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Abstract: The establishment and utilization of preclinical animal models constitute a pivotal aspect across
all facets of cancer research, indispensably contributing to the comprehension of disease initiation and
progression mechanisms, as well as facilitating the development of innovative anti-cancer therapeutic
approaches. These models have emerged as crucial bridges between basic and clinical research, offering
multifaceted support to clinical investigations. This study initially focuses on the importance and benefits
of establishing preclinical animal models, discussing the different types of preclinical animal models and
recent advancements in cancer research. It then delves into cancer treatment, studying the characteristics
of different stages of tumor development and the development of anti-cancer drugs. By integrating
tumor hallmarks and preclinical research, we elaborate on the path of anti-cancer drug development and
provide guidance on personalized cancer therapy strategies, including synthetic lethality approaches and
novel drugs widely adopted in the field. Ultimately, we summarize a strategic framework for selecting
preclinical safety experiments, tailored to experimental modalities and preclinical animal species, and
present an outlook on the prospects and challenges associated with preclinical animal models. These models
undoubtedly offer new avenues for cancer research, encompassing drug development and personalized
anti-cancer protocols. Nevertheless, the road ahead continues to be lengthy and fraught with obstacles.
Hence, we encourage researchers to persist in harnessing advanced technologies to refine preclinical animal
models, thereby empowering these emerging paradigms to positively impact cancer patient outcomes.

Keywords: preclinical animal models; anti-cancer therapy; drug development; personalized therapy

1. Introduction

Annually, millions of individuals worldwide are diagnosed with cancer, posing a
formidable challenge to public health owing to the disease’s diverse nature, ever-evolving
characteristics, and propensity for drug resistance [1]. The multifaceted mechanisms un-
derlying cancer initiation, progression, and metastasis require comprehensive study given
their involvement in multiple systemic abnormalities and pathways [2]. To unravel the inter-
play and complexities inherent in cancer, scientists have increasingly harnessed preclinical
animal models as a pivotal bridge spanning the divide between laboratory investigations
and clinical practice. However, the development of effective and safe anti-cancer therapies
remains hindered by numerous obstacles, including the lack of models accurately replicating
human disease, the substantial failure rate of drug candidates during clinical trials, and the
ethical quandaries surrounding research involving human subjects. These challenges under-
score the paramount importance of refining preclinical animal models and deepening our
comprehension of their role in the discovery and development of cancer therapeutics.
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The research and development of novel drugs exert a profound influence on the medical
industry, presenting substantial opportunities. Recent milestones, exemplified by the Food
and Drug Administration (FDA) approval of Amgen’s Kirsten rat sarcoma viral oncogene-
G12C (KRAS-G12C) inhibitor sotorasib [3–5], have provided valuable insights into cancer
treatment. In addition to submitting an application to the FDA [6], preclinical and clinical
studies are typically conducted during the new-drug development process [7–9].

Before progressing to human trials, drug candidates must undergo a rigorous and com-
prehensive evaluation process to assess their potential for acute, chronic, developmental,
and reproductive toxicity and carcinogenicity. This exhaustive examination is imperative to
guarantee the efficacy and safety of the drugs post-administration, ensuring that they meet
the highest standards of patient care and well-being [10,11]. Preclinical studies focusing on
clinical pharmacology [12], pharmacokinetics [13], and toxicology are conducted in small
animals or at the cellular and molecular levels to predict potential effects of chemicals on
humans [14]. Furthermore, preclinical studies can also determine the maximum tolerable
dose for human clinical trials in order to minimize risks [15]. The establishment of preclin-
ical animal models offers researchers with a multi-dimensional understanding of cancer
development. These models provide a more comprehensive insight into cancer character-
istics than traditional cell culture methods [16]. Selecting appropriate animal models not
only maximizes disease replication but also eliminates ethical concerns associated with
human experiments [17]. These models have proven crucial in various aspects, including
pinpointing effective sites for cancer therapy [18], facilitating the real-time analysis of
signaling pathways during tumor treatment [19], enhancing early cancer detection and
prevention strategies [20], assessing the toxicity of biochemical agents [21], and advancing
the clinical application and development of novel drugs. This paper provides a detailed
description of the application of preclinical animal models in cancer therapy, covering
the establishment and classification of models, recent research progress, development of
new drugs based on biological characteristics at different stages of tumor development,
guidance for personalized anti-cancer therapy, and targeted selection in safety evaluation
experiments. The objective of this review is to facilitate researchers in the selection of
suitable preclinical animal models for experiments and to promote the enhancement and
development of optimized preclinical animal models while adhering to pertinent laws,
regulations, and ethical principles regarding animals.

2. Classification and Establishment of Preclinical Animal Models and Recent Progress

The evolution of preclinical animal models boasts a rich and extensive historical tapestry.
Beyond the ubiquitous mouse model, a diverse array of animals, including cats and rabbits,
have played pivotal roles in the early stages of animal experimentation. A comprehensive
illustration of the developmental timeline, showcasing the progression of various preclinical
experimental animal models across time (Figure 1), will be described in subsequent sections.
In this section, we separate preclinical animal models into distinct categories.
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2.1. Rodentia (Mainly Mice)

Rodentia, primarily comprising mice, rats, and guinea pigs, are at the forefront of
preclinical animal models, particularly in the field of drug development. Their usefulness
stems from a range of advantages, including genetic manipulability, cost-effectiveness,
and physiological similarities to humans that facilitate the replication of complex disease
states. In the pharmaceutical pipeline, rodent models have accelerated the understanding
of disease mechanisms and expedited the discovery and validation of new therapeutics.

Mice serve as a prime example and have experienced a revolutionary expansion
in their applications, transitioning from traditional transplantation models to advanced
platforms incorporating in vivo gene editing techniques and orthotopic tumor modeling.
This evolution has paralleled advancements in biotechnology that enable the precise ma-
nipulation of the murine genome to more accurately mimic human disease conditions
than ever before. The timeline of this progression highlights key milestones such as the
introduction of transgenic mice in the 1990s followed by conditional gene targeting and
Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9
(CRISPR/Cas9)-mediated genome editing in subsequent decades.

These technical advances have propelled rodent models into central roles in several
areas of cancer research. They have been invaluable for identifying therapeutic targets,
enabling the real-time monitoring of signaling pathways during treatment, and enhancing
early detection and intervention strategies. Additionally, they provide crucial platforms for
toxicity assessments of bioactive compounds and the preclinical evaluation of emerging
anti-cancer drugs.

Despite their prominence, rodent models do present certain limitations. Genetic and
physiological differences with humans can lead to discrepancies in drug responses and
disease manifestations. Additionally, the oversimplified immune microenvironment in
some models may not fully recapitulate the complexity of human immunity, potentially
affecting the translation of immunotherapy findings. Furthermore, while orthotopic and
genetically engineered models offer improved realism, they can be technically challenging
and resource-intensive.

Another significant concern that cannot be overlooked is the ethical consideration
regarding animals. Mice are the most commonly utilized animals in preclinical research,
and their numbers used are undeniably substantial. However, there remains a notable defi-
ciency in welfare ethics within large-scale experiments. For instance, mice often experience
substandard experimental environments and inadequate nutritional supplementation. It
is well-known that environmental temperature, humidity, light, noise, odor, and changes
in feed nutrition significantly impact the health and welfare of experimental animals due
to their high sensitivity. Improper feeding and management practices as well as rough
handling during transportation can lead to restlessness, panic, pain, and injury among
mice. The fundamental principle of animal experimentation ethics lies in the “3R” prin-
ciple: replacement, reduction, and refinement. Despite its global acceptance as a guiding
principle for animal experiments worldwide, awareness of this principle remains generally
low among domestic researchers. Furthermore, instances of mistreatment or abuse by
experimenters towards mice occur from time to time during mouse experiments; incorrect
or inhumane methods of euthanasia are also observed, along with the indiscriminate dis-
posal of animal carcasses. Therefore, regardless of which mouse model is employed, it is
imperative to establish a foundational ethic centered on treating them with reverence while
upholding a sense of responsibility and compassion.

With the progress of technology and theory, preclinical animal models continue to
break through their limitations and evolve into more diverse types. In the case of mice,
applications are expanding from simple transplantation models to complex in vivo gene
editing and orthotopic modeling [22,23]. A schematic illustration of the evolution of preclin-
ical mouse animal models for cancer therapy is provided in Figure 2 [24–30]. To illustrate,
we introduce and summarize five prevalently employed mouse models, underscoring their
significance in the field.



Pharmaceuticals 2024, 17, 1048 4 of 30

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 4 of 32 
 

 

and changes in feed nutrition significantly impact the health and welfare of experimental 
animals due to their high sensitivity. Improper feeding and management practices as 
well as rough handling during transportation can lead to restlessness, panic, pain, and 
injury among mice. The fundamental principle of animal experimentation ethics lies in 
the “3R” principle: replacement, reduction, and refinement. Despite its global acceptance 
as a guiding principle for animal experiments worldwide, awareness of this principle 
remains generally low among domestic researchers. Furthermore, instances of mistreat-
ment or abuse by experimenters towards mice occur from time to time during mouse 
experiments; incorrect or inhumane methods of euthanasia are also observed, along with 
the indiscriminate disposal of animal carcasses. Therefore, regardless of which mouse 
model is employed, it is imperative to establish a foundational ethic centered on treating 
them with reverence while upholding a sense of responsibility and compassion. 

