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Abstract

To study axonal microstructure with diffusion MRI, axons are typically modeled as straight 

impermeable cylinders, whereby the transverse diffusion MRI signal can be made sensitive to the 

cylinder’s inner diameter. However, the shape of a real axon varies along the axon direction, which 

couples the longitudinal and transverse diffusion of the overall axon direction. Here we develop a 

theory of the intra-axonal diffusion MRI signal based on coarse-graining of the axonal shape by 3-

dimensional diffusion. We demonstrate how the estimate of the inner diameter is confounded by 

the diameter variations (beading), and by the local variations in direction (undulations) along the 

axon. We analytically relate diffusion MRI metrics, such as time-dependent radial diffusivity D⊥
(t) and kurtosis K⊥(t), to the axonal shape, and validate our theory using Monte Carlo simulations 

in synthetic undulating axons with randomly positioned beads, and in realistic axons reconstructed 

from electron microscopy images of mouse brain white matter. We show that (i) In the narrow 

pulse limit, the inner diameter from D⊥(t) is overestimated by about twofold due to a combination 

of axon caliber variations and undulations (each contributing a comparable effect size); (ii) The 

narrow-pulse kurtosis K⊥∣t→∞ deviates from that in an ideal cylinder due to caliber variations; we 

also numerically calculate the fourth-order cumulant for an ideal cylinder in the wide pulse limit, 

which is relevant for inner diameter overestimation; (iii) In the wide pulse limit, the axon diameter 

overestimation is mainly due to undulations at low diffusion weightings b; and (iv) The effect of 

undulations can be considerably reduced by directional averaging of high-b signals, with the 

apparent inner diameter given by a combination of the axon caliber (dominated by the thickest 

axons), caliber variations, and the residual contribution of undulations.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
*Corresponding author at: Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New 
York, NY, USA. Honghsi.Lee@nyulangone.org (H.-H. Lee). 

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2021 January 13.

Published in final edited form as:
Neuroimage. 2020 December ; 223: 117228. doi:10.1016/j.neuroimage.2020.117228.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by-nc-nd/4.0/


Keywords

Monte Carlo simulation; Diffusion MRI; Axonal diameter mapping; Caliber variation; Axonal 
undulation; Diffusion coarse-graining

1. Introduction and the summary of the results

Diffusion MRI (dMRI) is the prime non-invasive method to evaluate microstructure of 

neuronal tissue, since the diffusion length at clinical and preclinical diffusion times is of the 

order of the cell size. Varying the diffusion time provides a gradual coarse-graining of the 

microstructure over the increasing diffusion length Ld(t), revealing the corresponding 

structural details commensurate with Ld(t) (Novikov et al., 2019).

In brain white matter (WM), intra- and extra-axonal signals provide competing 

contributions, with the extra-axonal time dependence dominant at low (clinical) diffusion 

weightings (Burcaw et al., 2015; Fieremans et al., 2016; Lee et al., 2018). At sufficiently 

strong diffusion weightings (b-values), when the extra-axonal water signal is exponentially 

suppressed, the remaining intra-axonal signal can be used to quantify inner axonal 

diameters. Indeed, the response of an ideal infinitely-thin fiber (“stick”), yielding the 

asymptotic 1 ∕ b scaling of the directionally-averaged dMRI signal, was observed in vivo in 

human brain WM up to b ≤ 10 ms/μm2 (McKinnon et al., 2017; Veraart et al., 2019), 

pointing at the lack of sensitivity to inner diameters on clinical scanners. The deviation from 

the 1 ∕ b scaling, such as an extrapolated negative signal intercept at 1 ∕ b 0, was 

observed for b ≳ 20 ms/μm2, proving that the dMRI signal in this regime can reveal the 

elusive information about the axonal diameters or size (Veraart et al., 2020). Inner axonal 

diameters can also be probed via diffusion-weighted spectroscopy of metabolites (Palombo 

et al., 2016; Ronen et al., 2014). For the purposes of this so-called axonal diameter mapping 

(ADM), axons have been conventionally modeled as highly aligned perfect cylinders 

(Alexander et al., 2010; Assaf et al., 2008; Barazany et al., 2009; Benjamini et al., 2016; 

Duval et al., 2015; Sepehrband et al., 2016), with the effect of non-cylindrical axonal shapes 

considered only recently (Lee et al., 2020; Palombo et al., 2018).

So far, ADM has incorporated the confounding effect of the variation between individual 

axons, resulting in the notion of effective MR radius (Burcaw et al., 2015), dominated by the 

4th-order and 6th-order moments of the cylinder radius distribution for narrow and wide 

pulse limits, respectively, in the practical case when there is not enough sensitivity to resolve 

the whole cylinder distribution (Assaf et al., 2008; Barazany et al., 2009). Furthermore, to 

factor out axonal orientation dispersion, dMRI signals with the same diffusion weighting b 
can be averaged over the directions (Jespersen et al., 2013; Kaden et al., 2016; Lasič et al., 

2014; Szczepankiewicz et al., 2015; Veraart et al., 2019).

In this work, we consider following confounding factors of ADM stemming from realistic, 

non-cylindrical axonal shapes (Figure 1): axonal caliber variations (changes in the axonal 

cross-section, also referred to as beading or swelling), and undulations (changes of local 

directionality relative to the overall axon direction, Figure 2), that have been observed in 

histological studies in WM (Abdollahzadeh et al., 2019; Bain and Meaney, 2000; Bain et al., 
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2003; Baron et al., 2015; Budde and Frank, 2010; Lee et al., 2019; Li and Murphy, 2008; 

Ronen et al., 2014; Schilling et al., 2016; 2018; Shepherd and Raastad, 2003; Shepherd et 

al., 2002; Tang-Schomer et al., 2012).

In previous studies, simulations targeting undulations were performed in artificially designed 

undulating thin fibers, showing that the inner diameters of highly undulating fibers are 

significantly overestimated (Brabec et al., 2020; Nilsson et al., 2012). However, the 

influence of both undulations and axon caliber variations on diffusion metrics and diameter 

estimations has not yet been investigated for realistic axonal shapes.

Technically, the problem of non-cylindrical irregular axons becomes 3-dimensional and 

involves an interplay between the diffusion diffraction due to confinement in the two 

transverse dimensions, and an unconfined longitudinal diffusion. Here we show that the 

coarse-graining of transverse axonal cross-sections over the diffusion length along the axon 

results in a “coherent averaging” of such two-dimensional signals. The resulting transverse 

signal cumulants acquire sensitivity to axonal caliber variations (Baron et al., 2015; Budde 

and Frank, 2010), and undulations (Brabec et al., 2020; Nilsson et al., 2012).

In what follows, we develop an analytical theory for the time-dependent diffusion coefficient 

and kurtosis due to beading and undulations, and validate it using 3-dimensional (3d) Monte 

Carlo (MC) simulations in artificially designed undulating axons with randomly positioned 

beads (Fig. 3), as well as in realistic microstructure of intra-axonal space (IAS) segmented 

from 3d scanning electron microscopy (SEM) images of mouse brain corpus callosum, Fig. 

1 (Lee et al., 2019). Combining theory with MC simulations, here we show:

i. In the narrow pulse limit, we find the signal’s cumulants (time-dependent 

diffusivity and kurtosis) due to caliber variations, coarse-grained over the axon 

length (Section 2.1.1), and the approximate ansatz for the full 3-dimensional 

diffusion propagator in the long-time limit, Eq. (A.8) in Appendix A. We also 

find the cumulants separately for thin undulating axons (Section 2.1.3). It turns 

out that caliber variations and undulations provide roughly equal contributions to 

the overall D⊥(t), that together lead to an overestimation of the axonal diameter 

by about twofold relative to a typical diameter within a bundle, Figs. 4 and 6.

ii. The fourth-order cumulant term, ~ b2: For narrow pulses, the radial intra-axonal 

kurtosis K⊥(t)∣t→∞ becomes significantly different from the value −1/2 for a 

perfectly straight cylinder (Burcaw et al., 2015) due to caliber variations, Section 

2.1.1, Figs. 4 and 6. For wide pulses, we calculate for the first time this term 

numerically for a cylinder, Section 2.2.1, and discuss its effect on diameter 

overestimation when applying strong gradients.

iii. In the wide pulse limit, when the pulse width δ ~ Δ is of the order of gradient 

separation Δ, the overestimation of axonal diameter in the low-b regime, based 

on D⊥(Δ, δ), is mainly due to undulations (Section 2.2.2), which completely 

overshadows the “diameter” mapping for both synthetic and realistic axons, Figs. 

5 and 7.
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iv. Finally, we quantitatively analyze the way to minimize the undulation effect on 

axon diameter estimation by directional average of the signal at high b, Section 

2.3, and study the corresponding ADM results for different sequence timings, 

Fig. 8.

The conclusions made for individual axons are generalized to a collection of multiple axons, 

as the net signal (and signal metrics such as diffusivities) are found by taking the volume-

weighted sum of 227 individual axon contributions.

2. Theory

Here we consider the theory of caliber variations and undulation effects first in the narrow 

pulse limit (Section 2.1), and then for more realistic wide pulses (Section 2.2), followed by 

the effects of directional averaging (Section 2.3). The theory necessary for the result (i) 

formulated above is obtained in Sections 2.1.1 and 2.1.3; for the result (ii), in Sections 2.1.1 

and 2.2.1; for the result (iii), in Section. 2.2; and for the result (iv), in Section 2.3.

2.1. Narrow pulse limit

2.1.1. Caliber variations: coherent averaging—Henceforth, we define caliber 

variation as a varying cross-sectional area along an axon. In ADM from dMRI, the diameter 

or radius is used to evaluate the axonal size. In this study, we use the equivalent circle 

diameter/radius (axon caliber) calculated based on the cross-sectional area (West et al., 

2016). (Alternatively, fitting an ellipse to an axon cross-section also provides size 

estimations based on short and long axis lengths, whose geometric mean is close to the 

equivalent circle diameter since both metrics are related to the cross-sectional area (Lee et 

al., 2019); we will not consider these metrics here.)

Our starting point is the diffusion-diffraction long-time narrow-pulse limit of the diffusion 

signal for a 2d confined pore (Callaghan, 1991; Callaghan et al., 1991), cf. Appendix A:

S(q⊥, t ∞) ≃ 1
A2 ∣ ρ(q⊥) ∣2 , (1)

where the non-diffusion weighted signal is normalized to S∣q⊥=0 ≡ 1, q⊥ is the diffusion 

wave vector within the plane of the pore, t is the diffusion time, A is the area of the 2d pore, 

and ρ(q⊥) is the pore form factor, i.e., the Fourier transform of the pore shape

ρ(x) = 1, inside pore,
0, outside pore. (2)

When diffusion can occur in the third dimension, this equation is modified, as discussed in 

Appendix A:

S(q⊥, t ∞) ≃ 1
A2 〈ρ(q⊥)〉Ld

2, (3)
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where ⟨…⟩Ld is the coherent averaging of the form factor ρ(q⊥) of the two-dimensional 

cross-sections along the axonal skeleton, and A is the mean cross-sectional area. 

Technically, this averaging is performed within a window on the scale of the diffusion length 

Ld(t) ∼ 2Dat along the axon, with the effective intra-axonal diffusivity Da(t)∣t → ∞, 

according to Eq. (A.9) in Appendix A. Practically, for sufficiently long Ld(t) ≫ lc exceeding 

the correlation length lc of the placements of axonal beadings or swellings, the average in 

Eq. (3) can be extended over the length of each axon, as in Eq. (A.5).

