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Background: Magnetic resonance (MR) scans are routine clinical procedures for

monitoring people with multiple sclerosis (PwMS). Patient discomfort, timely scheduling,

and financial burden motivate the need to accelerate MR scan time. We examined

the clinical application of a deep learning (DL) model in restoring the image quality of

accelerated routine clinical brain MR scans for PwMS.

Methods: We acquired fast 3D T1wBRAVO and fast 3D T2w FLAIRMRI sequences (half

the phase encodes and half the number of slices) in parallel to conventional parameters.

Using a subset of the scans, we trained a DL model to generate images from fast

scans with quality similar to the conventional scans and then applied the model to the

remaining scans. We calculated clinically relevant T1w volumetrics (normalized whole

brain, thalamic, gray matter, and white matter volume) for all scans and T2 lesion volume

in a sub-analysis. We performed paired t-tests comparing conventional, fast, and fast

with DL for these volumetrics, and fit repeated measures mixed-effects models to test

for differences in correlations between volumetrics and clinically relevant patient-reported

outcomes (PRO).

Results: We found statistically significant but small differences between conventional

and fast scans with DL for all T1w volumetrics. There was no difference in the extent to

which the key T1w volumetrics correlated with clinically relevant PROs of MS symptom

burden and neurological disability.

Conclusion: A deep learning model that improves the image quality of the accelerated

routine clinical brain MR scans has the potential to inform clinically relevant outcomes

in MS.

Keywords: multiple sclerosis, deep learning, artificial intelligence, magnetic resonance imaging, accelerated

acquisition, patient-reported outcome (PRO), brain volume, DBPN

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2021.685276
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2021.685276&domain=pdf&date_stamp=2021-09-27
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zxia1@post.harvard.edu
https://doi.org/10.3389/fneur.2021.685276
https://www.frontiersin.org/articles/10.3389/fneur.2021.685276/full


Mani et al. DL for MRI in MS

INTRODUCTION

Routine magnetic resonance (MR) scans are the standard of
care for monitoring disease activity and progression in people
with multiple sclerosis (PwMS) (1). Most PwMS undergo brain
MR scans yearly, with individual factors such as changes in
disease activity and disease-modifying treatment (DMT) altering
the scan frequency. Prolonged MR scan time contributes to
patient discomfort, poor image quality due to motion, delays in
scheduling, potentially high medical cost, and financial burden
for PwMS (2). Thus, accelerating the acquisition time of clinical
MR scans could benefit PwMS and generally improve access to
critical diagnostic imaging. However, diminished image quality
(e.g., contrast to noise ratio, resolution) is the main challenge
preventing the clinical application of MR scans with accelerated
acquisition time.

Artificial intelligence (AI) approaches could potentially
address the loss of MR image quality in accelerated scans. Deep
learning (DL) models such as convolutional neural networks
(CNNs) enhance MR image quality of the fast scans without
compromising relevant image information passed through each
layer (3–6). Compared to supervised learning algorithms, CNNs
show comparable aptitude and often greater adaptability in MRI
post-processing (7). Deep back-projection network (DBPN) is a
class of CNN that outperforms other methods given its ability to
self-correct errors using back-projection (8).

In this study, we evaluated the clinical application of a
DL model based on DBPN that employed noise-reducing and
sharpness-enhancing functions. Specifically, we assessed whether
the DL model improved the quality of fast clinical brain
MR images acquired with accelerated time and whether the
key volumetrics from brain MR preserved their correlations
with clinically relevant neurological outcomes to the extent
comparable to the benchmark conventional MR scans. Here,
we prioritized T1-weighted volumetrics (i.e., whole brain, gray
matter, white matter, thalami) that are known to be associated
with subsequent clinical outcomes in MS (9–18).

