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Abstract: The accurate prediction of protein localization is a critical step in any functional genome
annotation process. This paper proposes an improved strategy for protein subcellular localization
prediction in plants based on multiple classifiers, to improve prediction results in terms of both
accuracy and reliability. The prediction of plant protein subcellular localization is challenging
because the underlying problem is not only a multiclass, but also a multilabel problem. Generally,
plant proteins can be found in 10–14 locations/compartments. The number of proteins in some
compartments (nucleus, cytoplasm, and mitochondria) is generally much greater than that in other
compartments (vacuole, peroxisome, Golgi, and cell wall). Therefore, the problem of imbalanced
data usually arises. Therefore, we propose an ensemble machine learning method based on average
voting among heterogeneous classifiers. We first extracted various types of features suitable for each
type of protein localization to form a total of 479 feature spaces. Then, feature selection methods
were used to reduce the dimensions of the features into smaller informative feature subsets. This
reduced feature subset was then used to train/build three different individual models. In the process
of combining the three distinct classifier models, we used an average voting approach to combine the
results of these three different classifiers that we constructed to return the final probability prediction.
The method could predict subcellular localizations in both single- and multilabel locations, based
on the voting probability. Experimental results indicated that the proposed ensemble method could
achieve correct classification with an overall accuracy of 84.58% for 11 compartments, on the basis of
the testing dataset.

Keywords: ensemble machine learning; plant protein; feature extraction; feature selection; go term;
consensus voting; average voting; subcellular localization prediction

1. Introduction

Subcellular localization is one of the key properties considered in the functional an-
notation of proteins [1–3]. Identifying the subcellular locations of proteins is immensely
helpful for understanding their function and designing or identifying drug targets. Pre-
dicting the subcellular locations of proteins in cells is an important step for providing
useful insights into protein functions and the mechanisms underlying various biological
processes. Knowledge of protein localization might also provide valuable information for
target identification for drug discovery [4,5]. With the advent of high-throughput sequenc-
ing technology, innumerable protein sequences are now being progressively identified and
submitted to public sequence databases [3]. According to the statistical release for 2020
(Release: 2020_06 of 2 December 2020), UniProtKB contains 59,932,518 sequence entries,
but only 350,510 of the proteins have a reviewed subcellular localization status (manually
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annotated) [6]. Due to the huge amount of generated data, biochemical wet-lab experi-
ments for locating proteins are particularly laborious and costly, involving time-consuming,
labor-intensive tools that require a large number of skilled researchers [7,8]. Hence, there
is a need for an accurate alternative computational method that utilizes the capabilities
of artificial intelligence and machine learning, to provide fast and accurate results for
identifying new proteins [9].

Diverse subcellular localization computational prediction tools were proposed using
different training data procedures, data features, and machine learning algorithms [10–32].
Some tools used the support vector machine (SVM) algorithm such as MultiLoc2 [10],
Plant-mSubP [11], mGOASVM [12], WegoLoc [13], and LocTree [14]. Some tools used
the K-nearest neighbors (KNN) algorithm, such as Plant_mPLoc [15] and iLoc-Plant [16].
Some tools used naïve Bayes such as Yloc [17] and ngLOC [18]. Some tools applied neural
network algorithms such as SCLpredT [19], and some applied deep learning, such as
DeepPSL [20]. In addition to differences in the algorithm architecture, these tools also differ
in the features used to train the model.

The existing methods can be roughly classified into three main feature groups—the first
type of feature is based on a comparative or homology approach utilizing the advantages of
the gene ontology (GO) term vocabulary approach. iLoc-Plant [16], Plant_mPLoc [15], pLoc-
mEuk [21], mGOASVM [12], WegoLoc [13], LocTree [14], YLoc [17], and HybridGO-Loc [22]
use the GO term as the main feature. However, using solely this type of feature might
not be suitable for newly discovered sequences with no known homologous sequences
in the database. The second type of feature involves searching for the presence of motifs
associated with a known biochemical function. For example, BUSCA [23] and localizer [24]
use sorting signal peptide-based features as the main features.

The third type of feature is the functions or characteristics of the protein sequences
using their physicochemical and amino acid composition-related characteristics. Examples
of tools that used this type of feature are ngLOC [18], which is solely based on the sequence-
based feature and those in [25–27]. In conclusion, these tools differ in three critical aspects—
trained model, trained features, and number of coverage locations.