With the progress of technology and theory, preclinical animal models continue to 
break through their limitations and evolve into more diverse types. In the case of mice, 
applications are expanding from simple transplantation models to complex in vivo gene 
editing and orthotopic modeling [22,23]. A schematic illustration of the evolution of pre-
clinical mouse animal models for cancer therapy is provided in Figure 2 [24–30]. To il-
lustrate, we introduce and summarize five prevalently employed mouse models, under-
scoring their significance in the field. 

 
Figure 2. A schematic illustration of the evolution of preclinical mouse animal models for cancer 
therapy (By FigDraw). 

2.1.1. Syngeneic and Xenotransplantation Models (Subcutaneous, Intraperitoneal, Intra-
venous, and Intramuscular) 

According to the source of the graft, it can be categorized into a syngeneic trans-
plantation model and xenograft model. Syngeneic transplantation models involve using 
immunodeficient mice as recipients for the regrowth of spontaneously generated tumor 
tissue or an ex vivo cultured tumor cell line [31,32]. In xenograft models, immunodefi-
cient mice are used as recipients for tumor growth after inoculation with a different hu-

Figure 2. A schematic illustration of the evolution of preclinical mouse animal models for cancer
therapy (By FigDraw).

2.1.1. Syngeneic and Xenotransplantation Models (Subcutaneous, Intraperitoneal,
Intravenous, and Intramuscular)

According to the source of the graft, it can be categorized into a syngeneic trans-
plantation model and xenograft model. Syngeneic transplantation models involve using
immunodeficient mice as recipients for the regrowth of spontaneously generated tumor
tissue or an ex vivo cultured tumor cell line [31,32]. In xenograft models, immunodeficient
mice are used as recipients for tumor growth after inoculation with a different human
tumor line or primary tumor tissue from a patient [33,34]. Transplantation models have
been utilized to directly induce tumor formation in mice with carcinogens and evaluate the
anti-tumor effect of tumor immunotherapy in these tumor-bearing mice [35,36].

Different transplantation models have their own advantages and disadvantages. Syn-
geneic transplantation has the advantage of consistent tissue source [37], while xeno-
transplantation can prepare various animal models including human tumors and more
accurately construct the original tumor microenvironment [38]. Homologous tumor mouse
models, however, may not be capable of fully representing the complexity of human tumor
clinical cases and exhibit immune phenotypic differences [39]. Besides, there is a species
mismatch between the tumor and the host microenvironment in the xenograft model [40].

In addition, the range of species available for syngeneic transplantation models is
limited. Even if a homologous model platform has more than 30 models, it still falls short
compared to the variety provided by human xenotransplantation models. Furthermore, the
performance in specific cancer types (such as lung cancer) is inadequate and not universally
available across all model types [41]. Lastly, despite the relative stability of the model,
results from each study may vary. The reasons for these differences are yet to be determined
and could possibly be attributed to factors such as microbiome, location, or feeding style of
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the mice; assessing how these factors might impact the checkpoint inhibitor response is
essential [42].

The xenotransplantation model is no exception. Traditional tumor xenotransplantation
models, using in vitro cell lines, present a microenvironment that differs significantly from
primary tumors due to the absence of tumor-related matrix and blood supply. The genetic
variation and tumor heterogeneity introduced by these cell lines make it difficult to predict
drug effects in clinical trials accurately. With an average success rate of less than 8% for
translating results from animal tumor-bearing models to clinical applications, it is evident
that this model fails to faithfully reflect the carcinogenic process in humans [43]. Highly
anaplastic cancer cells cultured in vitro represent extreme derivatives of highly advanced
cancer, independent of the primary tumor matrix—a key factor in tumor metastasis [44].
Furthermore, critical genetic, molecular, immune, and cellular differences between humans
and mice have hindered this model’s effectiveness as a means of personalized cancer
therapy [45,46].

In a syngeneic mouse model, Olivier et al. devised a therapy employing AMG509
(also referred to as xaluritamig) to target metastatic castration-resistant prostate cancer
(mCRPC). The findings demonstrated that AMG 509 effectively elicited T-cell-dependent
cytotoxicity in prostate cancer cell lines in vitro and facilitated tumor regression in allograft
mouse models [47]. In the xenograft model, a Non-small cell lung cancer (NSCLC) mouse
model was used to study the effect of aerobic exercise on radiotherapy efficacy [48].

2.1.2. In Situ Model

The orthotopic tumor model involves the induction of tumor formation in mice at the
original site, providing a more realistic simulation of tumor occurrence and development
in the human body compared to the classical transplanted tumor model [49]. The main
methods include chemical carcinogen induction and gene-editing technology induction [50].
Chemical carcinogenesis selectively induces malignant tumors in specific organs or tissues
of mice using carcinogens, while gene-editing induction utilizes tools such as CRISPR to
induce the development of specific tumor types in mice through targeted knockout or the
activation of oncogenes or tumor suppressor genes [51].

In situ models have a broad spectrum of applications. Compared to the xenograft
tumor models mentioned above, the in situ tumor model closely mimics the natural envi-
ronment of the original tumor, encompassing complete pathological and immune responses.
The establishment of stable, reliable, and reproducible in situ animal models is crucial as
it offers an opportunity to investigate pathogenesis and malignant progression, such as
local invasion and the distal metastatic spread of the primary tumor. This is essential for
the discovery and development of new therapeutic agents. In situ implantation combined
with the subsequent harvesting of metastatic sites can generate cancer cell variants associ-
ated with clinical metastasis processes. Consequently, in situ models can more accurately
replicate the organ microenvironment that determines tumor cell phenotypes, including in-
terstitial microenvironment interactions’ role in tumor growth and metastasis compared to
heterotopic tumor xenotransplantation models [52]. They also enable the evaluation of the
impact of targeted drugs or cytotoxic drugs on tumor growth within the relevant microen-
vironment. Additionally, they facilitate the assessment of local tumor invasion, metastasis,
and resistance, as well as preclinical survival endpoints associated with continuous or in-
termittent treatment using novel drug dose combinations [35,36]. The in situ model is also
widely utilized by researchers. Taking the above two methods as examples, the chemical
carcinogen induction method is characterized by its ease of manufacture and high success
rate, with commonly used substances such as 7,12-Dimethylbenz[a]anthracene (DMBA)
and Azoxymethane (AOM) [53–56]. Gene editing technology can elucidate the molecular
mechanism of carcinogenesis and simulate the occurrence process, such as CRISPR.

However, the in situ model also presents clear disadvantages. The induction of
chemical carcinogens has a toxic effect on normal cells, and gene-editing technologies are
not only costly and complex but also have limited success rates.
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Researchers have made significant advancements in orthotopic models. Yang utilized
the Azoxymethane/Dextran sodium sulfate (AOM/DSS) mouse model to investigate
the role of Mex-3 RNA Binding Family Member A (MEX3A) in colorectal cancer [57],
while Clements employed piggyBac transposition and CRISPR-Cas9-mediated somatic
glioblastoma mouse models for further exploration [58].

2.1.3. Genetically Engineered Mouse Model

Genetically engineered mouse models are created by manipulating key genes related to
human tumorigenesis at the level of the mouse genome. Commonly used models include:

(1) Gene knockout mice: specific tumor suppressor genes are knocked out or oncogenes
are overexpressed to induce spontaneous tumor formation, allowing for the systematic
evaluation of oncogene and tumor suppressor function.

(2) Humanized mouse model: mice are genetically modified to mimic human tumors
by introducing human oncogenes or transplanting human tumor tissues, faithfully
replicating the human tumor microenvironment and widely used for in vivo drug
evaluation [59].

Genetic engineering models can be utilized to validate potential tumor genes and drug
targets, assess therapeutic efficacy, analyze the impact of the tumor microenvironment, and
evaluate mechanisms of drug resistance [35,36]. Despite the technical challenges posed
by factors like cost, lengthy production cycles, and limited representativeness, genetic
engineering models continue to enjoy widespread popularity among researchers owing to
their unparalleled capacity to precisely mimic genetic alterations in cancer cells. In fact,
numerous cancer treatment strategies rely heavily on genetic engineering mouse models,
underscoring their indispensable role in advancing our understanding and treatment of
cancer. Revskij et al. used the Uncoupling Protein 2 knockout (Ucp2 KO) mouse model
to explore the effect of Ucp2 on the microenvironment of pancreatic ductal adenocarci-
noma (PDAC) [60], while Han et al. focused on the application of humanized immune
system (HIS) mouse model in Chimeric Antigen Receptor T-Cell Immunotherapy (CAR-T)
therapy [61].

2.1.4. Patient-Derived Xenograft Model (PDX)

The PDX model involves the direct transplantation of a fresh biopsy sample from a
patient tumor into immunodeficient mice to establish animal models [62]. In contrast to
the traditional cell-derived xenografts model, PDX can maintain the genetic and epigenetic
diversity of tumors in vivo, reproducing characteristics such as growth rate, drug sensitivity,
and drug resistance observed in humans [63].