METHODS

Data Source
We recruited participants from a clinic-based, prospective MS
cohort study (Prospective Investigation of Multiple Sclerosis in
the Three Rivers Region, PROMOTE) based in the Pittsburgh
region (PA, USA). The Institutional Review Board of the
University of Pittsburgh approved this study. All participants
completed the informed consent process.

MRI Acquisition
One hundred and fifteen participants underwent routine clinical
brain MR studies on a GE Discovery MR750 3-Tesla scanner
between September 2018 and January 2020, some completing
multiple scans on separate days. In addition to the institutional
clinical protocol that included the standard (or conventional) 3D
T1w BRAVO (FE/PE/SE: 220 × 220 × 126, scan time 2:57), 3D
T2 FLAIR (FE/PE/SE: 256 × 224 × 240, scan time 6:40), and
other routine clinical sequences, we acquired an accelerated (or

fast) 3D T1w BRAVO (FE/PE/SE: 220 × 128 × 64, scan time
1:13) and an accelerated (or fast) 3D T2w FLAIR (FE/PE/SE:
256 × 128 × 120, scan time 2:17) during the same MR exam.
Compared to the conventional T1w BRAVO and T2w FLAIR, the
fast sequences were accelerated by a factor of 2 in both the phase
and slice directions.

Deep Learning
We developed a DL model based on DBPN (8) to enhance the
image quality for the fast sequences from clinical brain MR
scans. The DLmodel input the fast sequences and generated high
resolution images similar to that of the conventional sequences.
The output of the DL model had twice the slice number as that
of the input. To incorporate the slice information, we applied a
2.5 D model with five adjacent slices. We trained the DL model
with the first 15 randomly selected scans, with images from the
conventional sequences serving as the ground truth. An L1 loss
was applied in training to measure the difference between the
DL output and ground truth. We applied image pre-processing,
including image registration (19), bias field correction (20), and
image normalization to the training data. We implemented the
DL model in TensorFlow and trained on an NVIDIA V100 GPU
with an ADAM optimizer (21). After excluding the 15 training
scans and 7 scans acquired with the incorrect conventional
and/or fast sequences, we applied the DL model to the remaining
108 scans for evaluation.

MR Image Analysis
Figure 1 showed the overall workflow. For this study, we
prioritized T1w volumetric analysis. As quality control, we first
examined the raw T1w images to remove scan with: (1) excessive
motion artifacts that could decrease the automatic segmentation
accuracy (4 out of 108); (2) acquisitions in the wrong phase
encoding orientation (7 out of 108); and (3) missing scan (1 out
of 108). Using the FreeSurfer software version 6.0 (http://surfer.
nmr.mgh.harvard.edu/) (22), we then computed the volumes of
96 sets of T1w MR images, including the following regions: total
brain, total thalamus, total cerebral graymatter, and total cerebral
white matter as well as intracranial space. These regions were
chosen based on known correlation with clinical outcomes in
MS (9–15, 17, 18). We extracted the volumes from the automatic
segmentation file “aseg” of FreeSurfer and normalized each
volume measure by the intracranial volume in each individual.
Normalized volumes had no unit.

For exploratory analysis, we manually delineated the T2
lesions and calculated the T2 lesion volume in a subset of
30 MR scans using DSI Studio (http://dsi-studio.labsolver.org)
(23). Two initial raters (RP and MD) performed the manual
correction, and a third supervising rater (CI) performed the final
manual correction. We first loaded the T2 FLAIR images in DSI
Studio from Step T3. The lesion drawing task began with placing
multiple 3D spheres to cover each of the T2 hyperintense regions.
DSI Studio provides a 3D interactive function to place and move
spheres in the 3D space to complete this task quickly. The raters
then refined the contours of the lesions by applying an intensity
threshold. The exact value of the threshold was adjustable to
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FIGURE 1 | Study workflow.

achieve the best segmentation results. Each scan required an
average of 15–30min to complete the manual correction.

