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ABSTRACT
Despite recent improvements, overall survival for advanced adenocarcinoma 

of the pancreas continues to be poor. In comparison to other tumor types that have 
enjoyed marked survival benefit by targeting aberrant cell signaling pathways, 
standard of care treatment for pancreatic cancer is limited to conventional cytotoxic 
chemotherapy. Multiple pathway aberrations have been documented in pancreatic 
cancer. A review of the COSMIC database reveals that most pancreatic cancers 
contain somatic mutations, with the five most frequent being KRAS, TP53, CDKN2A, 
SMAD4, and ARID1A, and multiple other abnormalities seen including, but not 
limited to, mutations in STK11/LKB1, FBXW7, PIK3CA, and BRAF. In the era of 
tumor profiling, these aberrations may provide an opportunity for new therapeutic 
approaches. Yet, searching clinicaltrials.gov for recent drug intervention trials for 
pancreatic adenocarcinoma, remarkably few (10 of 116 (8.6%)) new study protocols 
registered in the last three years included a molecular/biomarker stratification 
strategy. Enhanced efforts to target subsets of patients with pancreatic cancer in 
order to optimize therapy benefit are warranted.

INTRODUCTION

Pancreatic adenocarcinoma is the fourth most lethal 
malignancy in the United States, with 39,590 deaths 
expected in 2014. [1] It is one of the few malignancies 
where incidence approximates prevalence, as the disease 
is almost uniformly fatal, often within one year (Table 1). 
[2, 3] For patients who present with localized disease that 
can be surgically removed, median survival is 22.8 months 
due to the high-likelihood of recurrence. [4] Most patients 
present with metastatic disease, and treatment options are 
limited to chemotherapy. Median survival is about five to 
seven months with single-agent gemcitabine, or 8.5–11 
months with more intense regimens such as gemcitabine/
nab-paclitaxel and fluorouracil (5-FU)/irinotecan/
oxaliplatin (FOLFIRINOX). [5–7]

Recent survival gains in the treatment of pancreatic 
cancer have resulted from new combinations of 
conventional, non-targeted chemotherapies, such as 
FOLFIRINOX. [7] Only one targeted agent – erlotinib, a 
small-molecule tyrosine-kinase inhibitor of EGFR – has been 
shown to improve overall survival (OS) when combined 

with gemcitabine. [8] This improvement was a modest 11 
days compared to gemcitabine alone. Other targeted agents, 
such as bevacizumab, cetuximab, and sorefenib, did not 
improve overall survival in combination with gemcitabine. 
[9–11] Trials with these agents were open to all patients with 
pancreatic cancer, and there were no screening criteria to 
select patients most likely to respond to the targeted agents.

Outside the field of pancreatic cancer, significant 
advances in oncology therapy have emerged by identifying 
and intervening upon “actionable” aberrations. Advanced 
melanoma, which traditionally held a grave prognosis, 
has undergone a renaissance in treatment options. For 
the approximately 40% of patients that harbor a V600E 
BRAF mutation, vemurafenib produces a response rate 
of 48%. [12, 13] Dabrafenib, another BRAF inhibitor, 
and trametinib, a MEK inhibitor, have also substantially 
improved outcomes in BRAF-mutant patients. [14, 15] In 
advanced non-small cell lung cancer (NSCLC), median 
survival with traditional platinum-doublet chemotherapy 
is eight to nine months. [16] Targeting the EML4-ALK 
fusion product (~5% incidence) with crizotinib, a small-
molecule kinase inhibitor, is associated with a survival 
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of about 20 months. [17] Even erlotinib, whose effect 
is modest in pancreatic cancer, can improve first-line 
progression-free survival (PFS) in patients with EGFR-
mutations (about 8–30% depending upon ethnicity) from 
4.6 to 13 months. [18–20] Further, a meta-analysis of the 
NSCLC literature showed responses of 49% when targeted 
treatments were matched to the appropriate subgroup of 
patients, but only 9.7% when unselected populations were 
treated. [21]

In this regard, a review of pancreas tumor specimens 
within the Catalogue of Somatic Mutations in Cancer 
(COSMIC) database reveals that most pancreatic cancers 
harbor somatic mutations (Table 2), with the five most 
frequent aberrations being KRAS, TP53, CDKN2A, 
SMAD4, and ARID1A. [22, 23] If specific “actionable” 
mutations can drive marked improvements in survival 
in melanoma and NSCLC, similar opportunities might 
reasonably be expected in pancreatic cancer. Herein we 
review the molecular landscape in pancreatic cancer and 
provide an overview of the status of current clinical trials 
in the field.