For the subcellular location problem, there are many challenges. (1) The type of
organism has different numbers of locations. (2) There is a limited of number of trained
data in some locations. (3) The subcellular localization problem is a multi-classification
problem in which some localizations can be predicted with high accuracy because there
are more sample data and explicit features to describe them, whereas other locations are
limited in the known number of sequences and characteristics, resulting in variations in
accuracy performance between localizations. (4) There is a multi-label problem in which
many proteins are located in multiple locations. There is evidence indicating that proteins
with multiple locations might present specific biological functions that are intriguing to in-
vestigators [31]. Therefore, it is necessary to explore features and appropriate classification
methods for improving prediction performance [32].

For the plant subcellular localization classification problem, only a few methods were
designed and developed, especially for predicting the multi-label subcellular localization
of plant proteins [7,11]. The number of subcellular locations in plants is large, and the
number of proteins in each location is different or imbalanced. Most methods for plant are
SVM or KNN.

In this research, we contribute to (1) building an ensemble machine learning classi-
fier that aggregates various diverse individual classifiers, specifically for addressing the
problem of subcellular localization in plants, which is considered a multiclass, multilabel
classification problem. Ensembles can be more generalized [33], can help reduce the risk of
overfitting [34] and can ultimately provide stable, accurate prediction results, by combining
the strengths and reducing the weakness of diverse individual classifiers. Moreover, an
ensemble of different classifiers with appropriate combinations has the benefit of being
able to learn nonlinear or complex boundary problems [35].
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We also (2) explore and extract as many features involved in plant localization as pos-
sible, to characterize the sequences of plant proteins. There are weaknesses and strengths of
different features. Therefore, we use different feature selection methods to find the effective
set of discriminative and nonredundant features that plays a critical role in predicting the
subcellular location of plant proteins. (3) An increasing number of multiple-localization
proteins have a significant function in the cell. The proposed method also provides a
distribution of prediction score that indicates the probability that a protein might reside in
multiple compartments and provides additional information about the GO term involved.

2. Materials and Methods

There are key steps in the workflow, as shown in Figure 1. (1) Collect data; (2) ex-
tract various features, including sequence feature-based, homology-based, signal peptide-
based, and physicochemical property-related features; (3) select a subset of features with
effective discrimination power; and (4) develop and test the prediction performance of the
ensemble classifier.
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2.1. Dataset

A training and testing dataset obtained from Plant-mSubP [11] was used to train
and evaluate the performance of the program for 11 protein locations. These data were
already filtered according to the criterion of <30% similarity, using the BLASTclust, as
described in [11]. In this work, to reduce the high imbalance observed for plastids and
cell membranes versus the remaining locations, we applied CD-HIT [36], with a similarity
cutoff of <25%, followed by random subsampling for the proteins in the plastid and cell
membrane locations. A summary of the number of proteins in the training and testing
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datasets is shown in Table 1. The training and independent testing sequence dataset is also
provided in Supplementary Dataset S1.

Table 1. Number of proteins from each location in the training and testing datasets.

Type Subcellular
Location

Training Data
(Original)

Training Data
(25% CD-HIT) Testing Data

Single location

Plastid 2468 533 248
Cytoplasm 351 351 40

Extracellular 140 140 14
Nucleus 568 568 63

Mitochondrion 447 447 52
Cell membrane 829 438 92

Golgi Apparatus 204 204 23
Endoplasmic

reticulum 280 280 29

Vacuole 176 176 20
Peroxisome 57 57 6

Cell wall 37 37 5

Multilocation
Mito-Plastid 118 118 13

Cyto-Nucleus 170 170 20
Cyto-Golgi 34 34 4

Total 5879 3553 629

2.2. Feature Extraction

In this work, we extracted various types of features to represent a protein in a vector
of 479 features. Table 2 summarizes the features and abbreviations used in this work. The
features could be grouped into 7 main types as follows:

(i) Sequence based features: The amino acid composition of the entire amino acid se-
quence and Chou’s pseudo amino acid composition (PseAAC) in various modes
were generated—pseudo amino acid composition (PseAAC) in parallel and in series
correlations. Chou’s PseAAC [37] is widely used to convert complicated protein
sequences with various lengths to fixed-length numerical feature vectors that incor-
porate sequence-order information. Compared to AAC, PseAAC is more informative,
and can represent a protein sequence and incorporate its sequence-order information.
Hence, it is widely applied for prediction in various amino acid sequence-based
prediction problems [38]. PseACC was calculated using the Pse-in-one program [39]
with parameter lambda = 2, 10 and weight = 0.05, 0.1.