Patient-Reported Outcomes
To assess the clinical relevance of the neuroimaging measures,
we used two clinically relevant patient-reported outcomes of
neurological function validated in PwMS. First, the Multiple
Sclerosis Rating Scale-Revised (MSRS-R) assessed the MS
symptom burden across eight domains: walking, using arms
and hands, vision, speech, swallowing, cognition, sensation, and
bowel and bladder control (24, 25). Each domain included a
sub-score ranging from 0 (no symptoms) to 4 (severe disability)
for a maximum total score of 32. Second, Patient Determined
Disease Steps (PDDS) assessed the gait impairment, ranging
from 0 (normal gait) to 8 (bedridden). We categorized patients
as having severe disabilities based on consistent requirements

for assistive devices for distances longer than 25 feet (PDDS of
4). This threshold approximated the clinician-rated Extended
Disability Status Scale (EDSS) score of 6 (26).

Statistical Analysis
All analyses were completed using R version 4.0.3 (27). For the
paired t-tests, a two-sided P < 0.0125 was indicative of statistical
significance as we used the Bonferroni Correction method to
obtain this significance level (0.05/4 = 0.0125), given the four
different T1w volumetrics being tested. For descriptive variables,
we expressed continuous data as mean and standard deviation
(SD) or medians and interquartile ranges, and categorical data as
frequencies and percentages.

We first performed paired t-tests to compare the three types of
MR acquisition (conventional, fast, fast with DL) for the four T1w
volume measures: normalized brain volume (NBV), normalized
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thalamic volume (NThV), normalized gray matter volume
(NGMV), and normalized white matter volume (NWMV).

To measure the association between the four T1w volumetrics
(NBV, NThV, NGMV, NWMV) and the two patient-reported
clinical outcomes (MSRS-R, PDDS), we developed a repeated
measures multivariate linear mixed-effects model for T1w
volumetrics that included the type of MR acquisition conducted
as the fixed between-subject factor, a random subject effect and
clinical outcomes (see Supplementary Material for formula).
We included interaction terms between the clinical outcomes
tested and the type of MR acquisition, with conventional MR
acquisition as the reference point or benchmark. The interaction
terms quantified (1) differences in associations with clinical
outcomes between fast scans and conventional scans, and (2)
differences in associations with clinical outcomes between fast
scans with DL and conventional scans. To account for the
contribution of age, sex, race, ethnicity, disease duration in
years, clinical type (e.g., relapsing), and DMT (i.e., treatment)
status on the clinical outcomes, we adjusted these covariates as
fixed effects in the model. We performed exploratory analysis
examining themultivariate association between T2 lesion volume
and clinical outcomes.

Data and Code Availability
Code for analysis and figure generation is available at:
https://github.com/ashikamani/MS-MRI-. Anonymous data that
support the findings of this study are available upon reasonable
request to the corresponding author.

RESULTS

Participant Demographics
This study includes 87 unique PwMS (see Table 1 for
demographics). After excluding training scans and evaluation
scans with quality control failure, there were a total of 96 MR

TABLE 1 | Characteristics of the study participants.

Characteristics Participants (N = 87)b

Age (years), Mean ± Standard deviation 46.8 ± 13.3

Men, n (%) 26 (29.8)

European-descent, n (%) 73 (83.9)

Non-hispanic, n (%) 84 (96.6)

Non-hispanic European descent, n (%) 70 (80.5)

PDDSa, Mean ± SD 1.7 ± 1.8

MSRS-Ra, median (interquartile range) 4 (2–9)

RMSa, n (%) 75 (86.2)

Disease duration (years), Mean ± SD 14.9 ± 19.3

No treatment, n (%) 24 (27.6)

High-efficacy treatment, n (%) 5 (5.7)

aPDDS, patient-determined disease steps; MSRS-R, multiple sclerosis rating scale-

revised; RMS: relapsing clinical type.
bBecause nine participants had two MR scans on separate days, the total number of

participants was 87, whereas the total number of MR scans (occurring on separate days)

for evaluation was 96.