KRAS

Seventy-one percent of pancreatic cancer specimens 
in the COSMIC database harbor KRAS mutations. [22] 
KRAS is a key protein in multiple signaling pathways. 
When bound to guanosine triphosphate (GTP), it 
mediates cell survival and differentiation. Common KRAS 
mutations hinder its ability to hydrolyze GTP, leaving it 
constitutively active. [24] KRAS mutations are common 
in pancreatic duct lesions and are thought to play an 

early role in oncogenesis. [25] Thus, blocking targets 
downstream of KRAS is of clinical interest.

One key target downstream of KRAS is MEK, which 
functions as a protein kinase. Multiple MEK inhibitors are 
in development, and some have shown promise (Table 3). 
Selumetinib, a small-molecule MEK inhibitor, was 
randomized against single-agent capecitabine as a second-
line treatment for advanced pancreatic cancer. Though there 
was no difference in overall survival, two of 38 (5.2%) 
patients in the selumetinib arm achieved a partial response 
(PR) [26]. Trametinib has also shown some activity. In a 
treatment-refractory phase I population, two of 26 patients 
(8%) achieved PR [27]. However, in a randomized phase II 
trial with trametinib given in combination with gemcitabine 
versus gemcitabine alone, response rate was 22% (but 
included one complete remission) as compared to 18%; 
survival was 8.4 versus 6.7 months (p, not significant).[28]  
The fact that some patients respond to MEK inhibitors 
alone is of interest, though combinations of MEK inhibitors 
with gemcitabine do not substantially increase the response 
rate.  Whether or not MEK inhibitors in combination with 
other regimens such as FOLFIRINOX might be beneficial 
merits further study.

TP53

Forty-nine percent of pancreatic cancers in the 
COSMIC database demonstrate TP53 mutations. [22] 
p53 is key tumor suppressor, and when in an inactivated 
state, enables cancerous cells to avoid apoptosis. Wee-
1 inhibitors such as MK1775 target aberrant p53 by 
blocking cell cycle checkpoint regulation and increasing 

Table 1: Current treatment strategies for newly-diagnosed pancreatic cancer
Clinical 
Scenario

Treatment MedianOS 1-year Survival Comment Reference(s)

Resectable

Surgical Resection; 
6 Months Adjuvant Therapy 
with Gemcitabine and 5-FU 
Chemoradiation

20.5 Mos 73% Pancreas head 
lesions only

Regine et al, 
2011 [55]

Surgical Resection; 6 Months 
Adjuvant Gemcitabine 22.8 Mos 72% Oettle et al, 2007, 

2013 [4, 56]

Locally-
Advanced

3 Months Chemotherapy; 
5-FU Chemoradiation 15.0 Mos 65%

Patients that 
developed mets 

post-chemo were 
excluded

Huguet at al, 
2007 [57]

Metastatic

FOLFIRINOX 11.1 Mos 48% Conroy et al, 
2011 [7]

Gemcitabine + Nab-
paclitaxel 8.5 Mos 35% Von Hoff et al, 

2013 [6]

Gemcitabine 5.7 Mos 18% Burris et al, 
1997 [5]
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susceptibility to cytotoxic chemotherapy. [29] In addition, 
retrospective analysis by Said et al [30] suggested that 
tumors with aberrant p53 may be more sensitive to 
bevacizumab. Patients with aberrant p53 had a median 
PFS of 11 months while the median PFS in those 
with wild-type p53 was 5.0 months. On multivariate 
analysis, the interaction between p53 mutation status and 
bevacizumab therapy was statistically significant [HR 
0.15, 95% CI 0.05–0.44, p < 0.001]. [30]