PDX models are increasingly favored for their clinical relevance and predictive value,
providing insights into treatment efficacy for personalized medicine. They also serve as a
valuable platform for drug screening and development, as well as for advancing our under-
standing of tumor biology [35,36,64]. Huang’s team utilized NOD-SCID-IL2RgammaC-null
mice to establish a PDX model using tumor tissue from patients with AT-Rich Interaction
Domain 1A (ARID1A)-mutated lung cancer [65]. Dankner employed PDX mouse models of
highly invasive and minimally invasive brain metastasis to further investigate the impact of
reactive astrocyte-specific signal transducer and the activator of the transcription 3 (STAT3)
gene on minimally invasive brain metastasis growth in vivo [66]. The primary limitation of
PDX models stems from their dependency on surgical resection as the primary acquisition
route for tumor tissue, a process that is challenging to repeat frequently and characterized
by an inconsistent success rate.

2.1.5. Carcinogen-Induced Models

Chemical carcinogenesis provides a straightforward approach to establish an ortho-
topic carcinoma model in mice. Various types of tumors can be induced in mice by
researchers using exogenous carcinogens. Currently, commonly used carcinogens include
pyrene compounds [67], heterocyclic aromatic amines [68], nitrosoamine compounds, and
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others [69]. These substances can induce skin cancer, liver cancer, lung cancer, breast cancer,
and other solid tumors in mice through different exposure pathways. This model closely re-
sembles the molecular, biochemical, and histopathological characteristics of specific human
cancers, such as hyperplasia, dysplasia, malignant prelesions, low-grade highly differenti-
ated carcinomas, and eventually invasive and poorly differentiated carcinomas capable of
varying degrees of metastasis to the local and distal organ sites of the host [35,36]. In vari-
ous fields, we often see the use of chemical carcinogenic models. For example, Sotty et al.
induced liver cancer in mice with diethylnitrosamine (DEN); DEN is a potent chemical
carcinogen capable of inducing numerous cancer-causing mutations following a single
injection. The primed hepatocytes are subsequently cloned and amplified in a proliferative
environment, rendering the DEN model a robust carcinogenic agent. In rodent studies,
DEN has been widely utilized in experimental liver cancer research, mimicking various
aspects of human hepatocellular carcinoma (HCC), including angiogenesis, metabolic
reprogramming, immune dysfunction, and metastatic potential [70]. While Nithya et al.
induced lung cancer in Swiss albino mice with benzopyrene, benzo[a]pyrene is a potent
carcinogen for both humans and animals. Initially identified as a cause of skin cancer,
further research has revealed its carcinogenic effects on various organs, including the lungs,
liver, esophagus, and gastrointestinal tract. In an experimental study involving mice with
induced lung cancer from benzopyrene exposure, elevated levels of lipid peroxides were
observed along with decreased antioxidant status and histological aberrations [67].

There are differing opinions about the chemical carcinogenic model. The advantages
include its simplicity of operation, low time cost, and good intervention before the occur-
rence of cancer; however, there are also several shortcomings, such as unclear mechanisms
of carcinogenesis which affects result accuracy due to toxicity from the carcinogens them-
selves, leading to a gap between experimental differentiated tumors and human tumors.
As previously mentioned, both diethylnitrosamine and benzopyrene are carcinogenic and
highly toxic. Therefore, special precautions should be taken when using carcinogenic
compounds in preclinical animal experiments. Researchers must implement specific protec-
tive measures, and experimental animals should receive specialized treatment to prevent
leakage and potential human infection upon euthanasia. Lastly, the impact of carcinogens
on preclinical animal experiments represents a significant limitation that requires careful
consideration. Table 1 provides a comprehensive summary of the strengths and weaknesses
of five distinct mouse models, along with highlighting their advancements in the context of
specific cancer types.

Table 1. Summary of the advantages and disadvantages of the five mouse models and the latest
progress in specific cancers.

Model Type Areas of Application Advantages Disadvantages Recent Advances in the Treatment
of Specific Cancers

Transplantation
model

(homologous,
xenogeneic)

Evaluate tumor
immunotherapy in
tumor-bearing mice

Homologous: Origin is
consistent.

Xenogeneic: A variety of
animal models.

Homologous: not universal,
immune difference, and

results change frequently.
Xenogeneic: limitations of
species differences, clinical

application of low success rate,
and key differences

between species.

Homology: AMG509 mouse
model—metastatic

castration-resistant prostate
cancer [47].

Xenogeneic: Mouse models of
NSCLC—aerobic lung cancer [48].

In situ model

Evaluate growth in the
appropriate

microenvironment/ local
tumor invasion/

preclinical survival
end points

Chemical carcinogen
induction method:

commonly used DMBA,
AOM, etc.

Gene-editing technology,
such as CRISPER.

Chemical carcinogen
induction: toxic to

normal cells.
Gene-editing technology: high

cost, complex methods, and
low success rate.

Chemical carcinogen induction:
AOM-DSS mouse

model—colorectal cancer [57].
Gene editing technology:

CRISPR-Cas9-mediated somatic
glioblastoma (GBM) mouse

models [58].
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Table 1. Cont.

Model Type Areas of Application Advantages Disadvantages Recent Advances in the Treatment
of Specific Cancers

Genetic
engineering

mouse model

Identify potential tumor
genes and drug targets,

analyze the effects of the
tumor microenvironment,

and evaluate drug
resistance mechanisms

Gene knockout mice:
evaluate the function of
oncogenes and tumor

suppressor genes.
Humanized mice: a real

simulated
microenvironment.

Model is expensive, the
production cycle is long, and

the single model lacks
representativeness.

Gene knockout mice: Ucp2 KO
mouse model—pancreatic ductal

adenocarcinoma (PDAC) [60].
Humanized mice: The HIS

(humanized immune system)
mouse model for CAR-T

therapy [61].

Primary tumor
xenograft model

Clinical relevance and
predictive value, drug

screening and
development, and tumor

biology research

Preserving the genetic
and epigenetic diversity

of the tumor in vivo.

Cannot be repeatedly obtained,
long time, and unstable

success rate.

NOD-SCID-IL2RgammaC-null
(NSG) mice—lung cancer [65].
PDX mouse models of highly
invasive (HI) and minimally

invasive brain metastases (MI
BrM) [66].

Chemical
carcinogenesis

model

Developmental sequelae
that are molecularly,
biochemically, and

histopathologically similar
to specific human cancers

Simple operation, low
time cost, and play

interventions before
cancer occurs.

Mechanism has not been
elucidated; toxicity of

carcinogens; a gap between
experimental differentiated
tumors and human tumors.

Diethylnitrosamine
(DEN)—hepatocarcinogenesis [70].
Benzo(a)pyrene—lung cancer [67].

2.2. Large Animals (Lagomorphs, Suids, Scandentia, Carnivores, Primates, etc.)

The utilization of large animals in preclinical experiments holds significant value.
Firstly, in comparison to small animals such as mice and rats, large animals like dogs,
pigs, and rabbits exhibit greater physiological similarity to humans in terms of metabolic
characteristics and disease occurrence. Consequently, medical experiments involving
large animals can more accurately replicate the onset and progression of human diseases,
thereby offering robust support for the study of human ailments. Secondly, within the
realm of new drug research and development, experiments conducted on large animals
represent a pivotal stage for assessing drug safety. By observing drug efficacy, side effects,
pharmacokinetics, and other attributes in large animals, crucial evidence for drug clinical
trials can be obtained while simultaneously mitigating the risks associated with such trials.

However, large animals also pose significant limitations in preclinical experiments.
On the one hand, the operational complexity of conducting experiments on large animals
demands a high level of skill and experience from researchers. Precise control is essential for
surgical procedures, drug administration, data collection, and other processes to ensure the
accuracy of experimental results. On the other hand, ethical considerations are paramount
when conducting experiments involving big animals; a strict ethical review is necessary
due to potential welfare concerns, such as pain, disability, and even mortality.

Thus, the challenge lies in striking a balance between its value and complexity, which
is a crucial concern in the field of biomedical research. This section delves into several
typical aspects preceding clinical experiments in large animals, offering researchers fresh
insights and methodologies by drawing parallels with human biological characteristics and
advancements in cancer therapy.

2.2.1. Lagomorphs (Mainly Rabbit)

In the field of large animal models for cancer drug development, rabbits have at-
tracted attention due to their suitability for translational research. Rabbits (Oryctolagus
cuniculus) are mammals belonging to the order Lagomorpha. The genus Oryctolagus is
primarily used for experimental purposes, while hares (Lepus) and white-tailed brown
rabbits (Sylvilagus) are also included. Their ease of handling, non-aggressive behavior,
cost-effectiveness compared to larger mammals, rapid reproduction, and wide availability
make them a practical alternative for preclinical testing [71]. A notable example of their
utility lies in the innovative work conducted by Li et al., who utilized oxaliplatin to develop
a temperature-sensitive liquid embolization agent, thereby effectively demonstrating a
targeted therapy for VX2 gastric cancer in rabbits [72]. This approach exemplifies how
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rabbits can facilitate the advancement and validation of novel anti-cancer therapeutics,
highlighting their importance in the complex process of cancer drug development.