We refer to the averaging in Eq. (3) as coherent because it is performed before the absolute 

value is taken (i.e., accounting for the phase information in the form factor). Adding the 

contributions from different axons would amount to a further volume-weighted incoherent 
averaging of Eq. (3) over all axon form factors (or over the distant parts of the same axons, 

separated by much longer than Ld(t)). Therefore, we average coherently over the spins 

within each connected compartment (axon) (more generally, within domains ~Ld(t) that they 

are able to explore), and then incoherently over the non-exchanging compartments (Section 

2.1.2).

For example, for a cylinder of varying radii without undulations (e.g., Fig. 3), the form 

factor for a given cross-section of radius r = r(z),

ρ(q⊥)
πr2 = ∫∣ x⊥ ∣ < r

d2x⊥
πr2 eiq⊥ ⋅ x⊥ =

2J1(q⊥r)
q⊥r ,

with x⊥ = (x1, x2) the spatial coordinate transverse to the main axis z, and Jν( · ) the Bessel 

function of the first kind, needs to be coherently averaged over all cross-sections. We can do 

it term-by-term in its Taylor expansion,

ρ(q⊥)
πr2 = 1 − 1

8(q⊥r)2 + 1
192(q⊥r)4 + …,

such that

1
A〈ρ(q⊥)〉Ld = 1 − 1

8q⊥
2〈r2〉v + 1

192q⊥
4〈r4〉v + …, (4)

where A = π⟨r2⟩, and ⟨…⟩v denotes the volume-weighted (i.e., area-weighted) quantity for 

the disk with area ∝r2, i.e.,

〈rn〉v ≡ 〈rn + 2〉 ∕ 〈r2〉 .

Substituting Eq. (4) into Eq. (3) and comparing with the moments expansion of the signal,

S(q⊥, t) ≃ 1 − 1
2!q⊥

2 〈δx2〉 + 1
4!q⊥

4 〈δx4〉 + …,
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we obtain the moments of the diffusion displacement δx along a direction perpendicular to 

the axon:

〈δx2〉 = 1
2〈r2〉v, (5a)

〈δx4〉 = 1
4〈r4〉v + 3

8〈r2〉v
2, (5b)

which yield the diffusivity and kurtosis transverse to axons based on definitions (Jensen and 

Helpern, 2010; Jensen et al., 2005)

D⊥(t) ≡ 〈δx2〉
2t , (6a)

K⊥(t) ≡ 〈δx4〉
〈δx2〉2 − 3 . (6b)

In particular, substituting Eq. (5a) into Eq. (6a) yields the radial diffusivity (RD)

D⊥(t) = 〈r2〉v
4t , 〈r2〉v ≡ 〈r4〉

〈r2〉
, (7)

generalizing the concept of dMRI-sensitive radius (Burcaw et al., 2015) for variable axonal 

shape, ⟨r2⟩v. We emphasize that Eq. (7) is only applicable to an axon with no undulations.

Similarly, substituting Eq. (5) into Eq. (6b) yields the radial kurtosis (RK) in the t → ∞ 
limit

K∞ = 〈r4〉v
〈r2〉v

2 − 3
2 = 〈r6〉〈r2〉

〈r4〉2 − 3
2 , (8)

whose minimum value is −1/2 for a perfectly straight cylinder with a constant radius 

(Burcaw et al., 2015), as follows from the Cauchy-Schwarz inequality, indicating that the 

microstructural heterogeneity along axons due to caliber variation causes the intra-axonal 

kurtosis to increase as compared to the case of perfectly straight axons with no caliber 

variation.

2.1.2. Incoherent averaging in non-exchanging compartments—Incoherent 

averaging over non-exchanging compartments, such as multiple axons and the extra-axonal 

space, is performed for the signals, according to their T2-weighted fractions fi:

S(q⊥, t) = ∑
i = 1

N
fiSi(q⊥, t) + (1 − f)Se(q⊥, t), ∑

i = 1

N
fi = f (9)
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for a fiber bundle of N axons with the intra- and extra-axonal fractions (f and 1 – f) and 

signals (Si and Se), respectively. Expanding Eq. (9) into diffusion cumulants, the overall 

diffusivity and kurtosis are then given by (Dhital et al., 2018; Jensen et al., 2005)

D = ∑
i

fi ⋅ Di + (1 − f) ⋅ De , (10a)

K = 3var(D)
D2 + 〈D2K〉

D2 , (10b)

where

var(D) = ∑ifi ⋅ Di − D 2 + (1 − f) ⋅ De − D 2,
〈D2K〉 = ∑i fi ⋅ Di

2Ki + (1 − f) ⋅ De
2Ke

(11)

in terms of intra-axonal diffusivities and kurtoses Di and Ki, and extra-axonal ones De and 

Ke, respectively.

In this study, we will focus on the coherent averaging for an individual axon, and discuss the 

effect of the incoherent averaging over all axons and the extra-axonal space in Section 5.4.

2.1.3. Axonal undulations, narrow pulse limit—Axonal undulations (Fig. 2) can be 

parameterized by the 2-dimensional deviation w(l) of the axonal skeleton from the axon’s 

main axis, where w(l) is the shortest distance from the skeleton to the main axis, and l is a 1d 
coordinate along the skeleton, defined as the axonal length accumulated from one end of the 

skeleton to a given point on the skeleton.

In our EM sample, segmented axons are generally aligned along the z direction, and the 

axonal skeleton is calculated by simply connecting the center of mass of the cross-section 

for each slice. The main axis is a line crossing the skeleton center (mean of spatial 

coordinates of the skeleton) and aligned along the mean direction of the skeleton (parallel to 

the line connecting two ends of the skeleton). For axons aligned roughly perpendicular to the 

z direction, the skeleton can be calculated by applying a distance transform within the axon 

and searching for the local maxima in the distance map.

First, let us study the effect of pure undulation, assuming that the inner diameter is so small 

that diffusion displacement perpendicular to the axonal skeleton is negligible. In this case, 

only the diffusion displacement along the axonal skeleton contributes to the intra-axonal 

diffusivity, and the diffusion along the skeleton can be treated as a 1d Gaussian diffusion; the 

nontrivial physics arises from the projection of the Gaussian propagator along the skeleton 

onto the transverse plane.

Considering the diffusion along an undulated skeleton l = w(l(z)) + zz, the second-order 

cumulant of the diffusion displacement projected onto the direction n is given by (Bouchaud 

and Georges, 1990)
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〈(δl ⋅ n)2〉 ≃ 1
C∫ ∣ (l − l′) ⋅ n ∣2 ⋅ e− (l − l′)2

4Dat dl dl′ , (12)

where the integral extends over the length L of the skeleton, Da is the diffusivity along the 

skeleton, and C is a normalization factor:

C = ∫ e− (l − l′)2
4Dat dl dl′ = 4πDat ⋅ L .

Then the second-order cumulant ⟨δw2⟩ of the deviation perpendicular to the main axis, i.e., 

〈δwx2〉 + 〈δwy2〉 summed over x and y directions, is given by

〈δw2(t)〉 ≃ 1
C∫ ∣ w(l) − w(l′) ∣2 ⋅ e− l − l′ 2

4Dat dl dl′ . (13)

The nonzero time-dependent ⟨δw2(t)⟩ results in a contribution ⟨δw2⟩/(2d · t) to the RD in d 
= 2 dimension. Similar considerations were recently put forward by Brabec et al. (2020).

Let us now consider the combined radial diffusion: coming from the diffusion confined 

within the finite-caliber axonal cross-section, Eq. (7), as well as that along the undulating 

axonal skeleton and projected onto the transverse direction. Assuming statistical 

independence of the caliber variations and undulations, justifiable due to the fact that 

undulations ( ~ 20-30 μm in wavelength (Fontana, 1781)) typically occur on a much larger 

scale than the correlation length of caliber variation ( ~ 1 μm, similar to axon diameter (Lee 

et al., 2019)), leads to the statistical independence of the transverse displacements due to 

caliber variations and undulations. Under the statistical independence assumption, the 

displacement variances add up, and the RD in the narrow pulse limit is given by

D⊥(t) ≡
reff

2

4t
(14a)

≃ 〈r2〉v
4t + 〈δw2〉t ∞

4t , (14b)

where ⟨δw2⟩t → ∞ is calculated based on Eq. (13) at long diffusion times. The discrepancy 

between the dMRI-sensitive effective radius reff
2  and the 2d histology-based prediction 

including only caliber variation ⟨r2)v is then given by:

reff
2 − 〈r2〉v ≃ 〈δw2〉t ∞ , (15)

indicating that the axonal size can be overestimated due to the axonal undulation.
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Furthermore, for a single length scale in microgeometry, such as the bead distance or 

undulation wavelength, the RK scales as 1/t in the narrow pulse limit (see Eq. [53] in 

(Novikov and Kiselev, 2010)):

K⊥(t) ≃ K∞ + cK
t , (16)

with K∞ in Eq. (8) and the kurtosis time-dependence amplitude cK. Here we ignore the 

undulation effects on the theory of K∞ for the simplicity.

2.2. Wide pulse limit

In Sections 2.1.1 and 2.1.3, we focused on diffusion transverse to axons in the narrow pulse 

limit, i.e., diffusion gradient pulse width δ ≪ tD, where

tD = r2 ∕ D0

is the time for a spin to diffuse across an axon, and D0 = Da(t)∣t→0 is the intrinsic 

axoplasmic diffusivity. In the opposite limit, i.e., the wide pulse limit δ ≫ tD, the RD has 

different functional forms from Eq. (14). It is less trivial to disentangle the effects of caliber 

variations and undulations in this limit. Instead, we provide solutions when one of the 

contributions dominates.

2.2.1. Sensitivity to axonal caliber, wide pulse limit—In the wide pulse limit, the 

signal attenuation transverse to a straight axon with no caliber variations is given by (Lee et 

al., 2018; Neuman, 1974)

ln S = − c1 ⋅ g2r4

D0
δ − c2 ⋅ g4r10

D0
3 δ + O(g6), (17)

where Larmor frequency gradient g ≡ γG is defined by the gyromagnetic ratio γ and the 

diffusion gradient G. For reference, g = 0.0107 (μm · ms)−1 for G = 40 mT/m. The constants 

c1 and c2 are related to the shape of axon cross-section. For a circular cylinder cross-section,

c1 = 7
48 ≈ 0.1458, c2 ≈ 0.0022 . (18)

The constant c1 was analytically derived by Neuman (1974); the constant c2 is here for the 

first time numerically estimated via MC simulations in Appendix B.

We now define the transverse diffusivity in a standard way,

D⊥(t, δ) ≡ − 1
b ln S ∣b 0 (19)

in the wide pulse limit, by denoting t = Δ (the distance between the fronts of the pulses). 

Here the diffusion weighting is given by
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b = g2δ2(t − δ ∕ 3) . (20)

Sending b → 0 above corresponds to g → 0.

Based on Eqs. (17) and (19), the corresponding wide-pulse (“WP”) transverse diffusivity 

due to caliber variations

Dcal, WP(t, δ) ≃ c1〈r4〉v
D0δ ⋅ 1

t − δ ∕ 3 , (21)

where the idea of coarse-graining along the axon (resulting in volume-weighted averaging 

over adjacent cross-sections) is applied, assuming the long-time limit for the longitudinal 

direction, 2D0δ ≫ lc, similar to Section 2.1.1 above. We will expand on the physical 

intuition at the end of this subsection.