Of additional clinical interest is re-activating 
p53 in wild-type patients. MDM2, an inhibitor of p53, 
is overexpressed in many cancers. [31] MDM2–p53 
interaction prompts p53 degradation and blocks its tumor 
suppressor function. [31] Blocking MDM2 activity may 
prevent this degradation, thereby enabling p53-induced 
apoptosis of cancerous cells. [32] A search of clinicaltrials.

gov lists multiple MDM2 antagonists currently under 
early-phase investigation, including RO5045337, 
RO5503781, and DS-3032b. [33]

CDKN2A

CDKN2A is aberrant in twenty-two percent of 
patients with pancreatic cancer. [22] It encodes multiple 
proteins which play roles in tumor suppression. Two 
transcripts, p16 and p14ARF, are frequently abnormal 
in pancreatic cancer and result in loss of function. p16 
inhibits the activity of cyclin-dependent kinases 4/6, 
thereby playing a regulatory role in the cell cycle by 
preventing phosphorylation of the tumor suppressor 
retinoblastoma protein. [34] Loss of p16 results in 
activation of CDK4/6 and is associated with high-grade 

Table 2: Most common mutated genes of pancreatic ductal carcinoma in COSMIC database*
Mutated Gene Frequency Wild-Type Gene Function**

Percentage Denominator

KRAS 71% 4573 GTPase mediating cell signaling

TP53 49% 796 Tumor suppressor

CDKN2A 22% 950 Tumor suppressor

SMAD4 20% 680 Signal transduction protein

ARID1A 6% 343 Chromatin remodeling

MLL3 4% 292 Histone methylation

PIK3CA 3% 377 Protein kinase mediating cell signaling

MAP2K4 3% 294 Protein kinase mediating cell signaling

ATM 3% 190 Protein kinase mediating cell cycle checkpoint 
signaling

ACVR1B 3% 226 Growth factor receptor kinase

BRAF 2% 528 Protein kinase mediating cell signaling

APC 2% 267 Tumor suppressor

SF3B1 2% 206 RNA splicing

STK11/LKB1 2% 314 Tumor suppressor

FBXW7 2% 242 Component of SCF-complex mediating ubiquitination

SMARCA4 1% 291 Transcriptional regulation

ARID2 2% 189 Transcriptional regulation

CREBBP 2% 190 Histone acetylation

RNF43 2% 197 Ubiquitin ligase

EP300 1% 201 Histone acetylation

ERBB2*** 0.4% 256 Receptor tyrosine kinase

* Accessed December 1, 2014 (http://www.sanger.ac.uk/cosmic) [22].
**National Center for Biotechnology Information (NCBI), U.S. National Library of Medicine, Gene database (http://www.
ncbi.nlm.nih.gov/gene).
*** In addition to mutation, HER2 may be overexpressed or amplified in ~10 to 30% of patients [58–60].
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pre-malignant pancreatic lesions. [35] Palbociclib, an 
inhibitor of CDK4/6, has been shown to suppress growth 
of pancreatic cancer cell lines, though with upregulation 
of genes associated with metastasis. [36] p14ARF is an 
inhibitor of MDM2 and stabilizes retinoblastoma protein 
by interfering with MDM2-mediated degradation. [37] 
Theoretically, either CDK4/6 or MDM2 inhibitors might 
be active in patients with loss of CDKN2A function.

SMAD4

SMAD4 is a co-factor that facilitates gene 
transcription and tumor suppression through the TGF-
beta signaling pathway. SMAD4 mutations are present 
in twenty percent of pancreatic cancers and have been 
associated a poorer prognosis and increased metastases. 
[22, 38, 39] Inactivation of SMAD4 may enable TGF-beta 
signaling, which is usually suppressive, to promote cancer 
growth. [40, 41] To our knowledge, the role of TGF-beta 
inhibitors in patients with SMAD4 mutations has not been 
investigated.