2.2.2. Suids (Mainly Miniature Pigs)

The anatomical, physiological, genetic, and immunologic similarities between humans
and pigs make pigs an integrated preclinical model of human disease [73]. Miniature
pigs are utilized in biomedical research as subjects. They are classified under the phylum
Mammalia, the order Artiodactyla, the family Suidae, and the genus Sus. They can be used
in the treatment of a variety of cancers, including liver cancer, lung cancer, breast cancer,
and so on. Segatto et al. experimentally demonstrated that transgenic cancer pigs exhibit
a high similarity to human cells when facing bladder cancer, making them a valuable
research model for liver and lung cancer as well [74]. In the exploration of breast cancer
pathogenesis, researchers discovered that the breast cancer susceptibility gene (BRCA1)
gene in pigs encodes a nuclear protein consisting of 1863 amino acids, identical to that in
humans. Donninger et al. pioneered the porcine breast cancer model and determined that
the inactivation of the BRCA1 in porcine cells promotes phenotypic switching, validating
the use of pigs as a model for studying BRCA1-defective breast cancer and establishing the
first porcine breast cancer cell line [75].

2.2.3. Scandentia (Mainly Tree Shrews)

The classification of the tree shrews’ status still remains a topic of debate. While some
scholars categorize them as insectivorous, others place them within the primates, consid-
ering them to be one of the most primitive primate stems. In recent years, new insights
have led to the classification of tree shrews as an independent class called Scandentia. Tree
shrews, as experimental animals, possess the advantages of small size, rapid reproduction,
and easy feeding due to their close relation to primates. Through whole-genome sequenc-
ing, it has been discovered that tree shrews share a closer evolutionary hierarchy and
phylogenetic domain with humans [76]. A previous study by Zeng et al. has demonstrated
the spontaneous development of breast cancers in tree shrews, leading to the generation
of a tree shrew breast cancer model using lentivirus-expressing. Phosphatidylinositol-4,5-
Bisphosphate 3-Kinase Catalytic Subunit Alpha (PIK3CA)-H1047R [77]. Additionally, a
pancreatic cancer model has also been established using lentiviruses in recent years.

2.2.4. Carnivores (Mainly Beagle Dogs and Cats)

Among the carnivore orders, beagle dogs and cats are commonly employed as preclin-
ical animal models. Beagle dogs are commonly used as the primary model for preclinical
pharmacokinetic studies. The spontaneous occurrence of cancers in dogs closely resembles
human cancers in terms of clinical presentation, histological features, molecular characteris-
tics, response to and resistance to therapy, and the development of resistant metastases [78].
Prostate and breast cancers serve as the primary models, and the recent preclinical trials
conducted by Massiere et al. have shown that beagle dogs can also be utilized in studies
related to colorectal cancer (CRC), clear cell renal cell carcinoma (ccRCC), and PDAC [79].
The anatomical similarity between the prostate of dogs and humans has made it a valuable
model for studying spontaneous prostate cancer [80]. Liu et al. demonstrated that SY-707 is
a validated anaplasticlymphoma kinase/ focal adhesion kinase/insulin-like growth factor
1(ALK/FAK/IGF1R) inhibitor based on its preclinical efficacy in inhibiting growth and
metastasis in a beagle model of breast cancer cells [81].

Additionally, cats have been utilized as a preclinical model for breast cancer due to its
high similarity with human breast cancer in terms of age of onset, incidence, histopatholog-
ical features, and metastatic patterns [82]. Over 80% of feline breast tumors are malignant
and exhibit rapid development and early-stage metastasis, making them an ideal model for
aggressive breast cancer. However, unlike other large animals, the cat preclinical model
requires the inoculation of cultured tumor cells into mice for further analysis.
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2.2.5. Primates (Mainly Cynomolgus Monkeys)

Non-human primates, especially cynomolgus monkeys, are closely related to hu-
mans. They share the highest genetic homology with humans, ranging from 75% to 98.5%.
Non-human primates have shown significantly superior results compared to other ani-
mal models in preclinical studies of biopolymer drug candidates. Simon et al. propose
cynomolgus monkeys as a translational model for cancer immunotherapy, with examples
including CRC and BRCA [83].

Development of Different Preclinical Animal Models
Figure 1 depicts the evolution of preclinical animal model utilization over time. The

first row displays various preclinical animal models, the second row presents the cancers
for which the animal model is predominantly utilized, and the arrows below indicate the
years when each animal model was initially employed in cancer treatment.

In the early 18th century, rats were first domesticated and subsequently utilized in
animal experiments during the mid-19th century. Currently, rats play a crucial role in
life science, medical research, and healthcare. They are the second most commonly used
mammalian experimental animals after mice. Esophageal cancer is a prevalent and highly
incident malignant tumor of the digestive tract. Rats’ anatomical and physiological simi-
larities have been leveraged for studying esophageal cancer in its early stages. Moreover,
rat models are employed in researching treatments for various cancers, such as breast
cancer and acute myeloid leukemia [84,85]. Cats, known as domestic pets, have been
utilized as experimental animals since the late 19th century. Sherrington’s stretch reflex
experiment not only advanced people’s understanding of movement but also established
cats as valuable experimental subjects across various fields of research. In oncology, early-
stage cats are commonly used as representative models for aggressive breast cancer, and
recently, preclinical cat models of head and neck squamous cell carcinoma have been
under investigation [86,87]. Mice are widely recognized as the most commonly utilized
preclinical experimental animals globally. The DBA strain of mice was first introduced
in the 1910s, and various strains have been developed since then. CRC is among the
most frequently diagnosed and severe cancers, ranking within the top three worldwide
in terms of cancer statistics. The mouse model of colorectal cancer can replicate the occur-
rence and progression of human colorectal cancer, holding significant theoretical value
and clinical importance in studying disease mechanisms, discovering new drug targets,
and evaluating preclinical pharmacodynamics. It is now almost universally employed
in studies involving various types of cancer tumors in mouse models, underscoring its
significance. Beagle dogs have been utilized in animal experimental research since the
1950s due to their small size, gentle temperament, consistent response, high reproducibility,
well-developed brain, and strong adaptability. They are extensively employed in biological
and medical research, particularly in non-clinical drug studies. Prostate cancer is among the
most prevalent malignant tumors in the genitourinary system of middle-aged and elderly
men. Due to its anatomical similarity to humans and responsiveness to treatment, beagles
have been widely used as a model for hormone-induced benign prostatic hyperplasia
(BPH) research [88]. Beagle dogs have also been selectively bred for various tumor models,
including thyroid cancer and breast cancer, and continue to play a pivotal role in toxicology
experiments [89,90]. In 1959, Wostomalm successfully achieved the first breeding of sterile
rabbits through cesarean section uterine extraction and artificial lactation. Various grades
of experimental rabbits were established and widely utilized in scientific research and
product quality verification. The Rabbit VX2 tumor model is a commonly used transplan-
tation tumor model, and new research suggests that rabbits can also serve as a model to
simulate the occurrence and development of osteosarcoma [91,92]. In the 1960s, the newly
established Kunming Institute of Zoology founded a primate domestication and breeding
center for scientific research, focusing on cynomolgus monkeys. Cynomolgus monkeys, as
non-human primates closely related to humans, have been extensively utilized in various
studies. Their application extends to pharmacokinetic research on bispecific antibodies in
lymphoma and the development of antibody-drug conjugates (ADCs), thereby broadening
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their potential applications in fields such as breast cancer [93,94]. Due to the physiological
and anatomical similarities, nutrient metabolism, biochemical indexes, and other character-
istics shared between pigs and humans, particularly in the structure of the cardiovascular
system, which closely resembles that of humans, pigs are considered ideal experimental
animals. Miniature pigs were initially utilized in medical research in Europe before being
introduced to the United States in the 1980s. An American Sinclair miniature pig strain
was found to develop spontaneous cutaneous melanoma in 80% of the animals, making it a
long-standing model for cutaneous melanoma [95]. Research by Niels et al. demonstrated
that miniature pigs could also be valuable in studying prostate cancer and assessing growth
distribution [96]. Tree shrews, being small mammals approximately the size of laboratory
rats and close relatives of primates, are anticipated to supplant nonhuman primates in
certain biomedical research and applications due to their short reproductive cycle, low
feeding cost, and large single-litter size. Phylogenetically closer to humans and prone to
spontaneous breast cancers, tree shrews hold significant potential for breast cancer research
owing to their closer genetic relationship with humans. As mentioned earlier, the tree
shrew breast cancer model has been utilized for gene editing therapy. The discovery of
Lipid nanoparticles (LNPs) delivery system based on SM-102 could serve as a promising
treatment strategy against hepatitis B virus (HBV) infection, effectively preventing liver
cancer [97].

Now that there are so many preclinical experimental animals, how exactly are they
useful for cancer treatment? How should we properly use preclinical experimental animals
for testing? This will be detailed below.

3. Application of Preclinical Animal Models in Cancer Therapy
3.1. Study of the Characteristics of Different Stages of Tumor Development and Anti-Cancer Drug
Development (Mainly Mice)

In the exploration of various stages of tumor development and anti-cancer drug de-
velopment, with a specific focus on rodent models, it is crucial to emphasize the intricate
interplay of the multiple genetic factors that drive tumor initiation and progression. Animal
models, especially rodents, are indispensable tools for unraveling the complex mechanisms
underlying human tumorigenesis, providing a comprehensive understanding of the dis-
ease. A groundbreaking review highlights the evolving comprehension of cancer hallmarks,
which have recently been expanded to include emerging features such as phenotypic plas-
ticity and cellular senescence, along with enabling features like epigenetic reprogramming
and microbiome diversity [98]. These advancements reflect a deeper understanding of the
biological landscape of tumors, guiding the strategic design of preclinical studies.