For any axon, we can define the effective radius

reff, WP ≡ 1
c1

δ ⋅ (t − δ ∕ 3) ⋅ D0D⊥(t, δ)
1 ∕ 4

(22)

as an estimate of the axon size from D⊥(t, δ) using a wide pulse dMRI sequence. From this 

definition, neglecting the undulations, and based on Eq. (21), we obtain

reff, WP ≃ rcal ≡ 〈r4〉v
1 ∕ 4, 〈r4〉v ≡ 〈r6〉

〈r2〉
. (23)

Note the formal equivalence of Eq. (23) and the first term of Eq. (39) in (Burcaw et al., 

2015): The effective radius for a distribution of ideal cylinders of different radii is given by 

the same ratio of the moments of the distribution as that for a single axon with a varying 

radius. The physical origin of this effect is the area-weighted r4-dependence of the g2 term in 

Eq. (17). Eq. (23) is applicable to the caliber regime, when the effects of undulations can be 

either neglected (cf. Eq. (26), which is so far not supported by our EM data (as we will see 

below), or factored out via directional averaging, Section 2.3.

We now provide the physical intuition behind the above results in the case of arbitrary 

caliber variations, noting that the precise values of coefficients such as c1 and c2 are 

geometry-dependent. However, the dependence of Eq. (23) on the 6th and 2nd order 

moments of the caliber variation distribution within an axon is quite general. We first recall 

(Kiselev and Novikov, 2018; Lee et al., 2018) that the wide-pulse signal attenuation Eq. (17) 

within a single 2d disk can be viewed as a transverse relaxation process during the duration 

2δ of the gradient, ln S ∼ − R2
∗(r) ⋅ 2δ with the rate constant R2

∗(r) ∼ g2r4 ∕ D0, and the g4 

corrections to R2
∗(r) appearing as an expansion in the small parameter being typical 

accumulated phase (gr) · tD on a single traverse of axonal cross-section.
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Next, the coarse-graining intuition allows us to map the 3d signal attenuation problem onto 

the transverse relaxation in a number of 2d “compartments” with the relaxation rate 

constants R2
∗(ri) corresponding to different axonal cross-sections ri(z) within the axonal 

segment of the order of the diffusion length along the axon, such that ∣z – z′∣ ≲ Ld (δ).

The time scale to exchange between sufficiently distinct 2d “compartments” is 

tc = lc2 ∕ D0 ≃ 10 − 20 ms, with lc the correlation length along an axon (e.g., distance between 

swellings = 5 – 6 μm (Lee et al., 2020)) and D0 = 2 μm2/ms. In contrast, the relaxation time 

scale for each 2d compartment is quite long: 1 ∕ R2
∗(ri) ∼ D0 ∕ (g2ri4) ≃ 300 ms even for g = 0. 

08 (μm · ms)−1 on Connectom scanners (G = 300 mT/m) and ri ~ 1 μm. The separation of 

scales tc ≪ 1 ∕ R2
∗(ri) allows us to consider those “compartments” in the fast exchange 

regime; in this case, the net transverse relaxation to the lowest order in δ will have a rate 

given by a weighted average, R2
∗ = ∑fiR2

∗(ri) with fi ∝ ri2 (Zimmerman and Brittin, 1957). 

This means that the effective radius in the wide-pulse regime due to the r4 weighting in g2 

term in Eq. (17) will be of the same nature as that coming from different ideal cylinders with 

different radii (Burcaw et al., 2015). The r4 weighting in diffusivity of wide pulse limit is 

generalized to ⟨r4⟩v in Eq. (21) for the same reason. However, for the higher order g4 term, 

the effect of the time scale tc may be non-trivial; fortunately, as we will show below, the g4 

terms are practically not important, as we discuss in Section 5.2.2.

2.2.2. Undulations, wide pulse limit—For RD due to undulations in the wide pulse 

limit, we focus on a simplified 1-harmonic model. As derived in Appendix C, the pulsed-

gradient measured RD due to 1-harmonic undulation is given by

Du(t, δ) ≃ 1
4 ⋅

w0
2tu2

δ2(t − δ ∕ 3)
⋅ 2 δ

tu
− 2

+2e−t ∕ tu + 2e−δ ∕ tu − e−(t − δ) ∕ tu − e−(t + δ) ∕ tu ,
(24)

where w0 is the undulation amplitude, and tu = λ2/(4π2Da) is the correlation time 

corresponding to the undulation wavelength λ. In the wide pulse limit of undulations, i.e., δ 
≫ tu, the RD due to undulations becomes

Du(t, δ) ≃ 1
8π2 ⋅

w0
2λ2

Daδ ⋅ 1
t − δ ∕ 3, δ ≫ tu , (25)

which has exactly the same functional form of t and δ as Eq. (21). Using this similarity in 

functional forms, we here define an effective radius rund due to undulations by considering 

the undulation regime: When the length scale of axon caliber (diameter) is much smaller 

than that of undulation ( w0λ),the RD is mainly contributed by undulations, i.e., D⊥ ≃ Du. 

Substituting into Eq. (22) with Da ≃ D0, we define rund due to undulations as an estimate of 

the “axon size” by using wide pulse dMRI sequence:
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reff, WP ≃ rund ≡ 1
8π2c1

1 ∕ 4
w0λ ≈ 0.543 w0λ (26)

proportional to the geometric mean of undulation amplitude and wavelength.

To determine whether the simulated RD falls into the caliber regime or undulation regime, 

we calculate the effective radius reff, WP of wide pulse sequence based on Eq. (22) and 

simulated D⊥, and compare with the predictions of caliber regime, rcal in Eq. (23), and of 

undulation regime, rund in Eq. (26), cf. Figs. 5 and 7.

2.3. Directionally averaged signal decay

Rotationally invariant axon size estimation is based on the directional average of the signals 

for each b-shell, and on the analysis of the deviations from the 1 ∕ b scaling (Veraart et al., 

2019, 2020):

S(b) ≃ βe−bD⊥ + O(b2)b−1 ∕ 2 , (27)

where β = π ∕ (4Da) (we set axonal water fraction to unity since we are studying only the 

intra-axonal signal), and the estimated RD, D⊥, yields an axon size estimation based on Eqs. 

(14a) and (22) in narrow and wide pulse limit, respectively.

Averaging diffusion signals isotropically over each b-shell has been shown to factor out 

axonal orientation dispersion (Jespersen et al., 2013; Kaden et al., 2016). Furthermore, at 

short times t, δ ≪ λ2/Da, water molecules diffuse only within a short axon segment (~ Ld(t) 
≪ λ) with limited undulations, and thus the directional average can factor out the effect of 

undulations on RD and on the axon size estimation.

3. Methods

All procedures performed in studies involving animals were in accordance with the ethical 

standards of New York University School of Medicine. All mice were treated in strict 

accordance with guidelines outlined in the National Institute of Health Guide for the Care 

and Use of Laboratory Animals, and the experimental procedures were performed in 

accordance with the Institutional Animal Care and Use Committee at the New York 

University School of Medicine. This article does not contain any studies with human 

participants performed by any of the authors.

3.1. Artificial substrates for simulations: Undulating axons with randomly positioned 
beads

To test the applicability of Eqs. (7) and (8) and their generalized forms (14) and (16) for 

narrow pulses and Eq. (21) for wide pulse, we designed undulating axons with randomly 

positioned beads (Fig. 3) with pore shape

ρ(x) = [w(l(z)) + zz] ∗ v(r(z)), (28)
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where v(r) is a sphere of radius r, the operator * is the convolution, and w(l) is the deviation 

of skeleton from the main axis, generated by using the Lissajous curve

w(l(z)) = Au ⋅ [wx sin(kxz + ϕx)x + wy sin(kyz)y] , (29)

with amplitudes (wx, wy) = (0.5, 0.7) μm, wave vectors kx,y = 2π/λx,y, undulation 

wavelengths (λx, λy) = (20, 30) μm, the phase ϕx = π, and the scaling factor of undulation 

amplitudes, Au = 0 % (no undulation) to 100 % (strong undulation). The values of 

undulation amplitudes and wavelengths are chosen based on histology in mouse brain WM 

axons (Lee et al., 2020; 2019) and its analysis in Appendix C. Furthermore, the comparison 

of the 1-harmonic model (25) and the multi-harmonic model (C.16) yields a prediction of fit 

parameters in Eq. (24):

w0
2λ2 ≃ Au

2(wx2λx
2 + wy2λy

2) . (30)

To generate axons with randomly positioned beads, the radius r(z) in Eq. (28), varying along 

the z-axis, is calculated by convolving the random placement n(z) of 1d barriers with a 

Gaussian kernel of width σ:

r(z) = r0 + r1 ⋅ n(z) ∗ e−z2 ∕ (2σ2)

2πσ2 ,

where r0 and r1 are parameters determined by the mean cross-sectional area A and radius’s 

coefficient of variation CV(r), defined as the ratio of the standard deviation (std) to the mean 

value:

A = π ⋅ 〈r2〉, CV(r) = std(r)
〈r〉 . (31)

Based on histological observations in our previous studies (Lee et al., 2020; 2019), the bead 

width, determined by the FWHM of the Gaussian kernel, is fixed at 2 2 ln 2 σ = 7μm, and the 

random bead placement n(z) has a normally distributed inter bead distance = 5.70 ± 2.88μm. 

The caliber variation CV(r) varies from 0 (no beads) to 0.4 (big beads) with a fixed mean 

cross-sectional area A = π · (0.5 μm)2 for all axons.

3.2. Realistic microstructure for simulations: intra-axonal space in WM

Substrates were created by selecting 227 long myelinated axons (Fig. 1a and b), segmented 

from SEM images of a female mouse’s genu of corpus callosum (Lee et al., 2019). The IAS 

mask was down-sampled into an isotropic resolution of (0.1 μm)3 and aligned to the z-axis 

to control the orientation dispersion (Fig. 1c). The aligned axons were cropped at both ends 

to avoid oblique end faces, leading to axons of ~ 18μm in length and of ~ 1μm in diameter. 

More details were provided in our previous work (Lee et al., 2019).

To quantify caliber variations, we estimated the equivalent circle radius r, defined as the 

radius of an equivalent circle with the same cross-sectional area perpendicular to axon’s 
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main axis (Lee et al., 2019; West et al., 2016). Further, we calculated the radius’s coefficient 

of variation, CV(r) in Eq. (31).

To evaluate undulations of the axonal shape, we calculated ⟨δw2⟩ based on the realistic 

axonal skeleton and Eq. (13) with Da = 2 μm2/ms for t = 1–200 ms. Furthermore, we 

parametrized the straightness of axons via the sinuosity (i.e., tortuosity factor in (Nilsson et 

al., 2012)), defined in Appendix C as the ratio of the curvilinear length (along the axonal 

skeleton) to the straight-line distance between the two ends, Eq. (C.1). Sinuosity is a 

representation of the axon undulation: The larger the sinuosity, the larger the undulation, cf. 

Eq. (C.1) for exact relation and Eq. (C.3) for an approximate relation. The axonal skeleton 

and its main axis were constructed as in Section 3.1, and the skeleton was smoothed by a 

Gaussian filter of width σs = 1 μm along the axon’s main direction.

Theoretically, it is possible to estimate the undulation wavelength λ based on the Fourier 

transform of the axonal skeleton; however, in practice, it is difficult to do so due to the 

limited axonal length ~ 18μm. Therefore, we can only estimate individual axon’s λ by 

fitting the simulated wide pulse RD to the simplified 1-harmonic model in Eq. (24).

3.3. MC simulations

MC simulations of random walkers were implemented in CUDA C+ + in a continuous space 

within the 3d micro-geometry. When a random walker encounters a boundary, the original 

step gets canceled and another direction is chosen randomly until the resulting step would 

not cross any boundaries (equal-step-length random leap) (Fieremans and Lee, 2018; Xing et 

al., 2013). The implementation of the equal-step-length random leap effectively repels 

walkers away from the membrane by a distance on the order of the step size, leading to 

small biases in the axon radius (Appendix D). The correction of the axon radius in Eq. (D.1) 

was thus applied to Eqs. (7), (8) and (23) to calculate theoretical predictions of ⟨r2⟩v, ⟨r4⟩v 

and K∞. The top and bottom faces of each axon are extended by reflected copies to avoid 

geometrical discontinuity in simulations.