scans for evaluation. Nine patients had two MR scans occurring
on separate days. The mean age of the participants was 47 years.
Most participants were women and of Non-Hispanic European
descent (70.2 and 80.5%, respectively). Most participants (86.2%)
had the relapsing type of MS with mostly mild physical disability
and gait impairment (mean PDDS of 1.7) and mild MS symptom
burden (median MSRS-R of 4). The mean disease duration (i.e.,
the interval between the date of the participant’s first neurological
symptoms and the date of MR scan) was 15 years. At the time of
the MR, most participants (72.4%) received DMT with 5.7% on
high-efficacy treatment.

Comparison of MR Acquisition Methods
for T1w MRI Volumes
We compared the T1w volumetrics across the three MR
acquisition methods: conventional scan, fast scan, and fast scan
with DL (Figures 2, 3). For the T1w volumes, paired t-tests
using the conventional scan as the benchmark indicated a true
difference in mean volumes among these methods (Table 2).
Using a threshold for multiple hypotheses testing, paired t-tests
comparing fast scans against conventional scans were significant
for NBV, NThV, NGMV, and NWMV (p = 0.0006, p = 0.01, p
< 0.0001, and p < 0.0001, respectively). Likewise, paired t-tests
comparing fast scans with DL against conventional scans were
significant for NBV, NThV, NGMV, and NWMV (p < 0.0001, p
= 0.002, p = <0.0001, and p < 0.0001, respectively). Compared

FIGURE 2 | Representative T1w images. Central slices in a similar position for

the acquisitions using the three methods: Conventional T1w BRAVO (2:57min

total acquisition time, 220 × 220 × 126 matrix size), fast T1w BRAVO

(1:13min total acquisition time, 220 × 128 × 64 matrix size), and fast T1w

BRAVO with DL (same acquisition time and matrix size as the fast T1w

BRAVO). BRAVO is the T1-weighted sequence for brain volume imaging on

GE MR scanner.
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to the conventional scans, the mean absolute difference (or
percentage difference) for NBV, NThV, NGMV, and NWMV for
fast scans with DL were 0.013 (−1.789%), 0.0020 (2.265%), 0.018
(−4.273%), and 0.0043 (1.478%), respectively. Finally, paired t-
tests comparing fast scans with DL and fast scans were also
significant for NBV, NThV, NGMV, and NWMV (p = 0.0004, p
< 0.0001, p < 0.0001, and p < 0.0001, respectively).

While the T1w volumes on fast scan and fast scan with
DL both had significant differences from conventional scans,
the relative difference (or percentage difference) decreased

FIGURE 3 | Representative FreeSurfer segmentation images. Slices in a

similar position for the FreeSurfer segmentation derived from the three different

methods to generate the images.

from −9.3% (fast vs. conventional) to −4.3% (fast with DL
vs. conventional) for normalized gray matter volume and
from 10.9% (fast vs. conventional) to 1.5% (fast with DL
vs. conventional) for normalized white matter volume. The
relative difference marginally increased from −0.9% (fast vs.
conventional) to −1.8% (fast with DL vs. conventional) for
normalized brain volume and from−1.6% (fast vs. conventional)
to 2.3% (fast with DL vs. conventional) for normalized
thalamic volume.

MRI-Clinical Correlations Comparisons
We next assessed the clinical applicability of the T1w volume
metrics as acquired by the different methods again using
the conventional scans as benchmarks. First, we examined
the correlation between T1w volumetrics and physical and
gait impairment based on the clinically relevant patient-
reported outcome of PDDS (Table 3). The Wald chi-square
test for comparing the coefficients between fast scans and the
conventional scans were statistically significant only for NBV (p
= 0.002) but not for NThV, NGMV, and NWMV, indicating a
difference in the correlation between NBV (but not the other
T1w volumetrics) and PDDS when comparing the fast scans to
the conventional scans. Importantly, the coefficients comparing
fast scans with DL and conventional scans were not statistically
significant for NBV, NThV, NGMV, and NWMV, indicating
no difference in the correlations between all T1w volumetrics
and PDDS when comparing the fast scans with DL against the
benchmark conventional scans.