ARID1a

ARID1a mutations are present in six percent of 
pancreatic cancers. [22] ARID1a plays a role in chromatin 
remodeling, is thought to have tumor suppressor function, 
and binds p53. [42] It also modulates signaling through the 
PI3K/AKT/mTOR axis. [43] Whether or not mutations in 
ARID1a can be targeted by using PIK3CA, AKT or mTOR 
inhibitors is currently unknown.

Other potentially actionable mutations

BRCA2 is a potent tumor suppressor and plays a key 
role in DNA repair. Murphy et al demonstrated that 5/29 
patients (17%) with a strong family history of pancreatic 
cancer harbored BRCA2 mutations. [44] PALB2, which 
binds BRCA2, also plays a role in DNA repair. PALB2 
mutations were reported in 3/96 patients (3.1%) with 
familial pancreatic cancer. [45]

In theory, patients with BRCA2 or PALB2 mutations 
should be more sensitive to DNA-damaging agents. Two 
case reports illustrate this point (Table 4). Villarroel et 
al reported a 61-year-old man with metastatic pancreatic 
cancer in the setting of a PALB2 mutation. [46] He 
was initially treated with gemcitabine chemotherapy 
(nucleoside analogue) with no response, but then 
received mitomycin C chemotherapy (DNA crosslinker) 
and achieved a partial response that lasted twenty-two 
months. A 49-year-old woman with advanced pancreatic 
cancer in the setting of BRCA2 mutation who was treated 
with mitomycin C and capecitabine after progressing 
through two previous regimens also achieved a partial 
response. [47] Mitomycin C was discontinued after six 
months due to toxicity. Patients with BRCA2 mutations 
may also be sensitive to PARP inhibitors. Response 
has been seen in a variety of other tumors, including 
breast, prostate, and ovarian cancer harboring BRCA2 
aberrations. [48]

Abberations in STK11/LKB1 and FBXW7 are 
also potential targets. LKB1 acts through AMPK 
to inhibit mTOR, which regulates cell growth. [49] 

Table 3: Clinical trials with MEK1/2 inhibitors in metastatic pancreatic cancer
Agent Line of 

Therapy
Phase of Study Partial Remission 

(PR)
Comment Reference

Trametinib + 
Gemcitabine 1st Line Randomized 

Phase II

17/77 (22%);(includes 
one complete 
remission

PR 14/77 (18%) 
in placebo + 
gemcitabine arm 

Infante et al, 
2014 [28]

Trametinib + 
Gemcitabine Mixed Phase Ib 3/11 (27%)

Two patients had 
received prior 
therapy

Infante et al, 
2013 [61]

Trametinib Refractory Phase I 2/26 (8%) Infante et al, 
2012 [27]

Selumetinib vs. 
Capecitabine 2nd Line Phase II 2/38 (5%) Bodoky et al, 

2011 [26]

XL-518 / GDC-0973 + 
GDC-0941 (PI3K) Refractory Phase Ib 1 PR

Patient with PR 
had a BRAF 
mutation

LoRusso et al, 
2012 [62]

CI-1040 1st Line Phase II 0/15 (0%) Rinehart et al, 
2004 [63]

CI-1040 Refractory Phase I 1/6 (17%) LoRusso et al, 
2005 [64]
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Germline STK11/LKB1 loss-of function mutations are 
associated with Peutz-Jeghers Syndrome, which carries 
an increased risk for pancreatic neoplasms. [49] A case 
reported by Klumpen at al successfully used the mTOR 
inhibitor everolimus in a Peutz-Jeghers Syndrome patient 
with pancreatic cancer to obtain a partial response 
without additional cytotoxic chemotherapy (Table 4). 
[50] FBXW7 plays a role in the ubiquitin-mediated 
degradation of oncoproteins, and among patients with 
NSCLC, low FBXW7 expression is associated with 
decreased survival and taxane resistance. In NSCLC 
cell lines with silenced FBXW7, taxane sensitivity can 
be restored when treated with the histone deacetylase 
inhibitor MS-275. [51]

Other potentially actionable aberrations that 
can be seen in small, but not insignificant subsets of 
patients include PIK3CA and BRAF mutations. These 
abnormalities occur in 2 to 3% of patients, and can 
theoretically be targeted by PI3K/AKT/mTOR and BRAF 
or MEK inhibitors, respectively.