3.3.1. Narrow pulse sequence—For the narrow pulse pulsed-gradient sequence, 

simulations in synthetic undulating axons with randomly positioned beads are performed 

using 2 × 105 random walkers per axon diffusing over 1 × 106 steps with a duration δt = 2 × 

10−4 ms and a length 6D0δt = 0.049 μm, where the intrinsic diffusivity D0 = 2μm2/ms is 

taken to agree with recent experiments (Dhital et al., 2019; Novikov et al., 2018; Veraart et 

al., 2019); maximal diffusion time is 200 ms. For simulations in realistic IAS, 2.27 × 107 

random walkers in total diffuse over 1 × 106 steps with a duration 2 × 10−4 ms and a length 

0.049 μm; maximal diffusion time is ~ 200 ms. Total calculation time is ~ 2 days on a single 

NVIDIA Tesla V100 GPU at the NYU Langone Health BigPurple high-performance-

computing cluster.

RD and RK of each axon were estimated based on cumulants of the diffusion displacement 

perpendicular to the axon by using Eq. (6).

The effective radius reff estimated based on simulation results was obtained by fitting 

simulated D⊥(t) to Eq. (14a) for t = 160 – 200 ms. Similarly, the RK in t → ∞ limit, K∞, 
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estimated based on simulation results was obtained by fitting simulated K⊥(t) to Eq. (16) for 

t = 160–200 ms. The above estimations based on simulations were further compared with 

theoretical predictions in Eqs. (7) and (8).

3.3.2. Wide pulse sequence—For the wide pulse pulsed-gradient sequence, 

simulations in synthetic undulating axons with randomly positioned beads are performed 

using 2 × 105 random walkers per axon diffusing over 1 × 106 steps with a duration 2 × 10−4 

ms and a length 0.049μm. For simulations in realistic IAS, 2.27 × 107 random walkers in 

total diffuse over 1 × 106 steps with a duration 2 × 10−4 and a length 0.049 μm. For 

simulations in all geometries, the diffusion time t=1–100 ms is the same as the gradient 

pulse width δ (= t), and diffusion signals are calculated based on the accumulated diffusional 

phase for ten b-values = 0.2 – 2 ms/μm2 along x- and y-axes transverse to axon’s main 

direction (z-axis). Total calculation time is ~ 2 days.

RD and RK of each axon were estimated by fitting the cumulant expansion to simulated 

pulsed-gradient diffusion signals S (Jensen et al., 2005):

ln S = − bD⊥ + 1
6(bD⊥)2K⊥ + O(b3), (32)

with diffusion weighting b in Eq. (20) for the wide pulse.

To evaluate axon undulations, we fitted the 1-harmonic model in Eq. (24) to simulated RD, 

D⊥(t, δ) at t=δ=10–100 ms, and calculated the effective radius due to undulations, rund in 

Eq. (26), using fit parameters (w0, λ).

The effective radius for wide pulse, reff, WP, was estimated based on Eq. (22) and simulated 

RD, D⊥(t, δ). The estimated reff, WP was further compared with theoretical predictions, rcal 

in Eq. (23) for caliber regime and rund in Eq. (26) for undulation regime.

3.3.3. Directionally averaged signal—To observe the directionally averaged signal 

decay versus diffusion weighting b, simulations in realistic IAS are performed by applying 

2.27 × 107 random walkers in total diffusing over 1 × 106 steps with a duration 2 × 10−4 and 

a length 0.049μm. The diffusion and gradient pulse width (t, δ) = (20. 7.1). (30,13) and 

(50.9,35.1) ms are chosen to match the experiments performed on animal 16.4T MR scanner 

(Bruker BioSpin), clinical 3T MR scanner (Siemens Prisma), and Siemens Connectome 3T 

MR scanner (Veraart et al., 2020). Diffusion signals are calculated based on the accumulated 

diffusional phase for each of 18 b-values =16–100 ms/μm2 along 30 uniformly distributed 

directions for each b-shell. Total calculation time is ~ 2 days.

Directionally averaged signal Si for individual axon was calculated by averaging diffusion 

signals of all directions for each b-shell, and the volume-weighted sum of all axons was also 

calculated:

S =
∑i fi ⋅ Si

∑i fi
. (33)
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The RD, D⊥(t, δ), was estimated by fitting Eq. (27) to simulated Si and S over the range 

b=55–100 ms/μm2 for individual axons and for all axons, and the effective radius of wide 

pulse, reff, WP, was calculated based on estimated D⊥ and Eq. (22) and compared with 

theoretical predictions in Eq. (23).

3.4. Data and code availability

The SEM data and IAS segmentation can be downloaded on the cai2r website (http://

cai2r.net/resources/software), and the simulation codes can be downloaded on our github 

page (https://github.com/NYU-DiffusionMRI).

4. Results

4.1. Diffusion transverse to synthetic undulating axons with randomly positioned beads

For simulations of narrow pulse sequence in synthetic undulating axons with randomly 

positioned beads, the simulated time-dependent RD, D⊥(t) in Fig. 4a, scales as 1/t in 

accordance with Eq. (14) for all axons. Similarly, the simulated RK, K⊥(t) in Fig. 4c, also 

scales as 1/t, in accord with Eq. (16).

The effective radius of narrow pulse, reff fitted based on Eq. (14a) and simulations in Fig. 4a, 

deviates from the theoretical predictions given by Eq. (7) with the consideration of caliber 

variation only (Fig. 4b). This deviation can be explained by the contribution of axon 

undulations ⟨δw2⟩t → ∞ at long times, as predicted in Eqs. (13) and (15). Similarly, RK in t 
→ ∞ limit, K∞ fitted based on Eq. (16) and simulations in Fig. 4c, agrees with the 

theoretical predictions given by Eq. (8) when undulations are negligible (Au = 0 %, the right 

panel in Fig. 4c).

For simulations of wide pulse sequence in synthetic axons, the RD, D⊥(δ) ≡ D⊥(t, δ)∣t=δ in 

Fig. 5a, scales as 1/δ2 for axons with no undulations (Au = 0 %) when t = δ, consistent with 

the theoretical prediction in Eq. (21) due to caliber variations. However, for axons with non-

trivial undulations, D⊥(δ) is much larger than the prediction in the caliber regime. Instead, 

the functional form of D⊥(δ) can be explained by the simple 1-harmonic undulation model 

in Eq. (24), indicating the dominant impact of undulations on the axon size estimation. The 

effect of undulations is further demonstrated by translating the simulated D⊥ into the 

effective radius for wide pulses, reff, WP in Eq. (22), which is much larger than the prediction 

of the caliber regime, rcal in Eq. (23), and increases dramatically with time δ (Fig. 5b).

Furthermore, we compare the fit parameters w0λ based on D⊥ in Fig. 5a and 1-harmonic 

undulation model (24) with the theoretical prediction in Eq. (30) (Fig. 5c); the fit parameters 

coincide with the theory except for axons with no undulations (Au = 0%). Finally, we 

compare the estimate of reff, WP at δ = 1, 10, 100 ms with predictions of caliber regime, rcal, 

and of undulation regime, rund in Eq. (26) (Fig. 5d). At very short time ~ 1 ms, estimated 

reff, WP coincides with rcal and is hardly influenced by undulations. However, at long time ~ 

100 ms, reff, WP is consistent with rund and completely confounded by undulations. At 

relatively short time ~ 10 ms, the axon size estimate falls into an intermediate regime and is 

partly biased by undulations.
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4.2. Diffusion transverse to realistic axons

For simulations of narrow pulse sequences in realistic IAS, simulated RD, D⊥(t) in Fig. 6a, 

scales asymptotically as 1/t at long times (t ≳ 20 ms) in most axons, in accordance with Eq. 

(14a). Similarly, simulated RK, K⊥(t) in Fig. 6b, also scales as 1/t at long times, in 

accordance with Eq. (16).

The effective radius for narrow pulse, reff fitted based on Eq. (14a) and simulations in Fig. 

6a, is larger than the theoretical prediction of caliber variation (⟨r2⟩v)1/2 in Eq. (7), as shown 

in Fig. 6c. As we will discuss below, this discrepancy between the two estimates is due to 

the axonal undulation, confirming the undulations as an important mechanism for the 

apparent axonal diameter (Brabec et al., 2020; Nilsson et al., 2012).

The undulation ⟨δw2⟩ based on Eq. (13) in a realistic axonal shape increases with diffusion 

time, and gradually approaches a constant at long time (Fig. 6e). The bias in the effective 

radius estimation, reff
2 − 〈r2〉v, can be solely explained by the axonal undulation ⟨δw2⟩t → ∞ 

at long times (Fig. 6f, Eq. (15)) and highly correlates with the sinuosity (Fig. 6g).

The RK in t → ∞ limit, K∞ fitted based on Eq. (16) and simulation results in Fig. 6b, is 

centered around −0.20 ± 0.15 (Figs. 6d and 6h), different from the value −1/2 of a perfect 

cylinder (Burcaw et al., 2015).

For simulations of wide pulse sequences in realistic IAS, the RD, D⊥(δ) in Fig. 7a, does not 

scale as 1/δ2 at long times, incompatible with the prediction of caliber regime in Eq. (21) 

when t = δ. The effective radius of wide pulse, reff, WP estimated based on Eq. (22) and 

simulations in Fig. 7a, is larger than the theoretical prediction of caliber variations, rcal in 

Eq. (23), practically for all but the very largest axons with radii ≲ 0.9 μm at even very short 

time δ ~ 1 ms (Fig. 7b).

Furthermore, to evaluate the effect of undulation on RD, we fitted the simplified 1-harmonic 

undulation model in Eq. (24) to simulated D⊥ (δ) (Fig. 7c) and used the fit parameters to 

estimate the effective radius due to undulations, rund in Eq. (26). At long time δ ~ 100 ms, 

the estimated reff, WP coincides with the rund, indicating that the axon size estimation is 

highly biased by undulations (Fig. 7d). Similarly, at relatively short time δ ~ 10 ms, reff, WP 

is still partly biased due to undulations. This result demonstrates that the axon size 

estimation is inevitably confounded by undulations, unless performed at very short time δ ≲ 
1 ms. The fit parameters of 1-harmonic model suggest a rough scale of undulation amplitude 

w0 ≃ 0.62 ± 0.36 μm and wavelength λ ≃ 29 ± 9 μm (Fig. 7e-f).

4.3. Directionally averaged signal

For simulations of wide pulse sequences of strong diffusion weightings in realistic IAS, the 

directionally averaged signal of individual axon, Si in Fig. 8a-c, scales roughly as 1 ∕ b in 

Eq. (27) at high b-values for most axons. We estimate the diffusivities along and transverse 

to axons, Da and D⊥, based on Eq. (27) and simulation results in Fig. 8a-c. Individual axon’s 

Da ~ 0.2 × D0 in Fig. 8d is unexpectedly low, and individual axon’s D⊥ in Fig. 8e is small 

with unphysical negative diffusivity values for about half of axons. Furthermore, individual 
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axon’s effective radius in the wide pulse limit, estimated based on Eq. (22) and positive D⊥ 
in Fig. 8e, is larger than the theoretical prediction rcal in Eq. (23).