Second, we examined the correlation between T1w
volumetrics and the MS symptom burden based on the clinically
relevant patient-reported outcome of MSRS-R (Table 4). There
was no significant difference in the correlation between all T1w
volumetrics (NBV, NThV, NGMV, and NWMV) and MSRS-R
when comparing fast scans to the benchmark conventional
scans. Likewise, we did not find statistical significance for the
coefficients comparing fast scans with DL and the conventional
scans for all T1w volumetrics, indicating no difference in the

TABLE 2 | Paired differences for T1w volume measures across methods.

Mean of the

differences ± SD

P-values Mean of the

differences ±SD

P-values Mean of the

Differences ±SD

P-values

Mean percentage

difference

Mean percentage

difference

Mean percentage

difference

Fast vs. Conventional Fast vs.

Conventional

Fast with DLb vs.

Conventional

Fast with DL vs.

Conventional

Fast with DL vs. Fast Fast with DL vs.

Fast

NBVa
−0.007 ± 0.021

−0.905%

0.0006* −0.013 ± 0.017

−1.789%

<0.0001* −0.006 ± 0.015

−0.892%

0.0004*

NThVa
−0.0002 ± 0.0006

−1.641%

0.01* 0.0002 ± 0.0006

2.265%

0.002* 0.0004 ± 0.0005

3.971%

<0.0001*

NGMVa
−0.039 ± 0.012

−9.345%

<0.0001* −0.018 ± 0.011

−4.273%

<0.0001* 0.022 ± 0.011

5.595%

<0.0001*

NWMVa 0.031 ± 0.018

10.874%

<0.0001* 0.004 ± 0.010

1.478%

<0.0001* −0.026 ± 0.018

−8.475%

<0.0001*

aNBV, normalized brain volume; NThV, normalized thalamic volume; NGMV, normalized gray matter volume; NWMV, normalized white matter volume. Normalized volumes have no unit.
bDL, deep learning approach applied to the fast scan.

*Indicated statistical significance meeting the multiple hypotheses testing threshold.
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TABLE 3 | Linear mixed-effects model with conventional MRI scans as baseline

and interaction with gait and physical impairment in multiple sclerosis as

measured by PDDS.

Interaction between

scan type and

patient-reported

outcomesb

Coefficient (SE) P-values for

interaction term

coefficients

NBVa Fast × PDDS 0.0031 (0.001) 0.002*

FwDL × PDDS 0.0016 (0.001) 0.096

NThVa Fast × PDDS 0.00007 (0.00003) 0.024

FwDL × PDDS 0.000008 (0.00003) 0.790

NGMVa Fast × PDDS 0.0010 (0.0006) 0.110

FwDL × PDDS 0.0013 (0.0006) 0.039

NWMVa Fast × PDDS 0.0020 (0.0008) 0.019

FwDL × PDDS 0.0006 (0.0008) 0.460

aNBV, normalized brain volume; NThV, normalized thalamic volume; NGMV, normalized

gray matter volume; NWMV, normalized white matter volume. Normalized volumes have

no unit.
bPDDS, Patient-determined disease steps; FwDL, Fast scan with deep learning.

*Indicated statistical significance meeting the multiple hypotheses testing threshold.

TABLE 4 | Linear mixed-effects model with conventional MRI scans as baseline

and interaction with multiple sclerosis symptom burden as measured by MSRS-R.