Mouse models have played a pivotal role in translating this knowledge into practical
applications, particularly in cancer drug development. By mimicking human cancer biology,
they have facilitated the discovery and validation of numerous innovative therapies. For
example, drugs targeting specific molecular pathways—informed by tumor marker research
that has evolved through three definitive eras since 2000—have been successfully tested in
rodent models before advancing to clinical trials [98–100]. This iterative process emphasizes
the importance of understanding the specific traits targeted within cancer biology. At
present, mouse tumor models can be categorized into spontaneous tumor mouse models,
induced tumor mouse models, genetically modified tumor models, xenograft tumor models,
and homografted tumor models. Researchers select these models based on the specific
research needs. Typically, the C57BL/6 and BALB/c strains are chosen for spontaneous
tumor modeling due to their well-established genetic backgrounds. C57BL/6 mice are
commonly used to simulate human genetic diseases and individual differences, while
smaller BALB/c mice offer genetic purity and are also widely utilized. Induced mouse
tumor modeling involves the use of chemical carcinogens, such as MNU (N-nitroso-N-
methylurea) and DEN (diethylnitrosamine), to induce various tumors in mice, including
gastric cancer and gastric cancer [101,102]. Genetically modified mouse tumor models
have seen a surge in popularity with increasingly diverse types available. These include
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conditional knockout models for tumor suppressor genes like P53 and Phosphatase And
Tensin Homolog (PTEN) using P53 Flox and PTEN Flox mice [103,104], and point mutation
(or conditional point mutation) cancer models for oncogenes such as the Kras-LoxP-Stop-
LoxP (LSL)-G12D model [105,106]. The selection of a xenograft tumor model should be
based on different sources. This section will focus on the biological characteristics of
different cancers combined with preclinical mouse models mentioned above to describe
their specific contributions to cancer treatment progress and anti-cancer drug development.

3.1.1. Sustaining Proliferative Signaling

The chronic proliferation ability is a fundamental characteristic of cancer cells, as
they release their control over growth-promoting signals and become self-regulating mas-
ters [21]. H-Ras (HRas Proto-Oncogene) oncogenes activation reflects this characteristic, as
demonstrated in Feng et al.’s study on CRC. They found that H-Ras activates the down-
stream signaling of epidermal growth factor receptor (EGFR) and significantly inhibits the
efficacy of MRTX1133, a KRAS-G12D inhibitor. Their use of a xenograft mouse model to
block the EGFR/wild-type RAS signal transduction axis has significant implications for the
treatment of the KRAS mutant CRC, while also highlighting the ongoing development of
EGFR inhibitors [107].

3.1.2. Evading Growth Suppressors

In addition to promoting and sustaining the characteristic ability of positive growth
stimulus signals, cancer cells must also evade the potent negative regulatory proliferation
programs within the cell, many of which are dependent on the function of tumor suppressor
genes. The functional experiments in mice have confirmed the significance of a typical
tumor suppressor factor, the retinoblastoma (Rb) gene. Mario et al. investigated the impact
of specific alterations in tumor suppressor factor (Rb) and oncogene (Ras) on nature kill
(NK) cell-mediated cytotoxicity in glioblastoma cell lines injected into severe combined
immunodeficiency (SCID) mice through Rb deficiency and mutation [108]. In recent years,
cell cycle-dependent kinase inhibitors (CDKs) have been widely utilized for inhibiting
tumor cell proliferation. Catherine et al. identified a novel CDK2 inhibitor, INX-315, and
utilized patient-derived xenograft (PDX) and transgenic mouse models to demonstrate its
efficacy in both Cyclin E1 (CCNE1)-amplified cancer and CDK4/6i-resistant breast cancer,
thereby presenting a potential strategy for cancer cells to evade growth inhibition [109].

3.1.3. Resisting Cell Death

The theory established over the past 20 years suggests that cell apoptosis acts as a
natural barrier to cancer development [110]. Cancer cells have the ability to evade apoptosis
and continue dividing under abnormal conditions, often due to common causes such as
loss of p53 tumor suppressor genes. The inactivation of the p53 protein prevents cells
from perceiving DNA damage that would normally trigger apoptosis. The upregulation
of anti-apoptotic B-cell lymphoma-2 (Bcl-2) family members and inhibitor of apoptosis
proteins, along with counteraction of the anti-apoptotic effect of Bcl-2 homology 3 (BH3)-
only proteins, allows cancer cells to avoid cell death even when damaged, leading to tumor
growth [111]. BH3 analogues, which mimic BH3 proteins, can enhance pro-apoptotic signals
and promote intrinsic pathways leading to cell apoptosis. Sarah et al. used preclinical
mouse and human models of invasive lymphoma to identify factors predicting drug
resistance in patients receiving myeloid cell leukemia-1 (MCL-1)-targeted BH3-mimetic
drugs. They also identified treatment methods capable of overcoming these types of drug
resistance: using chemotherapy drugs separately or in combination with BH3 simulation
therapy [112].

3.1.4. Enabling Replicative Immortality

The accumulation of evidence suggests that telomeres located at the ends of chromo-
somes play a crucial role in achieving immortality in cancer cell proliferation [113]. The
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immortalization of mutated cells, which ultimately form tumors, is attributed to their ability
to maintain a sufficient length of telomere DNA to avoid triggering aging or apoptosis.
This is most commonly achieved through the upregulation of telomerase expression or
recombination-based telomere maintenance mechanisms, which are less common. As a
result, the development of telomerase inhibitors has sparked new hope for anti-cancer treat-
ment. Janina’s team assessed the therapeutic effect of the telomerase inhibitor Imetelstat in
a high-risk neuroblastoma cell xenograft mouse model. The findings indicated that this
inhibitor can reduce telomerase activity by approximately 50% and improve the survival
rate among mouse populations, thus demonstrating that targeting telomerase may be a
viable treatment option for high-risk neuroblastoma patients [114].

3.1.5. Inducing Angiogenesis

The formation of tumors, like normal tissues, necessitates the acquisition of nutrients
and oxygen, as well as the capacity to eliminate metabolic waste and carbon dioxide.
The angiogenesis process leads to a new vascular system that fulfills these requirements.
Vascular endothelial growth factor (VEGF) A is a prototypical stimulator of angiogenesis.
Both hypoxia and oncogene signaling can elevate the expression of the VEGF gene [115].
Similarly, in order to combat tumors, it is necessary to develop VEGF inhibitors as an
alternative approach. This primary solution also serves as a focal point for numerous
scientists conducting research. Huang’s research team discovered through preliminary
analysis that the BicC family RNA-binding protein 1 (BICC1) gene was overexpressed in
human pancreatic cancer, and subsequently utilized xenotransplanted tumor cells and
mice to confirm that BICC1 plays a pivotal role in the VEGF-independent angiogenesis
process in pancreatic cancer, resulting in resistance to VEGF inhibitors and offering novel
therapeutic targets for pancreatic cancer patients [116].

3.1.6. Activating Invasion and Metastasis

The transformation of normal cells into malignant tumors is characterized by local
invasion and distant metastasis. Cancer cells undergo changes in their shape, attachment
to other cells, and extracellular matrix, with the most significant change being the loss of
E-cadherin. It has been demonstrated that an increase in E-cadherin expression acts as an
antagonist of invasion and metastasis, while a decrease enhances these phenotypes [117].
The activation of the tumor cellular–mesenchymal to epithelial transition factor (c-MET)
signaling pathway by cancer cells frequently promotes tumor formation, invasive growth,
and metastasis. As a result, hepatocyte growth factor/cellular–mesenchymal to epithelial
transition factor (HGF/c-MET) inhibitors have emerged as a potential treatment for non-
small cell lung cancer. Manish et al. conducted preclinical studies using immunodeficient
mice to evaluate the use of HGF receptor-neutralizing antibody targeting Ewing sarcoma
tumors. They concluded that combining novel CAR-T cell therapy with the HGF receptor-
neutralizing antibody Rilotumumab (AMG102) could enhance therapeutic efficacy, not only
in Ewing sarcoma (EWS) but also in tumors with an abnormal activation of the HGF/c-MET
pathway [118].

3.1.7. Deregulating Cellular Energetics

The chronic and uncontrolled cell proliferation, which is the essence of tumor diseases,
not only involves uncontrolled cell growth but also entails the corresponding regulation
of energy metabolism to promote cell division. Taking glycolysis as an example, cancer
cells can reprogram their glucose metabolism by limiting their energy production mainly
to glycolysis, even in the presence of oxygen, leading to a state known as aerobic glycolysis.
Both the aforementioned aerobic glycolysis state and the soon-to-be-described inhibitors
of aerobic glycolysis appear to be an emerging concept. Scientists have identified that the
glycolytic enzyme phosphofructose kinase-1 (PFK1) platelet-type plays a crucial role in this
process. Huang et al. reported on a homolog of human carboxymethyl butenol esterase-like
(CMBL) and utilized xenograft mouse models to observe changes in tumor development.
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The results indicate that CMBL inhibits colorectal cancer growth by suppressing glycolysis
and provide potential combined strategies for treating CMBL-deficient CRC [119].