Similarly, the directionally averaged signal combined from all axons, i.e., the volume-

weighted sum S in Eq. (33), also scales as 1 ∕ b at high b-values (Fig. 8g). However, for t/δ 
= 30/13 ms and 50.9/35.1 ms, the S has positive signal intercept as 1 ∕ b 0, indicating 

unphysical negative diffusivities D⊥ transverse to axons (Veraart et al., 2019,2020). 

Therefore, we can only estimate the effective radius of wide pulse, reff, WP, at relative short 

time t/δ = 20/7.1 ms, at which the estimated reff, WP is consistent with the theoretical 

prediction rcal. However, the corresponding fitted Da ≃ 0.19 × D0 along axons is still 

unexpectedly low.

5. Discussion

In this work, we studied theoretically and numerically the interplay between axon caliber, 

caliber variations, and undulations, in synthetic and in realistic axons. The coarse-graining 

theory (Section 2.1.1 and Appendix A) was developed for the narrow-pulse limit, when the 

diffusion gradient pulse width δ ≪ tD. In this case, the caliber-variation contribution (~ r2) to 

the diffusivity transverse to axons is comparable to the undulation one (∼ w0
2), i.e., r ~ w0 ~ 

0.6μm (Fig. 7e).

In the opposite, wide-pulse limit, the physics of the IAS signal attenuation is qualitatively 

different. The caliber-variation contribution (~ r4) to radial diffusivity becomes much smaller 

than that of the undulations (∼ w0
2λ2), because r ≪ λ ≈ 30μm (Fig. 7f). Therefore, simply 

varying the gradient pulse width (while keeping b constant) is not a feasible experimental 

probe to distinguish between the relative contributions of different confounding effects for 

the ADM, except at very short times ~ 1 ms.

Another approach of ADM is to partially factor out the undulation effect by taking the 

directionally averaged signals for each b-shell at relatively short times δ ≲ 10 ms compared 

to tu ≈ 11 ms (defined after Eq. (24) for the typical values λ = 30 μm, Da = 2μm2/ms).

Below we discuss the narrow-pulse limit (Section 5.1), qualitative and quantitative 

differences arising in the wide-pulse limit (Section 5.2), the directionally averaged signal 

(Section 5.3), and interplay with the diffusion in the extra-axonal space (Section 5.4).

5.1. Narrow pulse limit

Based on the cumulant expansion, the dMRI signal can be expressed as Eq. (32), where b ≃ 
(gδ)2 · t. We first discuss the D⊥(t) term in the narrow pulse limit, and then consider when 

the K⊥ term becomes important.

5.1.1. Diffusion coefficient and reff—Simulation results of narrow pulse sequence in 

synthetic undulating axons with randomly positioned beads show that axons of the same 

mean cross-sectional area can have very different dMRI-measured effective radius of narrow 

pulse, reff in Eq. (14a), depending on the strength of beads, CV(r), and strength of 

undulations, Au. In Fig. 4b, dMRI-measured reff overestimates the radius of undulating 
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axons even with the consideration of caliber variations in Eq. (7); this discrepancy, 

reff
2 − 〈r2〉v, can be explained by the contribution of undulations ⟨δw2⟩t → ∞ at long times in 

Eqs. (13) and (15).

Similarly, in realistic IAS (Fig. 6c), the reff estimate, fitted based on Eq. (14a) and simulation 

results in Fig. 6a, is larger than the estimate based on theory that includes only the caliber 

variations in Eq. (7). The remaining discrepancy, reff
2 − 〈r2〉v, is caused by the axonal 

undulation ⟨δw2⟩t → ∞ (Eq. (15), Fig. 6f), and correlates with the axonal straightness/

sinuosity (Eq. (C.5), Appendix C.1). Fig. 6g shows that the larger the sinuosity (i.e., the 

larger the undulation), the bigger the discrepancy. This observation also coincides with the 

prediction of the toy model in (Brabec et al., 2020).

The bias in effective radius estimation due to the undulation depends on the chosen diffusion 

time range. The longest diffusion time used to fit Eq. (14a) potentially increases the 

discrepancy reff
2 − 〈r2〉v since ⟨δw2⟩ grows with diffusion times in Fig. 6e. In other words, at 

long times (diffusion length Ld(t) ~ undulation wavelength λ defined in Appendix C.1), the 

radius estimation will be biased due to the undulation the most.

In particular, at sufficiently long times (e.g., t ~ 100 ms), diffusion length along the axon, 

Ld(t) = 2Dat ≃ 20 μm, is comparable with the undulation wavelength λ ≃ 26 μm, estimated 

based on the slope in Fig. 6g and the 1-harmonic model in Eq. (C.5), Appendix C.1. 

Therefore, for such long t, the radius estimation can be highly biased due to the undulation. 

In contrast, at intermediate times (e.g., t ~ 5 ms), the diffusion length along the axon, Ld(t) ≃ 
4.5 μm, is much shorter than the undulation wavelength, and at the same time the diffusion 

length (without the restrictions) transverse to axons, Ld
⊥(t) = 4D0t ≈ 6.3 μm ≫ r ~ 1 μm, is 

still long enough for Eq. (14a) to be applicable; in this case, the radius estimation based on 

Eq. (7) is less biased.

We find that, at long times (t ≳ 100 ms), ~ 50% of reff
2  is contributed by the caliber variation, 

i.e., ⟨r2⟩v calculated based on Eq. (7), and the remaining ~ 50% is contributed by the 

undulation, i.e., ⟨δw2⟩t → ∞ in Eqs. (13) and (15).

Unfortunately, our EM segmentation was limited to fairly short axonal segments. We believe 

that quantifying the amplitude and wavelength for axonal undulations based on larger field-

of-view 3d EM reconstructions will be important for assessing the relevance of undulations 

on the measured IAS characteristics.

Sepehrband et al. (2016) estimated the inner axonal diameter of the ex vivo mouse brain by 

using PGSE with diffusion time tmax = 28 ms and ultra-high diffusion gradient strength 

Gmax = 1350 mT/m, and still overestimated the diameter index, 2 〈r2〉v in Eq. (7) for narrow 

pulse and 2rcal in Eq. (23) for wide pulse, based on the histology by a factor of ~ 2. This bias 

can be partly explained by not including the undulation effect in the model.

Lee et al. Page 19

Neuroimage. Author manuscript; available in PMC 2021 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5.1.2. When is radial kurtosis important?—To evaluate the importance of the 

kurtosis term, consider the cumulant expansion (32). The ~ b2 term is of the same order as 

the ~ b one when a strong diffusion gradient is applied:

g ≳ g∗ = 24
∣ K∞ ∣ ⋅ 1

r ⋅ δ .

For example, if δ = 10 ms, r = 3μm (thick axons), and K∞ = −0.2, g* = 0.3651 (μm · ms)−1, 

corresponding to G = 1365 mT/m. When the applied diffusion gradient is of this order of 

magnitude, the kurtosis contribution becomes crucial; furthermore, the effect of axonal 

shape and diameter distribution on the value K∞ (different from −1/2) becomes important.

Based on simulations in realistic IAS, the intra-axonal signal is shown to have a non-

negligible kurtosis K∞ ≈ −0. 2 transverse to axons (Fig. 6d and h). Its value is different from 

that of a prefect cylinder, K∞ = −1/2 (Burcaw et al., 2015), and needs to be considered in 

axonal diameter measurements using dMRI, e.g., for large axons in spinal cord (Assaf et al., 

2008; Benjamini et al., 2016; Duval et al., 2015), with strong diffusion gradients applied 

(Duval et al., 2015; Sepehrband et al., 2016), and for IAS metabolites (Palombo et al., 2016; 

Ronen et al., 2014).

5.2. Wide pulse limit

5.2.1. Contributions of caliber and undulations to the radial diffusivity—In 

synthetic undulating axons with randomly positioned beads, the RD time-dependence D⊥(t, 
δ) when t = δ does not scale as 1/δ2 predicted by Eq. (21) due to caliber variations (Fig. 5a). 

Rather, it is explained by the simple 1-harmonic model for δ ≾ tu ~ 11 ms, corresponding to 

the undulation wavelengths λx/λy = 20/30 μm. The bias of the 1-harmonic model at shorter 

δ ≲ tu is caused by the RD contribution from caliber variations and by fitting this simplified 

model to D⊥(δ) contributed by undulations of 2-harmonics in Eq. (29). Furthermore, the 

effective radius of wide pulse, reff, WP in Eq. (22), exceeds the prediction rcal in Eq. (23) for 

undulating axons except at very short times δ ≲ 1 ms (Fig. 5b). Instead, the effective radius 

due to undulations, rund in Eq. (26), coincides with the estimated reff, WP at long times δ ~ 

100 ms (Fig. 5d), indicating that the axon “size” estimation is inevitably dominated by axon 

undulations at clinical times t and δ.

The competition of caliber and undulation regimes is also shown via fit parameters of the 

undulation model (24) (Fig. 5c). The fitted w0λ is consistent with the theory (30) for axons 

with non-trivial undulations. However, in non-undulating axons, the fitted value is much 

larger than the theoretical prediction (w0λ = 0) since the axon caliber is misinterpreted as 

the undulation length scale due to similar functional forms in Eqs. (21) and (25).

Similarly, our simulations in realistic axon shape (Fig. 7) demonstrate that, for pulsed-

gradient sequence of finite pulse width, the functional form of RD time-dependence cannot 

be properly described by the contribution of caliber variations in Eq. (21) at times δ ≳ 10 

ms; instead, it is well explained by the simplified 1-harmonic undulation model in Eq. (24). 

Indeed, the undulation of realistic axons is composed of multiple harmonics (Fig. C.1c-d), 

whose contributions to RD have exactly the same 1/δ2-functional form only at times δ ≫ tu 
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≈ 11 ms for the undulation wavelength λ ≈ 29μm (Eq. (C.16) and Fig. 7f); in other words, 

when δ ≫ tu, RD contributions from all harmonics degenerate into the same 1/δ2-functional 

form, and the overall RD contribution from multiple harmonics has exactly the same 

functional form as of 1-harmonic case. Therefore, the 1-harmonic model deviates from 

simulation results at shorter times δ ≲ tu (Fig. 7c), whereas the fitting results for δ ≫ tu still 

provides reasonable estimates of undulation metrics: The estimated amplitude ~ 0.62 μm in 

Fig. 7e is consistent with the analysis of axonal shapes in Fig. C.1c, and the estimated 

wavelength ~ 29μm in Fig. 7f almost coincides with the value ~ 26μm given by the 

correlation of sinuosity and the axon size discrepancy reff
2 − 〈r2〉v in Fig. 6g.

For the radius estimation in either narrow or wide pulse limit, axonal undulation has an 

essential contribution to RD. For example, in the narrow pulse limit at typical diffusion time 

t = 50 ms, the RD due to undulations is ⟨δw2⟩/4t ≃ 2.3 × 10−3 μm2/ms averaged over all 

axons in our EM sample (Fig. C.1a), comparable to the RD due to the caliber variation: 

⟨r2⟩v/4t = 2.5 × 10−3 μm2/ms (Fig. 6a). Further, in the wide pulse limit, the RD due to caliber 

variations can be estimated based on Eq. (21) and ⟨r4⟩v ~ (0.78 μm)4, and the RD due to 

undulations can be estimated based on Eq. (24) and w0/λ ~ 0.62/29 μm (Fig. 6e-f). At 

typical t = 50 ms and diffusion pulse width δ = 15 ms, the RD due to caliber variations is 

Dcal, WP ≃ 2.5 × 10−5 μm2/ms, much smaller than the RD contributed by undulations, Du ≃ 
1.4 × 10−3 μm2/ms.