(ii) Composition–transition–distribution (CTD): Three types of descriptors based on the
grouped amino acid composition [40,41] (composition (CTDC), transition (CTDT)
and distribution (CTDD) descriptors) were calculated. CTD was calculated using the
protr R package [42,43]. All amino acid residues were divided into 3 groups—neutral,
hydrophobic, and polar—according to 7 types of physicochemical properties, as
defined in [41]. The 7 physicochemical properties used for calculating these features
were hydrophobicity, normalized van der Waals volume, polarity, polarizability,
charge, secondary structures, and solvent accessibility.

(iii) Various physicochemical property-based features: Quasi-sequence-order descriptors
(QSO) [44], crucian properties [45], zScales [46], FASGAI vectors (factor analysis
scales of generalized amino acid information) [47], tScales [48], VHSE-scales (princi-
pal components score vectors of hydrophobic, steric, and electronic properties) [49],
protFP [50], stScale [51], MS-WHIM score [52], the aliphatic index [53], the autocovari-
ance index [53], the Boman (potential protein interaction) index [54], the net charge,
cross-covariance index [45], instability index [55], the hydrophobic moment, and the
isoelectic point (pI) were calculated using the peptide R package [56] with parameter
nlag = 10 and weight = 0.1.
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(iv) Signal peptide-based features: In addition to the sequence features mentioned above,
functional or signal peptide regions were used in this prediction. The signal peptide
was associated with the transfer to or function of a protein in its localization site [57].
Nuclear localization signals (NLSs) were used as important features for detecting
nuclear proteins. For example, a protein containing a signal peptide is likely to be
transferred to the secretory pathway, while a protein containing an NLS is likely to be
localized in the nucleus. In this work, to identify the signal sequences for the secretory
pathway (signal peptides) and predict the positions of the signal peptide cleavage
sites and transmembrane, the prediction scores obtained from well-known prediction
programs, such as TargetP [58], SignalP [59], Phobius [60], and TMHMM [61], were
used as feature scores (features: SP, cTP, mTP, other, and TM). The NLS was predicted
using the Hidden Markov Models (HMMs) of NLStradamus [62] to predict the NLSs
of the sequences (feature: NLS). However, there are some limitations of this type
of feature; i.e., the signal peptide is not yet completely understood, and the set of
currently known signals might be incomplete.

(v) Integration of other methods: We used the ERPred [63] Score and SubMito [64] SVM
scores as features for discriminating ER and mitochondrial proteins, respectively.
These programs were not used directly to predict locations. However, they were used
to generate the numerical feature to complement each other as parts of the model to
learn in making decisions.

(vi) Secondary structure conformation features: The aggregation, amyloid, turn, alpha-
helix, helical aggregation, and beta-strand conformation secondary structures were
calculated using the Tango program [65].

(vii) Homology and Gene Ontology (GO) annotation-based features: BLAST [66] was
used to search for homologous sequences. This feature is highly effective when a
homologous protein with a localization annotation is available. Evolutionarily, closely
related proteins present a high probability of showing similar subcellular localizations.
Therefore, this type of feature can outperform other features when a homologous
protein with a localization annotation is available [67]. However, there is also a lim-
itation of this type of feature, where no homology is found between the query and
target sequence. The performance of sequence homology-based methods might be
significantly reduced when homologous sequences are not detected [68]. However,
using the GO feature can result in a noisy and confound prediction [69,70] in the
case when a protein could have multiple GO terms that map to different subcellular
localizations, resulting in inconsistency with the true subcellular locations of pro-
teins [12]. The GO database used in this work is a compact database that was filtered
to remove redundant information (<25% sequence similarity threshold) and contained
only representative sequences that did not overlap in the training and testing data.
A set of GO terms in the “cellular component” category was retrieved by searching
against the Gene Ontology Annotation database [71] and the UniProtKB/Swiss-Prot
database [72]. The GO terms used in this work are summarized in Table 3.
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Table 2. Summary of features or descriptors that were used in this research.

