, GLS, and aortic stiffness 
index as compared with the controls; (II) as aortic dilation 

increased in the BAV subgroups, aortic stiffness index and 
GWW increased while GWE decreased, whereas GLS did 
not differ significantly.

Valve dysfunction and aortic lesions characterize BAV. 
The latter is frequently accompanied by ascending aortic 
dilatation and altered arterial stiffness, a major determinant 
of dynamic LV afterload which affects myocardial  
function (5). In assessing myocardial function impairment, 
current risk stratification is primarily based on EF and 
GLS (17). However, EF and GLS load dependence–related 
limitations may misinterpret the true myocardial performance 
(7,18). The noninvasive MW developed by Russell et al. (19) 
incorporates systolic, diastolic, and isovolumic components, 
thereby overcoming the load dependency. Moreover, 
noninvasive MW can allow for the evaluation of wasted 
MW and subsequent work efficiency (20). Studies have 
demonstrated that noninvasive MW is a good diagnostic 
and prognostic indicator in different cardiovascular diseases 
(21-23). However, its application in patients with BAV has 
yet to be well elucidated.

MW in patients with BAV 

In our study, patients with BAV showed increased GWI, 
GCW, and GWW and decreased GWE compared with 
controls. The higher aortic stiffness index in patients with 
BAV than in controls could explain these results. The aortic 
stiffness index, a quantitative marker of arterial stiffness, 
is strongly related to rapid aortic dilation and future 
cardiovascular events (24). In a stiffened aorta, the pressure 
and flow waves generated by cardiac ejection arrive earlier 
in systole, augmenting the afterload of the ventricles in 
late systole (25). Moreover, the increase in afterload can 

Figure 2 The distribution between GLS and ascending aortic diameter or aortic stiffness index. GLS, global longitudinal strain.

Figure 3 Association between aortic stiffness index and ascending 
aortic diameter.

Aortic stiffness index (β)
0	 5	 10	 15

r=0.863
P<0.001

A
sc

en
di

ng
 a

or
ta

 d
im

en
si

on
s,

 c
m

6 

5 

4

3

2

r=−0.346
P=0.001

r=−0.328 
P<0.001

Ascending aorta dimensions, cm Aortic stiffness index (β)
0	 5	 10	 152 3 4 5 6

G
LS

, %

G
LS

, %

22 

21 

20 

19 

18 

17

22 

21 

20 

19 

18 

17



Tan et al. MW in BVA patients with aortic dilation 6524

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(10):6517-6527 | https://dx.doi.org/10.21037/qims-23-294

cause a short-term reduction in stroke volume. Thus, the 
LV pump function requires additional positive MW to 
compensate for this, which is reflected in higher levels of 
GWI and GCW. In addition, a stiffened aorta places the 
myocardium in prolonged abnormal load conditions, and 
ventricular–arterial coupling is altered to maintain normal 
cardiac output (25). More specifically, higher myocardial 
energy consumption is required to dilate the stiff artery. 
Hence, observations of increased GWW (LV work not 
contributing to myocardial ejection) and decreased GWE 
(a composite of the severity of the myocardial injury and 
LV function) are not surprising in the context of arterial 
stiffness (26). Furthermore, increased arterial stiffness may 
reduce coronary perfusion and elevate myocardial oxygen  
demand (27), compromising LV function. An impaired 
myocardium can result in asynchronous contraction and 
postsystolic shortening, thus leading to an increase in 
ineffective myocardial ejection (increased GWW) and 
impaired work efficiency (decreased GWE) (28). 

Our study additionally revealed the aortic stiffness 
index to an independent influencing factor of MW 
parameters, which persisted even after adjustment for other 
confounders. The results were consistent with the findings 
of Duan et al. (29), who reported there to be a significant 
association between increased arterial stiffness and MW 
parameters. From another perspective, the relationship 
between arterial stiffness and MW parameters may facilitate 
the interpretation of subclinical myocardial function 
impairment in patients with well-functioning BAV. 