Finally, for diffusion-weighted MR spectroscopy, the intra-axonal markers (e.g., N-acetyl 

aspartate + N-acetyl aspartyl glutamate, tNAA) have a smaller diffusivity (i.e., longer tD), 

and the measurement could potentially fall into the narrow pulse limit. However, the 

measurements performed so far still fall into the wide pulse limit. For example, the 

diffusivity of tNAA, DtNAA = 0.51 μm2/ms in the anterior body of human corpus callosum, 

where axons have radii r < 3 μm, yields the correlation time tD = r2/DtNAA < 18 ms, much 

shorter than the applied gradient pulse width δ = 42 ms in (Ronen et al., 2014).

In addition to diffusion transverse to axons, the undulation effect on diffusion along axons 

(Appendix E) has been in vivo observed in healthy subjects: Using the planar water mobility 

filter with diffusion weighting ≤ 5.4 ms/μm2, Dhital et al. (2019) measured the axial 

diffusivity and trace of diffusion tensor in single bundle voxels, respectively approaching the 

intra-axonal diffusivity D∥ in the principal fiber bundle direction and the intra-axonal 

diffusivity Da factoring out fiber dispersion and axonal undulations. Based on the in vivo 

measurements (D∥/Da ~ 2.25/2.39 μm2/ms) and theory in Eq. (E.2), we have w0/λ ≈ 0.055, 

corresponding to λ ≈ 11 μm if w0 ~ 0.62 μm. This estimation is smaller than ours λ ≈ 29 

μm in the mouse brain.

5.2.2. When is radial kurtosis important?—Let us now estimate the contribution of 

higher order g4 term; we focus on an axon with constant cross-section for simplicity. As it 

follows from Eq. (17) and (Lee et al., 2018), the g4 term becomes comparable with the g2 

term when the following condition is satisfied:
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g ≳ g∗ =
c1
c2

⋅
D0
r3 ,

where c1 ∕ c2 ≃ 8.14 for a perfectly straight cylinder, cf. Eq. (18). For example, if r = 3 μm 

and D0 = 2 μm2/ms, g* = 0.6030 (μm · ms)−1, corresponding to G = 2254 mT/m (for thinner 

axons the critical gradient will be even larger); when the applied diffusion gradient is of this 

order of magnitude, the higher-order terms become comparable to the g2 term, and will 

strongly bias the ADM results (in particular, the negative g4 term will lead to radius 

overestimation).

For the directionally averaged signal in Eq. (27), the higher-order term O(b2) (related to 

kurtosis) in the exponential term is typically ignored, cf., e.g., Veraart et al. (2020). This 

approximation can be now justified for ADM in brain based on the above analysis, as the 

critical gradient g* is much higher than the gradient strength available on clinical scanners, 

and even on most animal scanners.

5.3. Directionally averaged signal

To partly factor out the undulation effect on diffusion transverse to axons, simulated dMRI 

signals at strong diffusion weighting b are directionally averaged (Fig. 8a-c). For simulations 

of individual axons, the signal Si scales as 1 ∕ b for most axons, and the Si with negative 

signal intercepts at 1 ∕ b 0 has biologically plausible estimates of RD D⊥ > 0 (Veraart et 

al., 2020) and the corresponding effective radius reff, WP of wide pulse in Eq. (22) (Fig. 8e 

and f): At short times (t/δ = 20/7.1 ms from (Veraart et al., 2020) on animal scanner), 

estimated reff, WP is slightly larger with the prediction rcal in Eq. (23), whereas at longer 

times (t/δ = 30/13 ms, 50.9/35.1 ms on human scanners (Veraart et al., 2019, 2020)), reff, WP 

remarkably overestimates the axon size. Although the estimated radii at short times have 

reasonable values, the estimated diffusivity Da along axons is unexpectedly low ( ~ 0.2 × 

D0), much smaller than the values reported in previous in vivo studies, Da ≲ D0 (Dhital et 

al., 2019; Novikov et al., 2018; Veraart et al., 2019). This low Da value is potentially caused 

by ignoring the local fluctuations of Da(l) varying along individual axons, resulted from 

caliber variations along axons (Jacobs, 1935; Lee et al., 2020; Novikov et al., 2014). Indeed, 

the saddle point estimate (27) yielding S ∼ 1 ∕ Da overemphasizes the parts of the axon 

with the smaller local Da(l), since the average over the axon 〈1 ∕ Da(l)〉l > 1 ∕ 〈Da(l)〉l.

Similarly, the signal S of all axons (volume-weighted sum) scales as 1 ∕ b (Fig. 8g and h). 

In particular, at short times, the S has a negative signal intercept and a reasonable estimate of 

reff, WP, and again the estimated Da ( ~ 0.19 × D0) is lower than expected due to caliber 

variations along individual axons and across multiple axons; however, at long times, the S
has positive intercepts and unphysical D⊥ < 0.

Veraart et al. (2020) measured intra-axonal RD D⊥ ~ 1.2 × 10−2 μm2/ms in vivo in the 

human brain WM, based on the deviation from the 1 ∕ b scaling in directionally averaged 

dMRI signals up to b ≲ 25 ms/μm2, with t = 30 ms and δ = 13 ms. Assuming that axonal 
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undulation in the human brain WM is comparable to that observed in our EM sample, we 

can estimate the RD due to the undulation Du ≃ 2.3 × 10−3 μm2/ms, accounting for at most ~ 

20 % of measured intra-axonal RD if the undulation effect is not fully factored out in 

directionally averaged signals.

5.4. Contributions to the total radial kurtosis from intra- and extra-axonal spaces

To evaluate the contribution of intra-axonal kurtosis to the overall radial kurtosis with the 

presence of the extra-axonal space, we considered a fiber bundle consisting of multiple 

axons and an extra-axonal space as described in Section 2.1.2. At long diffusion times, 

Di∝1/t is much smaller than De, i.e., Di ≪ De. Substituting into Eq. (10), we obtain

D(t) ≃ (1 − f) ⋅ De(t),

K(t) ≃ 3f
1 − f +

Ke(t)
1 − f .

In particular, because it is the values Di
2Ki that add up for the 4th-order cumulant, the IAS 

kurtosis contribution to the overall kurtosis can be neglected at long t; the cross-term 

(diffusion variance) yields the first term in the right-hand side, and the extra-axonal kurtosis 

provides the main (time-dependent) correction, that decreases with time as (ln t)/t (Burcaw 

et al., 2015). In other words, at long times, the overall kurtosis K solely depends on the intra-

axonal volume fraction f (Fieremans et al., 2011; 2010; Jensen and Helpern, 2010) and the 

extra-axonal kurtosis Ke(t).

However, in the intermediate-time regime t ~ r2/D0, the diffusivities are of the same order, Di 

~ De, and therefore the intra-axonal kurtosis Ki has a non-negligible contribution to the 

overall kurtosis K. In this case, the intra-axonal kurtosis value becomes important for the 

overall radial kurtosis. Practically, this is relevant only at rather short diffusion times.

5.5. Clinical significance

The fact that dMRI is sensitive to caliber variations (e.g., beadings) and axonal undulations, 

as validated in both (Brabec et al., 2020; Budde and Frank, 2010) and this study, suggests 

potential applications of monitoring axon pathology. For example, the increase of axonal 

undulations has been observed at post-mortem acutely following traumatic brain injury 

(TBI) in humans (Tang-Schomer et al., 2012). Furthermore, axonal varicosity (beading) is a 

pathological change observed after TBI (Johnson et al., 2013; Tang-Schomer et al., 2012) 

and ischemic injury to WM axons (Garthwaite et al., 1999). Therefore, the so-called axonal 

“diameter ” mapping, measured by using dMRI, could be sensitive to the increase of 

undulations in TBI patients as well as the increase of varicosities in TBI and ischemic stroke 

patients.

5.6. Limitations

In this study, we only focused on the IAS of myelinated axons in WM. However, other 

structures, such as unmyelinated axons and the extra-axonal space, are also important and 

need to be considered, with finite water residence time in them taken into account. 

Therefore, we choose not to discuss the signal-to-noise ratio required for ADM since extra-
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axonal signals are not simulated. In addition, the axonal diameter distribution is not 

considered in this study since dMRI measurements do not have sensitivity to probe signals 

contributed by axons in diameters < 2 μm (Veraart et al., 2020).

Further, as discussed above, we only performed MC simulations for the pulsed-gradient 

sequence in narrow and finite pulse widths. The effect of coarse-graining on other 

commonly used sequences, such as the oscillating-gradient sequence, should be further 

considered to be able to compare with a range of existing measurements. We note, however, 

that the knowledge of full narrow-pulse D(t) can be in principle used to predict the second-

order cumulant for any sequence (Novikov et al., 2019, Sec. 2), as we did here to derive the 

wide-pulse diffusivity for the undulations. Beyond the 2nd-order cumulant, full-scale MC 

simulations are needed for each gradient wave form.

6. Conclusions

Numerical simulations, either in synthetic undulating axons with randomly positioned beads 

or in realistic axonal shapes from mouse brain EM, show that, in the narrow pulse limit, the 

inner diameter based on the RD is overestimated if the caliber variation and axonal 

undulation are both ignored, and the RK at long times is different from the value of perfectly 

straight cylinders. Furthermore, in the wide pulse limit, the contribution of undulations to 

RD time-dependence dominates and overshadows the contribution of caliber variations. In 

other words, conventional axonal “diameter” mapping is very sensitive to the strength of 

undulations, except at very short diffusion times. To release the requirement of very short 

diffusion times for an accurate ADM, we can factor out part of the undulation effect via a 

directional averaging of signals at strong diffusion weightings. To sum up, by decomposing 

salient features in the realistic axonal shape and recomposing their contributions to diffusion 

metrics, the theory and its numerical validation in this study builds a foundation for the 

biophysical interpretation and experimental implementation of axonal microstructure 

mapping.
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Appendix

Appendix A. Coherent averaging along an axon with caliber variation

The diffusion signal measured by narrow-pulse monopolar PGSE is given by (p. 340, eq. 

[6.28], Callaghan 1991)
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S(q, t) = 1
V ∫ ρ(x) G(x, x′; t)e−iq ⋅ (x′ − x)dxdx′ , (A.1)

where ρ(x) is the shape of the pore (confining or not and in any spatial dimensionality, with 

volume V), Eq. (2), and G is the diffusion propagator, i.e., the probability of a spin at x 

diffusing to x′ during time t.

Consider the diffusion within a fully confining pore. In the long time limit (t → ∞), the spin 

loses its memory of the initial position x, and has an equal probability of being anywhere in 

the pore (p. 378, eq. [7.14], Callaghan 1991):

G(x, x′; t) ≃ 1
V ρ(x′), t ∞ . (A.2)

Note that the propagator (A.2) is properly normalized (as the probability density for any t),

∫ dx′ G(x, x′; t) = 1 , (A.3)

ensuring the normalization of S(q, t)∣q=0 = 1 in Eq. (A.1). Substituting Eq. (A.2) into Eq. 

(A.1), the well-known diffusion diffraction result is obtained (p. 378, eq. [7.14], Callaghan 

1991):

S(q, t) ∣t ∞ ≃ ∣ ρ(q) ∣2

V 2 , ρ(q) = ∫ ρ(x) e−iq ⋅ xdx . (A.4)

For a 2d confined pore, x = (x1, x2), the diffusion wave vector q = q⊥ is parallel to the x – y 
plane, and Eq. (A.4) yields Eq. (1).

Consider now a segment of a 3d axon, of length Lz smaller than the diffusion length 

Ld(t) = 2Dat along its direction. Suppose that we artificially confine all molecules to diffuse 

within this segment (by closing its ends), and measure diffusion q = q⊥ transverse to its axis. 