3.1.8. Avoiding Immune Destruction

The immune surveillance theory proposes that the immune system constantly moni-
tors cells and tissues, identifying and eliminating early cancer cells to prevent new tumors.
The increased incidence of certain cancers in immunocompromised individuals supports
the idea of immune system deficiencies in tumor monitoring [120]. Recent evidence from
genetically engineered mice has demonstrated the crucial role of the immune system as a
barrier against tumor formation and development. Given the nature of tumors, it is logical
to focus on activating immunity, with the cytotoxic T lymphocyte-associated antigen-4
(CTLA-4) monoclonal antibody being a promising option. Bulion et al. tested the anti-
tumor activity of plant-derived bispecific monoclonal antibodies targeting programmed
cell death protein 1 (PD-L1) and CTLA-4 in vivo using humanized BALB/c mice carrying
CT26 colorectal tumors, demonstrating a reduction in tumor volume and weight, which
validates this treatment approach [121].

3.1.9. Tumor-Promoting Inflammation

The inflammatory response can enhance various biomarker functions in the tumor
microenvironment by releasing bioactive molecules, such as growth factors for sustaining
proliferation signals, survival factors for inhibiting cell death, angiogenic factors, and
extracellular matrix-modifying enzymes that facilitate angiogenesis, invasion, and metasta-
sis. Additionally, it can also induce signals leading to epithelial–mesenchymal transition
activation and other biomarker promotion programs. Unexpectedly, tumor-related inflam-
matory reactions may promote the initiation and progression of tumors [122]. Effective
anti-inflammatory medications are being developed to significantly impede tumor de-
velopment. Julia’s team has devised a treatment plan for hormone-refractory prostate
cancer, evaluating the potential of immune proteasome inhibition in prostate cancer (PC)
anti-inflammatory and direct anti-tumor therapy through observing its therapeutic effect
on transgenic prostate adenocarcinoma mice. The results demonstrated that immunosup-
pressive proteasome exhibited significant therapeutic effects on PC progression in vivo and
prevented tumor recurrence in castration-resistant prostate carcinoma-transgenic adeno-
carcinoma of the mouse prostate (CRPC-TRAMP) mice by blocking immunosuppressive
inflammatory responses in the tumor microenvironment [123].

3.1.10. Genome Instability and Mutation

In the process of acquiring the mutated genes necessary for coordinated tumor de-
velopment, cancer cells typically elevate the mutation rate. This variability is achieved
through increased sensitivity to mutagens, the disruption of one or several components of
the genome maintenance mechanism, or a combination of both [124]. As an empowering
feature, the response plan for this characteristic is constantly evolving. One prominent
example is the emergence of poly ADP-ribose polymerase (PARP) inhibitors. PARP in-
hibitors (PARPi) have the potential to enhance the effectiveness of radiotherapy, alkylating
agents, and platinum-based chemotherapy by inhibiting DNA damage repair in tumor
cells and promoting apoptosis. Currently, research and development on PARP inhibitors
are progressing rapidly, such as Olaparib. The use of PARP inhibitor combination therapy
is also quite common. Zu et al. utilized a mouse model with metastatic ovarian cancer
sharing similar genetic characteristics and found that, under PARPi treatment with de-
pleted growth factor receptor-binding protein 2 (GRB2), tumor-bearing mice maintained
a higher survival rate. Further research indicated that nuclear GRB2 protects DNA at the
quiescent replication fork from meiotic recombination 11 (MRE11)-mediated degradation
in the BRCA2 replication fork protection axis. This study suggests that GRB2 could be
a potential therapeutic target and predictive biomarker for patients undergoing PARPi
combined with immunotherapy [125].
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Although Hanahan added four new biological characteristics in the review in 2022, this
review was not included due to the fact that new drugs targeting these four characteristics
have not been developed and are not reported enough.

The following table presents a simplified overview of the latest advancements in
tumor hallmarks and their relationship to the development of targeted drugs, as depicted
in Table 2.

Table 2. Cancer hallmarks, new drugs targeting cancer hallmarks, and the latest progress in research
and development using mouse models.

Cancer Hallmarks New Drugs Mouse Model—Cancer—Drug/
Protocol Name

Sustaining
Proliferative Signaling

Epidermal growth factor
receptor inhibitor

Xenotransplantation mice—KRAS
mutation CRC—MRTX1133 [107]

Evading
Growth Suppressors

Cell cycle-dependent
kinase inhibitor

Transgenic mice—breast
cancer—INX-315 [109]

Resisting Cell Death BH3 analogue Homologous transplantation
mice—lymphoma—Vnetoclax [112]

Enabling
Replicative Immortality Telomerase inhibitor Xenotransplantation mice—High-risk

neuroblastoma—Imetelstat [114]

Inducing Angiogenesis VEGF inhibitor Xenotransplantation mice—pancreatic
cancer—Gmcitabine [116]

Activating Invasion
and Metastasis HGF/c-MET inhibitor

Homologous transplantation
mice—Ewing sarcoma tumors—CAR-T

therapy+AMG102 [118]

Deregulating
Cellular Energetics

Aerobic
glycolytic inhibitor

Xenotransplantation mice—colorectal
cancer—CMBL [119]

Avoiding
Immune Destruction

CTLA-4
monoclonal antibody

Xenotransplantation mice—colorectal
cancer—Dual variable domain

immunoglobulin
atezolizumab × 2C8 [121]

Tumor-promoting
Inflammation Anti-inflammatory drug Transgenic mice—prostate

cancer—Immunoproteasome [123]

Genome Instability
and Mutation PARP inhibitor

Homologous transplantation
mice—ovarian

cancer—GRB2+(Olaparib/
Talazoparib) [125]

3.2. Guiding and Development of Personalized Cancer Therapy Strategies (Synthetic Lethality)

In the pursuit of guiding and developing personalized cancer therapy strategies, the
complexity of tumor ecosystems underscores the necessity for multifaceted approaches
beyond synthetic lethality alone [126]. While synthetic lethality has gained significant
traction due to its potential to selectively target cancer cells, it is just one among several
precision medicine strategies benefiting from preclinical animal models.

Precision medicine strategies, as advocated by the National Institutes of Health (NIH)’s
“Towards Precision Medicine” initiative since 2011, encompass a wide range of method-
ologies designed to tailor treatments based on a patient’s unique molecular profile [127].
Preclinical animal models play a crucial role in facilitating the exploration of these strategies,
including immunotherapies, targeted therapies, and epigenetic modifiers.

Synthetic lethality stands out as a particularly promising strategy exemplified by
successful applications, such as PARP inhibitors in BRCA-mutated cancers. Moreover, the
use of synthetic lethality extends to exploring combinations such as WEE1 G2 checkpoint
kinase (Wee1) and checkpoint kinase 1 (CHK1) inhibitors in neuroendocrine prostate
cancer (NEPC), with preclinical mouse models showing effective tumor growth inhibition.
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Additionally, inhibitors of ataxia–telangiectasia-mutated gene (ATM), ataxia–Telangiectasia-
mutated- and Rad3-related (ATR), and cyclin-Dependent kinase 12 (CDK12) are also being
developed with the aid of preclinical models.

In summary, while synthetic lethality holds great promise in the personalized cancer
therapy era, it is essential to recognize that it is part of a broader arsenal of precision
medicine strategies [127,128]. Each approach benefits from insights garnered through
preclinical animal models that serve as a cornerstone for translating novel concepts into
clinically viable and efficacious treatments. In this section, we will focus on synthetic
lethal therapy and primarily introduce several related inhibitors and their application in
preclinical animal models for cancer treatment.

3.2.1. PARP Inhibitors (PARPis)

PARP inhibitors (PARPis), exemplified by olaparib’s groundbreaking demonstration of
anti-cancer activity in mice in 2009, have significantly revolutionized the field of cancer ther-
apy by exploiting defects in DNA repair mechanisms [129]. This milestone paved the way
for subsequent FDA approvals of PARPis, such as olaparib, rucaparib, niraparib, and tala-
zoparib, highlighting the successful translation of preclinical findings into clinical practice.

Ongoing preclinical research continues to enhance our understanding of PARPis’ po-
tential, particularly in challenging contexts like pancreatic ductal adenocarcinoma (PDAC),
where despite surgical intervention, recurrence rates remain alarmingly high [130]. Notably,
Zhang and colleagues utilized mouse models harboring PDAC xenografts to investigate the
combined therapeutic impact of a recombinant measles virus (rMV-Hu191) and olaparib
on PDAC with intact BRCA1/2 genes. Their study not only revealed the inhibition of
tumor growth but also extended survival in mice, validating a synthetic lethality approach.
This synergistic effect underscores the value of PARPis in conjunction with other therapies
targeting cancers with specific DNA repair deficiencies [131].

In essence, PARP inhibitors, derived from extensive research on DNA repair path-
ways, epitomize the power of precision medicine. By focusing on their collective impact
across various cancers and emphasizing their role in synthetic lethality strategies, we can
streamline our discussion while acknowledging the breadth of their applications and the
wealth of existing research.

3.2.2. Protein Arginine Methyltransferase 5 (PRMT) Inhibitors

PRMT can methylate a variety of proteins and play crucial roles in biological processes,
such as gene expression, splicing, and DNA damage repair [132]. Among them, PRMT5
has garnered the most attention and is considered a potential oncogene [133]. The synthetic
lethal effect of PRMT5/ Methylthioadenosine Phosphorylase (MTAP) inhibitors in tumors
had been reported in 2016 [134]. The synthetic lethality component of PRMT5 involves
MTAP, a tumor suppressor gene frequently deleted in tumors. Therefore, PRMT5/MTAP
inhibitors are being considered as potential antitumor agents. Currently, several PRMT5
inhibitors have entered clinical trials, with GSK3326595 advancing to phase II [135].