Adverse impact of aortic dilation on myocardial function 
assessed with MW 

Bicuspid aortopathy is another primary concern in the 
clinical management of BAV and is characterized by 
ascending aortic dilation and arterial stiffness. Ascending 
aortic dilation and arterial stiffness have been associated 
with an increased risk of adverse aortic and cardiovascular 
events (30,31). In clinical practice, the aortic stiffness 
index of BAV is not typically calculated, whereas the aortic 
diameter is routinely measured and incorporated as a 
reference indicator for intervention (32). This is because 
the aortic diameter is more accessible and enables rapid 
identification of the patients affected. Therefore, further 
research on the influence of ascending aortic dilation on 
MW parameters is needed. Our data showed that in the 
BAV subgroups with increasing aortic dilation, GWW was 
increased while GWE was decreased. The results indicate 

that cardiac energy is more poorly used for blood ejection 
from the LV to the aorta, further degrading myocardial 
function. One underlying explanation for this may be 
that a dilated ascending aorta exhibits increased systemic 
endothelial dysfunction and plasma MMP-2 levels (15,33). 
Activated MMP-2 could contribute to the degradation of 
the cellular matrix components elastin and collagen while 
increasing arterial stiffness (15). Aortic dilation is positively 
associated with increased aortic stiffness index in patients 
with BAV, as shown in our and other studies (13). In this 
regard, increased aortic dilation might indicate a rising 
afterload, which has a detrimental effect on myocardial 
function. However, controversy still exists concerning 
whether aortic stiffness leads to aortic dilatation. Our study 
only demonstrated a linear correlation between aortic 
dilatation and the aortic stiffness index, while the causal 
relationship between aortic dilatation and stiffness could not 
be confirmed. Therefore, the aortic stiffness index, which is 
merely an indicator of aortic dilatation–based impairment 
of myocardial function, remains a potential explanation for 
these results. 

The s tudy by Chan e t  a l .  (34)  showed that  as 
hypertension staging increases (increase in afterload), 
the GWI incorporating afterload also increases, whereas 
GLS alone does not increase. Similarly, our study found 
significant changes in MW parameters with greater 
dilatation of the ascending aortic diameter (i.e., increase 
in the aortic stiffness index). In contrast, GLS did not 
reveal the negative effect of aortic dilation on myocardial 
function. Interestingly, in patients with BAV and no 
ascending aortic dilatation, GWW increased and GWE 
decreased as compared with controls, although the aortic 
diameter and aortic stiffness index were similar. These 
findings offer a novel perspective of BAV as being not 
only a valvulo-aortopathy disease but also a form of  
cardiomyopathy (35,36).

Clinical implications and future directions 

Overall, our study expands the application of noninvasive 
MW—a novel  method that  combines  myocardial 
deformation and afterload—to patients with well-
functioning BAV and aortic dilation. The results of our 
study suggest that clinicians should pay close attention 
to patients with well-functioning BAV and aortic dilation 
to prevent irreversible myocardial impairment. As a next 
step in research, it may be worthwhile to evaluate whether 
interventions to reduce aortic dilation or arterial stiffness 
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could improve myocardial function and work efficiency in 
this population.

Limitations

There were certain limitations in this study. First, as a 
single-center design was employed, there may be issues 
related to a small overall sample size or bias in the selection 
of study participants. Second, pulse-wave velocity is 
generally recognized as the gold standard for assessing 
systemic arterial stiffness, but it is of limited value for 
evaluating local arterial stiffness. However, we calculated 
the aortic stiffness index from the aortic diameter and blood 
pressure, and logarithmically adjusted the relationship 
between stiffness index and pressure. Consequently, 
the aortic stiffness index was less affected by changes in 
pulse pressure, affording reliable measurement of aortic 
mechanical properties (24). Third, the noninvasive 
cuffed arterial blood pressure used in MW calculation 
can be imprecise. Despite these potential limitations, 
the estimation of MW was likely accurate owing to the 
time integral of valvular events and the slight pressure  
difference (37).

Conclusions

In patients with well-functioning BAV, as aortic dilatation 
increased, GWW gradually increased while GWE 
decreased. MW could reveal the adverse effects of aortic 
dilation on LV function, while GLS could not. Noninvasive 
MW may be of paramount value in assessing myocardial 
injury in this population. 
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