Interaction between

scan type and

patient-reported

outcomesb

Coefficient (SE) P-values for

interaction term

coefficients

NBVa Fast × MSRS-R 0.0007 (0.0003) 0.022

FwDL × MSRS-R 0.0003 (0.0003) 0.297

NThVa Fast × MSRS-R 0.00002 (0.00001) 0.025

FwDL × MSRS-R 0.00002 (0.00001) 0.069

NGMVa Fast × MSRS-R 0.0003 (0.0002) 0.102

FwDL × MSRS-R 0.0002 (0.0002) 0.302

NWMVa Fast × MSRS-R 0.0004 (0.0003) 0.181

FwDL x MSRS-R 0.0001 (0.0003) 0.618

aNBV, normalized brain volume; NThV, normalized thalamic volume; NGMV, normalized

gray matter volume; NWMV, normalized white matter volume. Normalized volumes have

no unit.
bMSRS-R, multiple sclerosis rating scale-revised; FwDL, fast scan with deep learning.

*Indicated statistical significance meeting the multiple hypotheses testing threshold.

correlations between all T1w volumetrics and MSRS-R when
comparing fast scans with DL against the benchmark scans.

Exploratory Analyses
In a subset of the 30 scans in which we calculated T2 lesion
volumes, there was no difference in pairwise comparisons across
the three methods (Figure 4, Supplementary Table 1). Further,
there was no difference in the correlation between the T2 lesion
volume and either neurological outcome (MSRS-R or PDDS)
when comparing fast scans with DL against the benchmark
conventional scans (Supplementary Table 2).

FIGURE 4 | Representative T2FLAIR images. Slices in a similar position for the

acquisitions using three different methods: Conventional T2 FLAIR (6:40min

total acquisition time, 256 × 224 × 240 matrix size), fast T2 FLAIR (1:13min

total acquisition time, 256 × 128 × 120 matrix size), and fast T2 FLAIR with

DL (same acquisition time and matrix size as the fast T2 FLAIR). FLAIR is the

T2-weighted Fluid-Attenuated Inversion Recovery sequence.

DISCUSSION

We reported a deep learning model based on DBPN that
improved the image quality of an accelerated T1w sequence
acquired during routine clinical brain MR scans to the extent
of preserving the correlation between the key T1w volumetrics
and clinically relevant outcomes in PwMS. The T1w volumetrics
(normalized brain volume, normalized thalamic volume,
normalized gray matter volume, and normalized white matter
volume) are all known to inform MS neurological outcomes
(9–18) and are indeed inversely correlated with patient-reported
neurological outcomes in this study (Supplementary Table 3).
Here, the T1w (and T2w-FLAIR) fast images were acquired
nearly 3 (and 6 times) faster than the conventional acquisitions
(respectively). To our knowledge, this is the first report of DL
application to improve the image quality of accelerated scans
in clinical brain MR for MS and it has the potential for clinical
applications in the routine care of PwMS.

Accelerating clinical MR acquisition time has direct clinical
implications, particularly for conditions such as MS where
routine disease monitoring using MR scans is the standard
of care. Methods such as compressed sensing and parallel
imaging aim to reconstruct higher quality images from a smaller
amount of raw MR imaging data (28–30). However, the concern
for clinical feasibility stems from the poor image quality and
long reconstruction times (31). Deep learning methods began
to address these issues by incorporating different types of
CNN structures (3–6). These methods follow two similar steps:
reducing scan acquisition time by under-sampling k-space in
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raw MR data and then reconstructing a higher-quality image
using novel DL models. Contrasting feed-forward approaches,
DBPN takes advantage of error feedback to self-correct at
multiple layers of the neural network. Further, with its multiple
stages of up- and down-sampling layers, it combines both local
and global information into learning, and preserves the small
details leading to more robust response compared to residual
block-based models such as Enhanced Deep Residual Networks
(EDSR), which focuses only on the local information (32).
DBPN is a useful tool for improving image quality through
noise elimination and sharpness-enhancement (8). Given it is
not over-parameterized, a relatively modest sample size would
be sufficient for training the model to generate reasonable
performance without overfitting. Finally, it results in faster
inference time during deployment without similar performance.
To our knowledge, this specific application of DBPN to improve
the quality of accelerated clinical brain MR scans for PwMS
is novel.