Features (Total = 479 Features) Abbreviation

Amino acid Composition AAC1-AAC20
Amphiphilic PseAAC APAAC1-APAAC30

BLOSUM matrix-derived Blosum1-Blosum8
Composition descriptor of the CTD CTDC1-CTDC21
Distribution descriptor of the CTD CTDD1-CTDD105
Transition descriptor of the CTD CTDT1-CTDT21

Geary autocorrelation Geary1-Geary40
Pseudo amino acid composition PAAC1-PAAC30

Parallel pseudo amino acid composition PsePC1-PsePC22
Serial pseudo amino acid composition PseSC1-PseSC26

Net charge Charge
Potential protein interaction index Boman

Aliphatic index of protein aIndex
Autocovariance index autocov

Crosscovariance1 Crosscov1
Crosscovariance2 Crosscov2

Cruciani covariance index Crucian1-Crucian3
Factor analysis scales of generalized amino

acid information fasgai1-fasgai6

Hmoment alpha helix Hmomonet1
Hmoment beta sheet Hmoment2

Hydrophobicity index hydrophobicity
Instability index Instaindex

MS-WHIM scores derived from 36 electrostatic
potential properties mswhimscore1-mswhimscore 3

Isoelectric point (pI) pI
Average of protFP protFP1-protFP8

ST-scale based on physicochemical properties stscales1-stscales8
T-scale based on physicochemical properties tscales1-tscales5

VHSE-scale based on physicochemical
properties (vhsescales1 vhsescales1-vhsescales8

Z-scale based on physicochemical properties stscales1-stscales5
Quasi-sequence-order descriptor QSO1-QSO60

Sequence-order-coupling numbers SOCN1-SOCN20
Chloroplast transit peptide cTP

Mitochondrial transit peptide mTP
Signal peptide cleavage site score SP

Number of predicted transmembrane segments TM
Other location score from targetP other

Nuclear localization signal NLS
SVM score from Erpred erpred

SubmitoPred (SVM_score_mito) SVM_mito
SubmitoPred (SVM_inner_mem) SVM_mem
SubmitoPred (SVM_inter_mem) SVM_inter

SubmitoPred (SVM_score_matrix) SVM_matrix
SubmitoPred (SVM_score_outer_mem) SVM_outer

Aggregation (tango1) Tango1
Amyloid (tango2) Tango2

Turn-turns (tango3) Tango3
Alpha-helices (tango4) Tango4

Helical aggregation (tango5) Tango5
Beta-strands (tango6) Tango6

Homology based feature (GO term) Homology
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Table 3. Summary of cellular component GO terms used in this work.

Go term; ‘Cellular component’
GO:0005737; cytoplasm

GO:0005783; endoplasmic reticulum
GO:0005788; endoplasmic reticulum lumen

GO:0005789; endoplasmic reticulum membrane
GO:0005793; endoplasmic reticulum-Golgi intermediate compartment

GO:0005615; extracellular space
GO:0005794; Golgi apparatus

GO:0005796; Golgi lumen
GO:0000139; Golgi membrane
GO:0005739; mitochondrion

GO:0005740; mitochondrial envelope
GO:0005743; mitochondrial inner membrane

GO:0005758; mitochondrial intermembrane space
GO:0005759; mitochondrial matrix

GO:0031966; mitochondrial membrane
GO:0005741; mitochondrial outer membrane

GO:0005886; plasma membrane
GO:0005618; cell wall
GO:0005634; nucleus
GO:0009536; plastid

GO:0009528; plastid inner membrane
GO:0005777; peroxisome

GO:0005778; peroxisomal membrane
GO:0005773; vacuole

GO:0005774; vacuolar membrane
GO:0016020; membrane
GO:0009507; chloroplast

2.3. Feature Selection

We reduced the number of features and identified optimal feature subsets using
various types of feature selection methods, such as ReliefF [73], OneR [74], and correlation-
based feature selection (CFS) [75] with a genetics search.

2.4. Model Selection

The application of the K-nearest neighbor (KNN) is a well-known nonparametric
technique used in statistical pattern classification, owing to its simplicity, intuitiveness,
and effectiveness [76]. The basic idea of this rule is that an unclassified object is assigned
to the class represented by a majority of its k nearest neighbors in the training set. When
different values of k were compared, we found that the optimal value of k = 12 with inverse
weighting, yielded the optimal classification performance for this problem. Thus, the KNN
with K = 12 and inverse weighting was used thereafter. Note that KNN is robust to datasets
with imbalanced classes and multimodal distributions.