Eq. (A.4) now applies for this 3d confining “pore”, and yields

S(q, t) ∣t ∞ ≃ ∣ 〈ρ(q⊥)〉z ∣2

A2 , A = V
Lz

, (A.5)

where we expressed the result in terms of the two-dimensional form factor

〈ρ(q⊥)〉z ≡ 1
Lz∫ d3x ρ(x) e−iq⊥ ⋅ x = ∫ d2x⊥ρ x⊥ e−iq⊥ ⋅ x⊥ (A.6)

of the average axonal cross-section
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ρ x⊥ ≡ 〈ρ(x)〉z = 1
Lz∫ dz ρ(x) . (A.7)

For clarity, here we made explicit the dimensions of integration. It is important to note that 

the longitudinal average over the axonal cross-sections in Eq. (A.5) is coherent, i.e., we 

average the 2d form factors with their phases, and only then take the absolute value.

To extend the above intuition onto a real (non-confining) axon, we note that the longer Ld(t) 
we take, the longer confining axonal segment Lz < Ld(t) we are allowed to consider in our 

gedanken setting above. If the structural disorder in the axonal caliber variations has a finite 

correlation length lc in the z direction, then any segment with Lz ≫ lc will “look” like any 

other, in the sense that their values of ⟨ρ(q⊥)⟩z will asymptotically become all equal to each 

other. This is the result of the self-averaging due to the coarse-graining by diffusion.

Now one can realize that the notion of a closed segment in this argument has been auxiliary, 

and the role of the confinement window is played by the diffusion length Ld(t), as it is the 

“soft” envelope that is really confining the molecules. Hence, we propose the following 

ansatz for the diffusion propagator at long times:

G(x, x′; t) = 1
A(z, t)

ρ(x′)G0(z − z′; t) , (A.8)

where A(z, t) is a normalization factor (an average cross-section within the domain ~ Ld(t) 

around the point x) found from Eq. (A.3), and G0 is a 1d Gaussian diffusion propagator with 

a diffusivity D∞
∥ = Da(t) ∣t ∞ along the axon. The propagator in Eq. (A.8) effectively 

factorizes the diffusion within the axon into Gaussian diffusion G0 at long distances ~ Ld(t) 
along the axon, and confined diffusion ρ(x′) at short distances ~ r (typical radius) transverse 

to the axon. This approximate factorization only works when the separation of scales Ld(t) 

≫ lc and Ld
⊥(t) ≫ r has been reached, with the former ensuring Gaussian diffusion along the 

axon, and the later ensuring confined diffusion transverse to the axon. It can be viewed as an 

extension of the ansatz of Mitra et al. (1992), originally developed for the fully-connected 2d 
or 3d pore space, onto the quasi-1d situation where the motion is unconfined in one 

dimension and confined by hard walls in the others. Substituting Eq. (A.8) into Eq. (A.1), 

approximating A(z, t) with the mean cross-sectional area A, and employing q = q⊥, we 

obtain

S(q⊥, t) ≃ 1
V A∫ dq∥

2π e−D∞∥ q∥
2t ρ(q⊥, q∥) 2 . (A.9)

Eq. (A.9) can be viewed as a rigorous definition of the coherent average in Eq. (3), where 

the 3d form factor is being coarse-grained (Gaussian-filtered) 

ρ(q⊥, q∥) ρ(q⊥, q∥)e−D∞∥ q∥
2t ∕ 2 over the window ~ Ld(t), cf. also the discussion after Eq. 

[10] of (Novikov et al., 2014). Of course, in the t → ∞ limit, the Gaussian filter selects ∣q∥∣ 
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≲ 1/Ld(t) → 0, acting as the Dirac delta function δD(q∥), thus making Eq. (A.9) equivalent to 

Eq. (A.5).

To validate our ansatz (A.8) for the propagator and its consequence for the signal (A.9), we 

explore the finite-t corrections to its t → ∞ limit, Eq. (A.5). For that, we study the effect of 

the deviations δρ(x) = ρ(x) − ρ̄(x⊥) from the average shape, Eq. (A.7). Substituting the 

corresponding

ρ(q) = 〈ρ(q⊥)〉z ⋅ 2πδD(q∥) + δρ(q⊥, q∥)

into Eq. (A.9) and using δD
2 (q∥) = δD(q∥) ⋅ Lz ∕ 2π, the cross-terms vanish since δρ∣q∥=0 ≡ 0, 

and we obtain

S(q⊥, t) ≃ 1
A2 ∣ 〈ρ(q⊥)〉z ∣2 + 1

V A∫ dq∥
2π e−D∞∥ q∥

2t δρ(q⊥, q∥) 2, (A.10)

where the first right-hand-side term is the full along-axon coherent average, Eq. (A.5), and 

the second term is a signal correction due to the microstructural inhomogeneity along the 

axon.

For the 1d short-range disorder in the positions of axonal swellings, compatible with the 

along-axon diffusivity scaling as ~t−1/2 at long t (Fieremans et al., 2016; Novikov et al., 

2014), the power spectrum of the density fluctuation ∣δρ(q⊥, q∥)∣2 has a plateau at q∥ → 0, 

leading to a signal correction term δS(q⊥, t) ∝ 1 ∕ t at long t according to Eq. (A.10). Note 

that this scaling is not for the diffusivity, as in (Novikov et al. (2014)), but for the signal 
itself. It provides the 1d generalization of the [lc/Ld(t)]d ~ t−d/2 scaling (Novikov et al., 2019, 

Section 1.6) due to the correction to the free propagator following from the ansatz of Mitra 

et al. (1992) in dimensions d > 1.
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Fig. A.1. 
Simulated signals S(q⊥, t) in a cylinder of randomly distributed beads. Diffusion gradient is 

applied transverse to the axon, with ∣q⊥∣ = 0.86-0.90 μm−1. For t = 3.2-3200 ms, S(q⊥, t) 
scales as 1 ∕ t, consistent with the prediction in Eq. (A.10), validating the ansatz for the 

diffusion propagator in Eq. (A.8).

In Fig. A.1, we demonstrate this 1 ∕ t signal correction via numerical simulations in an 

artificially designed cylinder (Lz = 200 μm, A = π × (1 μm)2) composed of randomly 

distributed beads, with distance between beads = 5.3 ± 2.9 μm and bead width = 4 μm. 1 × 

107 random walkers diffuse within this beaded cylinder with the same parameter settings as 

in the narrow pulse regime in the main text, except ∣q⊥∣ = 0.86-0.9 μm−1 and t = 3.2-3200 

ms. The simulated signal has a very small 1 ∕ t‐ dependence ( < 0.2% signal change in Fig. 

A.1), showing that, practically, one can simply use the full coherent averaging 

approximation, Eq. (A.5), in our result, Eq. (3) of the main text.
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Appendix B. Diffusional kurtosis transverse to the perfectly straight 

cylinder

In the narrow pulse limit (δ ≪ tD = r2/D0), diffusion kurtosis transverse to a perfectly 

straight cylinder is a constant K⊥ ≃ −0.5 at long times (Burcaw et al., 2015). On the other 

hand, in the wide pulse limit (δ ≫ tD), the radial kurtosis has a non-trivial time-dependence 

given by Lee et al. (2018)

K⊥(δ) ≃ − c 2 ⋅ tD
δ , (B.1)

where c 2 > 0 is a proportionality constant. The purpose of this section is to numerically 

estimate the value of c 2, as well as of c2 in Eq. (17).

To do so, we performed MC simulations of diffusion within perfectly straight cylinders of 

radii r=0.1–4μm (aligned to the z-axis), applying 5 × 105 random walkers with D0 = 2 

μm2/ms and δt = 2 × 10−4 ms, and calculated diffusion signals of pulsed-gradient sequences 

with gradients applied transverse to cylinders (along x- and y-axes). To prevent the bias due 

to the equal-step-length random leap (Appendix D) and pixelated/boxy geometry, elastic 
collision was implemented when a random walker encountering the curved surface of a 

cylinder. A gradient pulse width δ=1–100 ms was applied, with diffusion time t = δ for the 

first simulation and t = 26 for the second one. Diffusion signals for five b-values = 0–1 ms/

μm2 were simulated and fitted to the DKI representation in Eqs. (32) and (20) to calculate 

the radial diffusivity D⊥(t, δ) and radial kurtosis K⊥(t, δ).
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Fig. B.1. 
Simulation results for diffusion inside straight cylinders with circular cross-section of radii r 
= 0.1 – 4 μm, for the wide pulse pulsed-gradient sequence with t = δ in (a-b) and t = 2δ in 

(c-d). In the wide pulse limit δ ≫ tD(r) = r2/D0, we observe the universal scaling relations 

for radial diffusivity (a,c) and radial kurtosis (b,d), such that the curves for different radii 

begin to coincide. (a,c): Radial diffusivity D⊥(δ) scales as tD2 (r) ∕ δ2, and the slope (red 

dashed line) asymptotically verifies the exact value c1 from Eq. (18). (b,d): Radial kurtosis 

K⊥ (δ) scales as −tD(r)/δ, and the slope (red dashed line) determines c 2 in Eq. (B.1), and 

thereby c2 in Eqs. (17) and (18), based on Eq. (B.2).

As expected in Eq. (21), simulated D⊥(δ) scales linearly with 1/δ2 for δ ≫ tD (Fig. B.1a and 

c). Similarly, as predicted by Eq. (B.1), simulated K⊥(δ) scales linearly with 1/δ when δ ≫ 
tD (Fig. B.1b and d). Furthermore, the slope of this linear scaling provides an estimate of 

c 2 ≈ 0.63. Substituting Eqs. (21), (20) and (B.1) into Eq. (32) and comparing with 

coefficients in Eq. (17), we obtain

c2 = 1
6c1

2 ⋅ c 2 ≈ 0.0022 . (B.2)
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Appendix C. Axonal undulation and diffusion transverse to axons

To quantify the effect of axonal undulations on diffusion metrics, we introduce the sinuosity, 

consider the case of a 1-harmonic undulation in the narrow pulse limit, and then generalize 

onto multiple undulation harmonics and derive the effects of non-narrow pulses.

C1. Quantifying axonal undulations: Sinuosity

In Fig. 6g, reff
2 − 〈r2〉v highly correlates with the sinuosity. Given that reff

2 − 〈r2〉v also 

correlates with the axonal undulation via Eq. (15) (Fig. 6f), it is natural to consider the 

correlation between the undulation and the sinuosity.

Axonal sinuosity ξ is defined as the ratio of the cuvilinear length L = ∫ dl of the axonal 

skeleton to the Euclidean distance Lz = ∫ dz of two ends:

ξ ≡ L
Lz

= 1
Lz∫ (dz)2 + ∣ dw ∣2 (C.1a)

≃ 1 + 1
2

dw
dz

2

z
, dw

dz ≪ 1 , (C.1b)

where w is defined in Fig. 2, and ⟨…⟩z denotes the quantity averaged along the main axis. 

The deviation of axonal skeleton from the main axis in Fig. 2 correlates with the sinuosity 

via Eq. (C.1). In particular, Eq. (C.1b) is only applicable to axons with small undulations 

(i.e., ∣dw/dz ≪ 1) and the sinuosity ξ ≳ 1 (Fig. 6g).

Fig. C.1. 
(a) The time-dependence of the diffusivity ⟨δw2⟩/4t contributed by the undulation of the 

realistic IAS. The black dotted line is a reference line with a slope of −1, indicating a 1/t-
dependence at long times. (b) At short times, the diffusivity contributed by the undulation is 

the projection of the along-skeleton Gaussian diffusion onto the direction transverse to the 

main direction, as described in Eq. (C.6). (c) The histogram of the undulation amplitudes 

w0n of the first three harmonics (n = 1, 2, 3). (d) The time-dependence of the instantaneous 

diffusivity 1
2d ∂t〈δw2〉 in d = 2 contributed by the undulation. In the semi-log plot, the 

instantaneous diffusivity is not a straight line, i.e., it does not decrease mono-exponentially 

(Eq. (C.10)), indicating that the axonal undulation consists of more than one harmonic.