Novel PRMT inhibitors are also under investigation in preclinical trials. Djajawi
et al. generated genetically engineered mouse models comparing wild-type and CRISPR
knockout B16 cells treated with programmed death 1 (PD1) targeting PRMT1. It was
found that PRMT1 inhibits interferon-γ (Ifn γ)-induced major histocompatibility complex-I
(MHC-I) expression, thereby suppressing CD8 T cell-mediated killing. The results indicate
that PRMT1 KO tumors exhibit a modest growth disadvantage compared to wild-type
tumors and further demonstrate that targeting PRMT1 can enhance immunotherapy for
MHC-I low-expression tumors to achieve synthetic lethal effects [136,137].

3.2.3. Wee1 Inhibitors

The Wee1 kinase was initially discovered in yeast and is a crucial member of the
serine/threonine protein kinase family. Tumor protein p53 (TP53), which forms a synthetic
lethal effect with Wee1, belongs to the tumor suppressor gene due to its association with
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various malignant tumors. The prevalence of TP53 mutations in cancer has led to extensive
research on Wee1 inhibitors by global pharmaceutical companies, with ZN-c3 being the
most advanced and reaching clinical stage II. This oral Wee1 inhibitor has shown promise
in treating advanced solid tumors by inducing premature mitosis and causing cancer cell
apoptosis through DNA damage [138].

In preclinical studies for neuroendocrine prostate cancer (NEPC), Nest et al. found an
increased expression of WEE1 and CHK1 in NEPC cell lines, leading them to explore the
potential treatment using a synthetic lethal combination of Wee1 and other inhibitors. Their
experiments using NEPC transgenic mouse models demonstrated that treatment with the
Wee1 inhibitor AZD1775 and CHK1 inhibitor SRA737 effectively inhibited tumor growth,
providing a promising approach for NEPC treatment [139].

Furthermore, significant progress has been made in the research and development of
ATM, ATR, CDK12, and other inhibitors this year, many of which have entered clinical or
preclinical studies. Synthetic lethal therapy offers strong specificity and low side effects,
making it an emerging trend in modern cancer drug research and development. With
new experimental methods and screening techniques evolving rapidly, utilizing synthetic
lethality for personalized treatment plans based on individual patient backgrounds will
bring profound innovation to targeted therapy for cancer patients.

3.3. Selection of Safety Evaluation Experiments

Due to the unique risks associated with preclinical research, the review process for
preclinical studies is highly rigorous. When selecting animal models for non-human ex-
periments, they must undergo multiple safety evaluation tests. While conducting safety
evaluation experiments, particularly toxicology experiments, a comprehensive consid-
eration of the following four aspects is essential: ethical considerations, experimental
conditions, animal welfare, and legislative requirements. Ethical consideration is the pri-
mary principle of conducting safe evaluation experiments. Researchers must strictly follow
the ethical welfare of animals, 3R principles, and relevant regulations on experimental
animals and respect experimental animals and scientific research. The ethics of experi-
mental animals stipulates a set of strict animal care regulations: adequate comfortable
living and eating conditions should be given during breeding, scientific researchers should
not abuse animals, and euthanasia methods must be used to kill animals. Experimental
conditions are important indicators of reasonable conduct, and toxicology experiments
follow the principle of randomization, control, and repetition. Providing the appropriate
experimental conditions is key to ensure the reliability of the experimental results. Labora-
tory animals should be kept under constant temperature, humidity, and light conditions,
and a suitable space and comfortable living environment should be provided. Monitoring
and maintaining the health of the animals, including the provision of proper diet and water,
is also required. Animal welfare and legislative requirements are key means to protect
animal rights and interests, and the experimental design must meet ethical requirements,
that is, to protect animal welfare and rights and minimize pain and suffering to animals.
Local and international animal protection laws and regulations must be followed during
the experimental process, and necessary ethical reviews must be carried out. Some of the
details are discussed in this section.

3.3.1. Acute Toxicity Test

The acute toxicity test is the initial stage of toxicity research, involving the testing of
single or multiple exposures within a 24-hour period. It requires the use of both rodent and
non-rodent species. The oral, inhalation, or transdermal route of exposure is commonly
employed in mice or rats. The main focus is on determining the median lethal concentration
(LD50), where a higher LD50 indicates lower toxicity and a lower LD50 indicates a higher
toxicity [140]. The fixed-dose method is commonly employed for preclinical acute toxicity
testing in rodents, with rats being the primary research subjects. Non-rodents are typically
assessed using the approximate lethal dose method, and Beagle dogs and monkeys are
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considered suitable candidates. The development of preclinical new drugs relies heavily on
acute toxicity testing. Nistuzumab, a therapeutic monoclonal antibody targeting EGFR, has
been widely used as a therapeutic drug in numerous countries. Wendy’s team prepared
the IRDye800CW nimotuzumab reagent for clinical trial applications and conducted a
single-dose toxicity study using a mouse cancer model. The results indicated that the
formulation was determined to be non-toxic from both acute and delayed toxicity studies,
confirming that Nistuzumab coupled with IRDye800CW is safe and does not exhibit typical
EGFR-targeted antibody-associated toxicities [141]. In the study of acute toxicity testing
for compounds, the selection of experimental animals follows certain principles: Animals
chosen should exhibit toxicity reactions similar to those in humans; they should be easy
to feed, manage, and handle; be readily available and cost-effective. To better predict
compound hazards in humans, it is necessary to select at least two experimental animals,
preferably one rodent and one non-rodent, for calculating their acute toxicity parameters.
Mammals are given priority in species selection. Rats and mice are commonly used in
practice, with rats being particularly prevalent. It is important to note that rats are not
always the most sensitive to foreign compounds. Rabbits are often employed for studying
skin toxicity and mucous membrane irritation caused by compounds. Cats and dogs may
also be used for acute toxicity tests, but their use is limited due to cost considerations.
Pigs, as omnivores whose biological responses to some compounds resemble those of
humans, especially regarding skin structure, are occasionally utilized despite their large
size and higher cost [142–147]. In acute toxicity testing, the following methods are com-
monly utilized and acknowledged: sub-lethal dose, maximum tolerated dose, fixed-dose
procedure, stepwise method, pyramid design, etc. Nevertheless, regardless of the method
employed, adherence to fundamental laws and regulations as well as ethical considerations
is imperative; legislative requirements are delineated in the literature [148,149].

3.3.2. Subchronic Toxicity Test

The term “subchronic toxicity” refers to the adverse effects that occur in experimental
animals after exposure to high doses of experimental drugs for multiple consecutive days,
typically at doses lower than the acute lethal dose (LD50). The main purpose of subchronic
toxicity testing is to observe toxic reactions, toxic doses, and pathological changes in target
organs. This type of testing involves continuous administration for 4–13 weeks using mice,
rats, rabbits, and dogs as test subjects. Subchronic toxicity test is the toxicity test in which
the animal ingests the subject matter daily or repeatedly for about 1/10 of the life of the
experimental animal. Regarding the specific duration, the duration is at least 3 months
(2 to 6 months) for rodents and 1 year for dogs. Due to the prolonged duration of these
tests, animals with relatively small body weights (or young age) are usually selected—for
example, around 15g for mice and 100 g for rats. Additionally, non-human primates, such
as Cynomolgus monkeys and tamarins, have also been included in subchronic toxicity
experiments expanding the range of animal subjects [150]. The review report emphasizes
that there is already a substantial amount of data on the toxicity and toxicokinetics of
test substances in repeated dose toxicity studies with (sub)chronic duration, which can be
used to reliably determine tolerable dose levels [151–156]. The design principles for the
subchronic toxicity test are as follows: firstly, endeavor to replicate the route or manner in
which humans come into contact with the compound in their environment; and secondly,
align the exposure pathway expected for conducting chronic toxicity tests. The specific
routes of contact mainly include three types: oral, respiratory, and cutaneous. Legislative
requirements for subchronic toxicity experiments are described in the literature [157,158].

3.3.3. Chronic Toxicity Test

The chronic toxicity test involves the long-term administration of low-dose compounds
to experimental animals in order to observe their toxic effects. This test is conducted to
determine the minimum dose and no observable adverse effect level of a drug, which
indicates the potential harm caused by prolonged exposure to the compound [159]. It
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provides a toxicological basis for drug safety evaluation and human safety limit standards.
Polyphenols have been demonstrated to possess anti-tumor efficacy. Ricardo et al. con-
ducted a study on polyphenol extracts from herbs and validated their toxicity through a
28-day oral chronic toxicity assessment experiment using Wistar rats and New Zealand
rabbits [151]. The purpose of chronic toxicity testing is to observe potential harm to the
body resulting from the long-term ingestion of the tested substance and to determine
both the maximum dose with no observed adverse effect (NOAEL) and the minimum
observed adverse effect level (LOAEL) of the substance. This information can then be
used to establish the maximum allowable amount of the substance in food as well as the
acceptable daily intake (ADI) for humans. The NOAEL represents the highest dose (mg/kg
body weight) at which animals show no toxic effects when exposed to a substance over
a specified period, typically spanning most or all of their lifespan. On the other hand,
LOAEL refers to the lowest dose (mg/kg body weight) that causes minimal toxicity within
a defined timeframe, also known as the threshold dose. Preclinical animal toxicity exper-
iments can provide valuable references for the application of various drugs in humans.
The recommended experimental periods vary for different animals, with rodents typically
tested for a period spanning from 6 months to 2 years, while mammals require longer
periods, such as 1.5 years for mice, 2 years for rats, and 6 years for beagles according to
the World Health Organization [160–165]. The content and methodologies of subchronic
and chronic toxicity tests are essentially similar, with the primary distinction lying in the
duration of observation. Applicable regulations mandate that these two types of tests can
be integrated and compared.