The random forest (RF) algorithm is one of the most commonly used bagging ensemble
algorithms because of its flexibility and ease of use. This algorithm can produce good
results without hyperparameter tuning. The RF approach is an ensemble technique with
the ability to achieve high accuracy and prevent overfitting, by making use of voting in
multiple decision trees. (RF parameter: no. estimators = 100).

The extreme gradient boosting (XGB) algorithm is a gradient boosting ensemble algo-
rithm. The boosting algorithm adjusts the weights according to a differential loss function
and then uses the adjusted weights in the next training iteration. (params: no. estimators
(nrounds) = 50, max_depth = 5, eta = 0.1, eval_metric = “mlogloss”, num_class = 11).

A heterogeneous ensemble classification model combining the 3 different classifier
algorithms is obtained through aggregation to increase the performance of the model. In
this work, we used the average voting result among individual classification models as a
consensus score of the heterogeneous ensemble model.
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We adopted the 10-fold cross-validation method to investigate the classification per-
formance based on training data.

Based on the 10-fold cross-validation, the feature selection and model selection pro-
cesses were performed using only the training dataset. Then, the best-performing model
was selected and later used as the prediction model of the program. The test dataset was
used independently to evaluate the selected models and benchmarked against the competi-
tive programs. The ensemble-PlantSCL standalone program and classification model is
available to download at http://www.ncrna-pred.com/ensemblePSCL.htm (accessed on
30 March 2021).

2.5. Evaluation Measurement

To evaluate the classification performance of the model, the following metrics were used:

ACC =
TP + TN

(TP + TN + FP + FN)
(1)

Sn =
TP

(TP + FN)
(2)

Sp =
TN

(TN + FP)
(3)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

where ACC, Sn, Sp, and MCC are the accuracy, sensitivity, specificity, and Matthews
coefficient correlation, respectively. These measurements were calculated based on the
numbers of true positives (TPs), true negatives (TNs), false positives (FPs), and false
negatives (FNs). The area under the receiver operating characteristic (ROC) curve (AUC)
was calculated to assess the tradeoff between the sensitivity and specificity performance of
the different methods. The ROC curve is a plot of the TP vs. FP rates at different thresholds.
For a perfect predictor, the AUC is equal to 1.

3. Results and Discussion
3.1. Comparison of Different Features/Feature Analysis

To detect hidden patterns, in this work, we utilized various types of features, such
as homology-based, sequence-based, signal-based, and physicochemical property-related
features, to represent peptides with a vector of 479 total features. We tried to collect
and extract as many known subcellular localization-related features as possible, so that
the number of features was sufficient to explain the characteristics of various subcellular
localizations. The evaluation of subcellular localization is a difficult problem due to its
multilabel and multiclass nature. We are, therefore, interested in exploring which features
show a high correlation with particular localizations. We generated 11 datasets of one
localization-vs-other localizations (1-vs-All-1 locations) from the training dataset and then
calculated the Pearson correlation coefficient (PCC) analysis. The top 20 features showing
the highest correlation with each location were plotted, as shown in Figure 2, to display the
features that contributed the most to each location. We found a moderate correlation (PCC
of approximately 0.5) between features and target locations, such as plastids and nuclei.
The proteins at these locations exhibit specific informative or signal features that allow
them to be discriminated from others. However, in many locations, such as peroxisomes
and vacuoles, there is quite a low correlation (PCC < 0.2) between the top features and the
target location.

http://www.ncrna-pred.com/ensemblePSCL.htm
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3.2. Discriminative and Informative Reduced Feature Subset

As shown in Figure 2, no single feature was found among the top features in all
11 localizations. The efficient feature representation of a protein sequence is a very important
aspect of subcellular localization. However, a group of multiple features might include
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irrelevant and redundant features and can therefore cause high dimensionality. High-
dimensional features that include much redundant information might harm and negatively
influence the performance of the classifier. Dimensionality reduction algorithms can help to
eliminate redundant data from the original feature space and are widely used in machine
learning [32]. Therefore, a feature-selection step is needed to identify discriminative and
nonredundant feature subsets that can discriminate all locations. To select the discriminative
feature subset, a comparison of the empirical performance of individual predictive models
using different feature sets from various feature-selection methods, such as ReliefF, OneR,
and CFS, was performed, as shown in Table 4. The OneR, ReliefF, and CFS feature sets
contained 87, 95, and 109 features, respectively (listed in Supplementary Tables S1–S3).