Clinical trials for pancreatic cancer

A search of clinicaltrials.gov for new pancreatic 
cancer protocols registered during the past three years 
identified 314 protocols (search criteria: trials registered 
in database during the period 03/01/2011 to 03/01/2014; 
pancreatic cancer; drug or biological intervention 
studies). [33] The 314 protocol summaries were manually 
reviewed, and protocols containing external radiotherapy, 
neuroendocrine histology, and local therapy were 
excluded, as were protocols without the stated outcome of 
improved OS, PFS, or radiographic/biochemical response, 
leaving only 116 specific for pancreatic adenocarcinoma 
systemic therapy. Of these 116 protocols, 10 (8.6%) 
used selective inclusion criteria to identify a subset of 
patients based upon laboratory molecular/biomarker 
data and treat with a cognate therapy that was believed 
to impact or biologically match the biomarker. Six used 
tissue biomarkers to assign patients among multiple 

conventional chemotherapy options, two sought patients 
with BRCA mutations for PARP inhibitors, one required 
a specific antigen for a corresponding investigational 
monoclonal antibody, and one sought patients with a 
specific HLA marker for a vaccine study. These results 
suggest that there is still a remarkable paucity of 
trials addressing molecular/biomarker stratification in 
pancreatic cancer.

CONCLUSIONS

The outcome for patients diagnosed with pancreatic 
cancer is grim, with one year survival of 19% and 
4.8% alive at five years. [52] The best therapy to date 
is FOLFIRINOX, and it improves median survival by 
four months (from 6.8 to 11.1 months) compared to 
gemcitabine for metastatic disease. [7] In other tumor 
types such as BRAF-aberrant melanoma, or EGFR- or 
ALK-aberrant NSCLC, significant improvements have 
been achieved by matching targeted agents with patients 
harboring the cognate molecular abnormality. Several 
theoretically “actionable” aberrations exist in pancreatic 
cancer including, but not limited to, KRAS, CDKN2A, 
ARID1A, BRCA, PALB2, PIK3CA, BRAF and so forth.  
Despite the number of aberrations that can be targeted, 
relatively few have been addressed in clinical trials of 
pancreatic cancer, with only about 9% of clinical trials 
of pancreatic cancer stratified by a biomarker in the last 
three years.  Although an important step in pancreatic 
cancer, as in EGFR- or ALK-mutant lung cancer or 
BRAF-mutant melanoma might include investigation of 
matched targeted monotherapy, many pancreatic tumors 
likely contain more than one aberration.   If two or more 
genomic aberrations exist, the role of each might need 
to be ascertained, and each important driver may need to 
be targeted (customized combination therapy) in order to 
prevent or circumvent resistance.[53, 54] Taken together, 
the data suggests that efforts to target biomarker-defined 
subsets of patients with pancreatic cancer in order to 
optimize therapy benefit are warranted.

Table 4: Case reports of novel therapies in advanced pancreatic cancer
Aberration Histology Agent Line Outcome Rationale for Agent Reference

PALB2 
Mutation Adenocarcinoma Mitomycin C 2nd Partial 

Response

Patient’s tumor xenograft 
demonstrated sensitivity to 
mitomycin C

Villarroel et al, 
2011 [46]

BRCA2 
Mutation Adenocarcinoma Mitomycin C + 

Capecitabine 3rd Partial 
Response

Pre-clinical data with 
mitomycin C in BRCA2 cell 
lines and prior published 
responses to mitomycin C

Chalasani et al, 
2008 [47]

STK11/LKB1 
Mutation

Acinar Cell 
Carcioma Everolimus 1st Partial 

Response
Loss of mTOR inhibition with 
STK11/LKB1 mutation

Klumpen et al, 
2011 [50]
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