3.3.4. Reproductive Toxicity Test

Reproductive toxicity experiments involve assessing the impact of drugs on the re-
productive function and developmental processes of mammals, particularly rodents, in
order to predict their potential effects on parental reproductive functions, such as germ
cells, conception, pregnancy, childbirth, and lactation, as well as their effects on embryo
development and postnatal growth. These tests typically follow a three-stage design com-
prising general reproductive toxicity tests, teratogenic sensitivity tests, and perinatal tests.
Different animal species exhibit varying sensitivities to drugs; therefore, at least two or
more animals should be used for testing. Rats are commonly chosen for these experiments
due to their practicality, high comparability with other experimental results, and extensive
background information available. Non-rodents are usually represented by rabbits due to
their accessibility and practicality; however, some studies may also use beagles or monkeys.
The ultimate objective of animal reproductive toxicity testing is to anticipate potential
reproductive and developmental toxic reactions in humans [166–171].

3.3.5. Drug Dependence Test

The term “drug dependence” refers to the necessity for the repeated administration
of medication in the body due to the pharmacological effects of drugs on physiology or
the mind, either to induce a sense of well-being or to alleviate discomfort. The observation
period is generally prolonged and encompasses various types of studies. Suitable experi-
mental animals include rodents (rats and mice), dogs, and primates. Both the International
Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use
(ICH) M3 document and the European Medicines Agency (EMA) 2006 guideline indicate
that rodents are the preferred species for assessing drug dependence, unless there are
specific requirements for primate use. Interestingly, there are still discrepancies in animal
selection among different drug regulatory agencies; in Asia, primates tend to be favored,
while in Europe, it is rats [172–176].

3.3.6. Carcinogenicity Test

The purpose of carcinogenic experiments is to observe the potential carcinogenic
effects of drugs in animals, with the aim of evaluating and predicting their potential harm
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to the human body. Research on drug carcinogenicity typically focuses on rats or mice
as experimental subjects, involving the continuous daily administration and observation
of tumor incidence rates in test animals over a 2-year period. It should be noted that
carcinogenic testing requires stringent criteria, including: (1) high standards for animal
selection, commonly using F344 rats, A-line mice, gene knockout mice, etc.; (2) strict
environmental requirements encompassing physical, chemical, and biological carcinogenic
factors; and (3) the exclusion of all other potential carcinogens [177,178].

3.3.7. Genotoxicity Test

Genetic toxicity research involves the assessment of drug effects on mutations and
chromosomal damage in organisms such as bacteria and cells. Various methods for genetic
toxicity testing exist, including in vitro and in vivo tests. Currently accepted animal tests
for genetic toxicity include bone marrow micronucleus testing and mammalian chromo-
some aberration testing [179,180], with mice and rats being commonly used experimental
animals [181–185].

The aforementioned preclinical animal models are recommended to varying extents
for different safety evaluation experiments, as outlined in Table 3.

Table 3. Relationship between safety evaluation experiments and the selection of preclinical
animal models.

Animal Species

Test Types
Acute

Toxicity Test
Subchronic

Toxicity
TEST

Chronic
toxicity Test

Reproductive
Toxicity Test

Drug
Dependence

Test

Carcinogenicity
Test

Genotoxicity
Test

Mouse ✓✓ [144] ✓✓ [152] ✓✓ [161] ✓ [167] ✓✓✓ [172] ✓✓✓ [177] ✓✓✓ [184]
Rat ✓✓✓ [143] ✓✓✓ [155] ✓✓✓ [164] ✓✓✓ [166] ✓✓✓ [175] ✓✓✓ [178] ✓✓✓ [182]

Beagle dog ✓✓✓ [142] ✓✓✓ [151] ✓✓✓ [163] ✓✓ [171] ✓✓ [174] NR ✓ [181]
Rabbit ✓ [147] ✓✓✓ [153] ✓ [160] ✓✓✓ [170] ✓ [176] NR ✓ [185]

Cynomolgus monkey ✓✓✓ [146] ✓✓✓ [154] ✓✓✓ [165] ✓✓ [168] ✓✓✓ [173] NR ✓ [183]
Miniature pig ✓ [145] ✓ [156] ✓✓✓ [162] ✓✓ [169] NR NR NR

Note: ✓✓✓indicates highly recommended; ✓✓indicates recommended; ✓indicates not recommended; NR indi-
cates not reported.

While Figure 3 provides a schematic diagram illustrating the interaction between
cancer treatment and preclinical animal models. Rodents (rats and mice) are still widely
used due to their highly homologous genome and physiological function construction
with the human body, as well as their ability to simulate the human environment well
during spontaneous tumor occurrence and development [186]. Dogs, especially beagles,
are undoubtedly the preferred choice among experimental animals due to reliable bio-
logical characteristics, convenient administration methods, examination procedures, and
blood collection without anesthesia requirement. Primates, represented by Cynomolgus
monkeys, also hold important application prospects. Each of the new drugs produced
in preclinical animals shown in the figure cites the following literature (Mouse: PARP
inhibitor, VEGF inhibitor [116–125], Rat: KRAS G12C inhibitor [187–189], Beagle dog:
ALK/FAK/IGF1R inhibitor [81], Cynomolgus monkey: Tri-specific T-cell engager [190],
Tree shrew: PI3Kα inhibitor [77], Rabbit: Polypeptide drug conjugate [191], Cat: Tyrosine ki-
nase inhibitor [192,193], Miniature pig: Pyrrolo-pyrimidine-derived small molecule [194]).
Future advances in science and technology will highlight the strengths of other large
animals contributing to preclinical research.
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4. Prospects and Challenges of Preclinical Animal Models

In recent years, preclinical animal models have made significant contributions to
fields such as toxicology research, drug development, vaccine research, genetics, and
neuroscience. With the advancement of biomedical technology, the application range of
animal models has expanded, offering new possibilities for solving clinical problems.

However, it is challenging for any animal model to fully replicate the highly intri-
cate biological systems within the human body. Despite extensive efforts invested by
researchers in preclinical animal models, disparities in physiology, pathology, and other
aspects between animals and humans can result in the incomplete translation of research
findings. Moreover, the establishment of animal models entails long cycles and high costs,
limiting their widespread application and promotion. Ethical concerns surrounding animal
experimentation also exist. Researchers should prioritize the welfare of animals, minimize
their stress and suffering, respect their lives, refrain from cruel treatment, and employ
the least distressing methods when handling them. This aligns with the internationally
advocated 3R principle—Reduction, Replacement, and Refinement.

The “3R principles,” initially proposed by Russell and Burch in 1959, encompass
guidelines for conducting laboratory animal experiments to safeguard the welfare of exper-
imental animals and ensure the scientific integrity of data obtained from these experiments.
These principles emphasize the replacement and refinement of and reduction in experimen-
tal animal usage. Further details are outlined below:

Reduction: Minimize the usage of laboratory animals in experimentation while main-
taining data quality and accuracy. Strive to minimize their involvement unless necessary
for explaining experiment outcomes. Effective strategies include the judicious selection
of subjects for experimentation; meticulous study design; and efficient utilization and
appropriate modes for experimentation.

Replacement: Endeavor to avoid using live subjects whenever possible by employing
alternative methodologies with equivalent objectives such as lower organisms over higher
ones; smaller species rather than larger ones; histological studies replacing whole-animal
tests; molecular biology techniques substituting traditional animal-based approaches;
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synthetic materials supplanting live subject trials; and computational modeling simulating
physiological responses without live subjects.

Refinement: Mitigate harm inflicted on research subjects through humane treat-
ment measures that encompass enhancing living conditions and care protocols for labora-
tory specimens; and refining specimen selection criteria along with technical procedures
and methodological optimization during experimentation processes to minimize physi-
cal distress or suffering experienced by research subjects, thereby ensuring scientifically
valid outcomes.

Experimental animal ethics encompasses the social moral standards and principles
guiding the human treatment of experimental animals and conduct of animal experiments.
The “3R” principle serves as the cornerstone of experimental animal ethics and a key crite-
rion in the ethical review of animal experiments. Researchers are expected to cultivate an
awareness of animal welfare and ensure the protection of animals involved in experiments.
Scientific evaluation should be employed to assess the pain and distress experienced by
animals, with timely consideration given to humane endpoints. When euthanasia is neces-
sary, it should be carried out in a manner that minimizes or eliminates panic and suffering,
allowing for quiet and swift passing.

In the future, as the preclinical animal model system becomes more advanced, re-
searchers can further enhance their technical capabilities. For instance, they can focus
on improving and optimizing animal models to better replicate human physiology and
disease states, thereby enhancing the accuracy and reliability of research. Additionally, they
can explore ways to better uphold and safeguard the rights and welfare of animals while
advancing scientific research. Although there is still a long road ahead, we have reason
to believe that the emergence of interdisciplinary approaches and new technologies will
inevitably lead to the development of more advanced animal models, ultimately benefiting
a large number of patients.
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