Table 4. Classification training performances for different feature subsets.

All Features (479) RF KNN XGB HeteroEnsemble

ACC 82.72% 82.62% 85.97% 91.00%
MCC 0.795 0.798 0.845 0.896
AUC 0.977 0.897 0.975 0.993

OneR (87) RF KNN XGB HeteroEnsemble1

ACC 92.02% 91.51% 93.87% 93.76%
MCC 0.907 0.902 0.932 0.929
AUC 0.995 0.991 0.993 0.996

ReliefF (95) RF KNN XGB HeteroEnsemble2

ACC 94.27% 89.57% 93.46% 93.97%
MCC 0.935 0.879 0.928 0.932
AUC 0.996 0.991 0.992 0.996

CFS + Genetics
(109) RF KNN XGB HeteroEnsemble3

ACC 94.48% 93.05% 95.30% 94.68%
MCC 0.938 0.921 0.948 0.94
AUC 0.996 0.994 0.996 0.997

Model performance decreased slightly for the model incorporating all features, while
model performance increased significantly for the model with feature selection subsets.
Divergence in the accuracy of individual models (RF, KNN, XGB) was observed when
using different feature-selection approaches. Moreover, there were improvements in the
accuracy of individual models when feature selection was used. Notably, the accuracy of the
heterogeneous ensemble model using feature subsets (HeteroEnsembles 1, 2, and 3) increased
by approximately 2.76–3.68%, as compared to the ensemble model that used all features.

3.3. A 10-Fold Cross-Validation of Predictive Performance with the Training Dataset

The experiments were conducted via 10-fold cross-validation of the training process
and were validated by independent testing datasets. To investigate the classification per-
formance of different models and different feature subsets, the feature subset was applied
as input vectors for the classifier, KNN, RF, XGB, and ensemble models, followed by eval-
uation and comparison in three different optimal sets of feature subsets. Thereafter, the
individual classifiers (KNN, RF, and XGB) were aggregated through average voting to
obtain the final prediction of a heterogeneous ensemble model. According to Table 4, based
on the performance obtained with the training data, the HeteroEnsemble3 model, which
is an ensemble of the RF, KNN, and XGB models obtained using the CFS feature subset,
showed the highest ACC, MCC, and AUC values of 94.68%, 0.94, and 0.997, respectively,
among the three ensemble models. The ensemble model significantly improved classifica-
tion performance over that was obtained with the individual KNN, RF, and XGB classifiers,
in terms of the classification accuracy and AUC. The high AUC value (0.997) implies that



Life 2021, 11, 293 11 of 15

the ensemble method achieves better predictive balance among the 11 subcellular locations.
Therefore, the HeteroEnsemble3 model was selected for further use.

3.4. Classification Performance for the Independent Testing Dataset

To assess the performance of the method, evaluation had to be carried out with an
independent testing dataset that was not used during the training step. When tested with
the independent data, accuracies of 85.47%, 84.58%, and 70.27% were achieved for single-
label, single-, and dual-label, and dual-label proteins, respectively, as shown in Table 5.
Compared to the performance of Plant_msubP (64.36%, 64.84%, and 81.08%) reported
in [11], our model showed improvements in accuracy for the single-label, single-, and
dual-label datasets. In addition to the percent of correctly predicted results in each location,
which reflects only the true positive, we calculated the MCC values by using all four values
from the confusion matrix (true positive, true negative, false positive, and false negative).
MCC is a more reliable statistical measurement [77]. A high value close to 1 means that the
prediction is good in all four confusion matrix categories, proportional to both the size of
positive samples and the size of negative samples in the dataset. The detailed classification
result with prediction probability is provided in Supplementary Table S4.

Table 5. Classification performance of the heterogeneous ensemble for the independent testing dataset.