In terms of the study design, we aimed to balance the need
for sufficiently powered sample size for the held-out evaluations
and the need to have sufficient training data to generate
reasonable performance without overfitting. By tuning the model
parameters (filter size, the number of filters, the number of the
project units, etc.), it was feasible to build a model that performed
well on a small training set. Empirically, we found that 15 cases
for the current model setup (which were randomly selected)
resulted in good performance in image improvement. The loss
function metric, a measure of the difference between the model
output and the ground truth image, decreased monotonically
as validation set images were presented to the deep learning
algorithm. This suggests that the model was not overfitted
and could be generalizable. When visually assessing the image
sharpness, particularly in the cerebral cortex, the performance
of the validation set resembles the training set, again confirming
that the model was not overfitted.

Although the T1w volumes computed from the fast scan
and fast scan with DL both had significant differences when
compared to the benchmark conventional scans (Table 2), the
fast scan with DL reduced the mean absolute difference from
the benchmark scans for normalized gray matter volume (from
−9.345 to −4.273%) and normalized white matter volume
(from 10.874 to 1.478%), while only marginally increased
the mean absolute difference from the benchmark scans for
normalized brain volume (from −0.905 to −1.789%) and
normalized thalamic volume (from −1.641 to 2.265%) when
compared to the fast scans. The current study cannot conclude
whether the deep learning approach introduces brain region-
specific improvement.

Despite the small T1w volumetric differences from the
benchmark conventional approach, there was no significant
difference in the correlations between all four T1w volumetrics
and the two clinically relevant patient-reported outcomes
of neurological disability and symptom burden (PDDS and
MSRS-R) in the fast scans with DL against the benchmark
conventional approach (Tables 3, 4). These findings indicate
that the calculated volumetric differences between fast scans
with DL and conventional approaches were not large enough

to have clinical impact. Specifically, the correlation between the
T1w MRI findings and real-world outcomes of gait and physical
impairment (PDDS) as well as overall symptom burden (MSRS-
R) were preserved in the fast scans with DL.

The difference in the parcellations derived from the fast and
conventional images could explain the significant difference in
the correlation between the normalized brain volume and PDDS
(Table 3) as well as the borderline difference in the correlation
between the normalized brain volume and MSRS-R (Table 4),
though the latter association did not reach significance after
correction for multiple testing. When calculating the normalized
whole brain volume in the fast scans, the segmentation software
likely performed less well when compared to the other T1w
volumetrics. The coarse resolution of the fast scans might have
made the delimitation of the whole brain edges more challenging.

Obtaining nearly equivalent image quality using shorter
acquisition time improves patient comfort and satisfaction while
reducing artifact introduced by involuntary motion that often
manifests in the latter portion of a prolonged MR study. The
increased MR study throughput would also enable efficient
utilization of the MR resources, reducing unnecessary wait time
and improving access to critical imaging for diagnostic and
monitoring purposes, not only for PwMS but also for other
patient populations.

There were limitations to our study. First, the study had
a modest sample size, limiting the power of some of the
statistical analyses (e.g., T2 lesion volume, see further discussion
Supplementary Material). Second, the current study performed
volumetric analysis on only the T1w images, while inclusion
of the T2w-FLAIR contrasts in the processing pipeline might
improve the volumetric estimations.

In summary, we demonstrated the clinical application of a
deep learning model to improve the quality of accelerated T1w
images in routine clinical brain MR scans for MS. Beyond further
validation of this application in longitudinal studies (e.g., baseline
T1w volumetrics informing long-term clinical outcomes), we
anticipate future studies that test the ability of a DL model
to replace gadolinium contrast for MRI with “virtual” contrast
(33, 34).
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