Type Subcellular Location Testing Data Correctly Predicted Percent MCC

Single location

Plastid 248 238 95.97% 0.756
Cytoplasm 40 34 85% 0.829

Extracellular 14 9 64.28% 0.756
Nucleus 63 61 96.82% 0.854

Mitochondrion 52 31 59.61% 0.708
Cell membrane 92 81 88.04% 0.792

Golgi Apparatus 23 14 60.86% 0.747
Endoplasmic

reticulum 29 25 86.21% 0.710

Vacuole 20 5 25% 0.359
Peroxisome 6 3 50% 0.705

Cell wall 5 5 100% 1
Total (Single

location) 592 506 85.47% 0.747

Multilocation

Mito-Plastid 13 8 61.54% 0.607
Cyto-Nucleus 20 18 90% 0.897

Cyto-Golgi 4 0 0% 0
Total (multilocation) 37 26 70.27% 0.501

Total All 629 532 84.58% 0.694

As shown in Table 5, we also found that the model had difficulty distinguishing
some locations, such that the performance of our method for vacuole and peroxisome
proteins was not good. There were many misclassifications in some important subcellular
compartments, such as the Golgi and peroxisome. Many Golgi apparatus proteins were
misclassified as being located in the endoplasmic reticulum (ER). Three misclassified
peroxisome proteins were classified as being located in the cytoplasm, nucleus, and cell
membrane. Low accuracy was observed for certain compartments, such as the vacuoles
and peroxisomes, which was consistent with the results of our feature analysis, shown
in Figure 2, indicating quite low correlations (PCC < 0.2) between the top features and
the locations of peroxisomes and vacuoles. However, the method was still effective in its
predictions for the 11 subcellular compartments overall, as shown in Table 5.

3.5. Comparison with Other Existing Tools

Using the independent testing dataset, we could compare our method with the avail-
able prediction tools that also support multilocation prediction, based on the results re-
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ported in [11]. As shown in Table 6, our method achieved 84.58% accuracy for single- and
multi-localization data together, and 70.27% accuracy for multi-localization testing data
alone, thus significantly outperforming the other methods in both cases.

Table 6. Comparison of prediction accuracy for an independent dataset with the accuracy of existing tools that support
multiple-labels localizations. The actual accuracy is calculated as a percentage of the ratio of the number of correctly
predicted sequences divided by the total number of sequences in the independent dataset.

Method Machine Learning
Technique

Accuracy
(Single + Dual Label Data)

Accuracy
(Dual Label Data)

YLoc [17] Naïve Bayes 34.35 35.89
Euk-mPloc 2.0 [28] OET-KNN 1 53.5 44.86

iLoc-Plant [16] ML-KNN 2 37.42 34.42
Plant-mSubP [11] SVM 3 64.84 81.08

Our model Ensemble 84.58 70.27
1 OET-KNN = Optimized Evidence-Theoretic K-Nearest Neighbor; 2 SVM = Support Vector Machine; 3 ML-KNN = Multi-labeled
K-Nearest Neighbor.

In summary, our ensemble predictor achieved good prediction results for most of
the 11 localization datasets, which sufficiently demonstrated that the ensemble prediction
method incorporated with the selected feature subset proposed in this paper was accurate,
consistent, and robust/stable.

4. Conclusions

In this work, efforts were made to collect various informative features and to de-
velop heterogeneous ensemble methods for both single- and multiple-location proteins,
to address the problem of subcellular localization. Several features were included in this
approach to represent proteins, such as the amino acid composition, pseudo amino acid
composition, annotation-based methods (GO-based features), and sorting signals (signal
and transit peptides, transmembrane domains). To include more divergence in the model
to increase the stability of our heterogeneous ensemble model, we built the heterogeneous
ensemble model, based on aggregation by average voting, based on KNN, RF, and XGB.
Through a proper combination of the diverse predictors via an appropriate fusion method,
the ensemble predictor could proficiently exploit the strength and reduce the weakness
of any component predictor. The proposed ensemble predictor provided an efficient fi-
nal decision based on average voting to make final predictions for 11 plant-localization
datasets. In addition, the method improved protein subcellular localization classification
by integrating various informative features so that the various protein properties could
be considered from multiple points of view, to obtain a more accurate and robust/stable
prediction. The method achieved 84.58% accuracy in its predictions for 11 localizations
in plants, with the ability to classify multiplex proteins/multi-localization proteins, and
provide GO term annotations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/life11040293/s1. Table S1: Feature Subset 1 Selected by OneR, Table S2: Feature Subset 2
Selected by ReliefF with number of neighbors = 10, Table S3: Selected by CFS with genetics search
(number of generations = 1000, number of populations = 200, mutation rate = 0.013, crossover = 0.6).
Selected features: 109 features, Table S4: The detailed classification result with prediction probability.
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