To better understand the meaning of Eq. (C.1b), we consider a simple case of an axon with a 

sinusoidal undulation in one plane (the 1-harmonic model):
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w = w0 cos(kz)x , (C.2)

where w0 is the undulation amplitude, k = 2π/λ, and λ is the undulation wavelength. Eq. 

(C.1b) yields

ξ ≃ 1 + 1
4w0

2k2 = 1 + πw0
λ

2
, (C.3)

i.e., sinuosity ξ is related to the undulation parameter w0/λ.

On the other hand, using Eqs. (13), (15) and (C.1b), in the long-time limit Ld(t) ≫ λ we 

obtain

reff
2 − 〈r2〉v ≃ w0

2 . (C.4)

Here we assumed that the undulation is small (w0 ≪ λ, which is the case based on our 

estimates using realistic axons, Fig. C.1c), and to the first order in the small parameter w0/λ 
we approximated z ≃ l, and cos kz ≃ cos kl. The double integral ∫ ⋯ dldl′ is then equivalent 

to averaging

〈(cos kl − cos kl′)2〉 = 4 sin2k(l + l′)
2 sin2k(l − l′)

2 l, l′ = 1

approximately independently over l + l′ and l − l′.

Eliminating the amplitude w0 using Eq. (C.4) yields

ξ − 1 ≃ π
λ

2
⋅ reff

2 − 〈r2〉v , (C.5)

which indicates that, by plotting each axon’s ξ – 1 versus its reff
2 − 〈r2〉v, the slope = (π/λ)2 

provides an estimate of the undulation wavelength; thus we find λ ≈ 26 μm based on Fig. 

6g.

C2. Diffusion time-dependence of the axonal undulation

The RD contributed by the axonal undulation is quantified as ⟨δw2⟩/4t in Fig. C.1a. At short 

times, ⟨δw2⟩/4t is the projection of the along-skeleton Gaussian diffusion onto the direction 

transverse to the main direction, as demonstrated in Fig. C.1b:

〈δw2〉
4t ∣t 0 = Da ⋅ 〈sin2θ〉

2 , (C.6)

where θ = θ(z) is the angle between the individual axon’s skeleton segment at z and its main 

direction. The factor 2 in denominator is because in realistic IAS, the axonal undulation 

happens in two directions (e.g., x- and y-axes) perpendicular to the main direction, along 
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which the “macroscopic curvature” is ignored. At long times, ⟨δw2⟩ approaches a constant 

(Fig. 6e), and ⟨δw2⟩/4t scales as 1/t (Fig. C.1a).

To better understand the diffusivity time-dependence due to the axonal undulation, we 

decompose an undulating axon via multiple harmonics with amplitude (wxn, wyn), wave 

number (kn) and phase (ϕxn, ϕyn) for the n-th harmonic (n ∈ ℕ):

w = ∑
n

wxn cos(knz + ϕxn)x + wyn cos(knz + ϕyn)y . (C.7)

Here, we focus on the case of kn = n · 2π/Lz, such that all harmonics are orthogonal to each 

other. The exact relation between z and l becomes complicated, and here we only provide 

the lowest-order approximate solution. Substituting Eq. (C.7) into the Taylor expansion of 

Eq. (C.1a) for ∣dw/dz∣ ≪ 1 and setting integration bounds from 0 to z(l), we obtain

l ≃ ξ ⋅ z , w0n ≪ 1 ∕ kn , (C.8)

where

ξ ≃ 1 + ∑
n

∑
m = 1

∞ 1
2
m

2m
m ⋅

w0n
2 kn2

4

m
= 1 + ∑

n
1
4w0n

2 kn2 + … ,

is the approximated sinuosity, and w0n ≡ wxn2 + wyn2  is the 2d undulation amplitude. In 

realistic IAS, w0n ≲ 0.6 μm for n = 1, 2, 3 (Fig. C.1c). Assuming that the undulation is so 

small (w0n ≪ 1/kn) that z ≃ l/ξ, we can approximate cos(knz + ϕn) ≃ cos(knl/ξ + ϕn). 

Substituting into Eq. (13), integrating over l + l′ and l – l′, and using for each harmonic 

⟨sin2[kn(l + l′)/2 + ϕn]⟩l+l′ = 1/2 and

∫ dz
4πD∞∥

sin2knz
2 e−z2 ∕ 4D∞∥ t = 1

2 1 − e−D∞∥ kn2t ,

we obtain

〈δw2〉 ≃ ∑
n

w0n
2 1 − e−D∞∥ kn2t , w0n ≪ 1 ∕ kn, (C.9)

with D∞
∥ = Da ∕ ξ2. In Appendix E, we will prove that D∞

∥  is the bulk diffusivity along the 

axon in t → ∞ limit, whereas in the main text, we approximated D∞
∥ ≃ Da since ξ ≳ 1 for 

small undulations (w0nkn ≪ 1).

At short times, 〈δw2〉 ≃ ∑nw0n
2 kn

2D∞
∥ t Substituting into Eq. (C.6), the projection factor 

transverse to the main direction is given by
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〈sin2 θ〉 ≃ 2
ξ2 ∑

n

πw0n
λn

2
,

where λn = 2π/kn is the corresponding wavelength. At long times, 〈δw2〉 ≃ ∑nw0n
2 , leading 

to a diffusivity ⟨δw2⟩/4t scaling as 1/t.

To further discuss the diffusion time-dependence due to the axonal undulation, we calculated 

the instantaneous diffusivity (Novikov et al., 2014) in d = 2-dimensions based on Eq. (C.9):

1
2d ∂t〈δw2〉 ≃ ∑

n

1
4 ⋅

w0n
2

tn
⋅ e−t ∕ tn, w0n ≪ 1 ∕ kn , (C.10)

where tn = 1 ∕ D∞
∥ kn

2 ∝ λn
2 ∕ D∞

∥  is the correlation time related to the undulation wavelength. 

Based on the realistic axonal skeleton, the instantaneous diffusivity due to the axonal 

undulation does not decrease mono-exponentially over diffusion times (Fig. C.1d), 

indicating that the axonal undulation consists of more than one harmonic.

Note that for each harmonic, the instantaneous diffusivity is given by an exponentially 

decaying function, which has the same functional form as the contribution of each Laplace 

eigenmode in a fully confined pore. This is not surprising, since the motion projected on the 

plane transverse to the axon axis is confined.

In a standard way, the instantaneous diffusivity in Eq. (C.9) due to undulations can be 

translated into a frequency-dependent dispersive diffusivity (Burcaw et al., 2015; Novikov et 

al., 2019):

Du(ω) = − iω∫
0

∞
dt eiωt 1

2d ∂t〈δw2〉 (C.11a)

≃ ∑
n

1
4 ⋅

w0n
2

tn
⋅ −iωtn

1 − iωtn
(C.11b)

= ∑
n

1
4 ⋅

w0n
2

tn
⋅ −iωtn + ω2tn2 + … , (C.11c)

which yields the oscillating-gradient measured ω-dependent diffusivity due to undulations in 

the limit of large number of oscillations (Novikov et al., 2019):

Re Du(ω) ≃ ∑
n

1
4w0n

2 tn ⋅ ω2 + O(ω4) . (C.12)
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This ω2-dependence at low frequencies is expected due to the nature of confined diffusion 

(Burcaw et al., 2015) of axonal undulations projected to the x – y plane (Fig. 2c).

The knowledge of Du(ω) in Eq. (C.11b) enables ones to evaluate the effect of any sequence 

on the second order cumulant of the diffusion signals (Novikov and Kiselev, 2011):

− ln S = ∫ dω
2π Du(ω) ∣ qω ∣2 + O(g4) , (C.13)

where qω is the Fourier transform of the diffusion wave vector q(t) = ∫0
tdt′ g(t′). For a pulsed-

gradient sequence of diffusion time t and pulse width δ, we have (Burcaw et al., 2015; 

Callaghan, 1991)

qω = g
(iω)2 eiωδ − 1 eiωt − 1 . (C.14)

Substituting Eq. (C.11b) and (C.14) into Eq. (C.13), we obtain the pulsed-gradient measured 

radial diffusivity − 1
b ln S ∣b 0 due to undulations:

Du(t, δ) ≃ ∑
n

1
4 ⋅

w0n
2 tn2

δ2(t − δ ∕ 3)
⋅ 2 δ

tn
− 2

+2e−t ∕ tn + 2e−δ ∕ tn − e−(t − δ) ∕ tn − e−(t + δ) ∕ tn ,
(C.15)

which is analogous to the solution of axon caliber in Eq. [11] of (Vangelderen et al., 1994). 

In other words, it is difficult to distinguish contributions of axon caliber and axonal 

undulation at the level of g2. The frequency integral is calculated along the real axis on the 

complex plane of ω with two poles at −i/tn and −i0 on the lower-half plane of ω (Novikov 

and Kiselev, 2010).

In the wide pulse limit of undulations, i.e., δ ≫ tn ∼ λn
2 ∕ D∞

∥  the RD due to undulations 

acquires the Neuman (1974) form

Du(t, δ) ≃ ∑
n

1
8π2 ⋅

w0n
2 λn

2

D∞
∥ δ

⋅ 1
t − δ ∕ 3 , δ ≫ tn , (C.16)

whose functional form is the same as that in Eq. (21), although the corresponding undulation 

length scale is not of the same order as the caliber length scale in realistic axonal shapes: In 

our mouse brain EM sample of CC, the length scale of caliber variations is ⟨r4⟩v ~ (0.78 

μm)4 in Eq. (21), whereas the length scale of undulations is w0n ≲ 0.6 μm (Fig. C.1d) and λn 

~ 26 μm (Eq. (C.5)) and Fig. 6g) in Eq. (C.16), i.e., 〈r4〉v ≪ w0n
2 λn

2. Therefore, in the wide 

pulse limit, the axon size estimation based on the RD time-dependence is dominated by 

undulations if the undulation effects are not partly factored out by spherically averaging 

signals.
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Appendix D. Bias in the axon size caused by equal-step-length random 

leap

In our simulations, the interaction of random walkers and diffusion boundaries (e.g., cell 

membrane, myelin sheath) is modeled as the equal-step-length random leap: a step crossing 

the boundary is canceled, and another direction will be chosen to leap until the step does not 

cross any boundaries. This strategy largely reduces the calculation time of MC simulations.

However, walkers are effectively repelled away from the boundary since the step crossing 

boundaries is rejected by the algorithm. To calculate the theoretical values of ⟨r2⟩v, ⟨r4⟩v and 

K∞ based on Eqs. (7), (8) and (23), the cylindrical radius r needs to be corrected to match 

the simulation results in Fig. 4. The corrected radius r′ is smaller than the actual radius r of 

the geometry due to this repulsion effect. In fact, the first order correction δr ≡ r – r′ of 

effective radius solely depends on the step size δs, and not on the cylinder radius r (details to 

be published elsewhere):

δr =
δs ∕ 4 d = 1 ,
δs ∕ (2π) d = 2 ,
δs ∕ 8 d = 3 .

(D.1)

Appendix E. Axonal undulation and diffusion along axons

For completeness, it is worthwhile to explore the diffusivity time-dependence along the 

undulating axons. By setting n = z in Eq. (12), the second-order cumulant ⟨δz2⟩ of the 

diffusion displacement projected onto the main axis is given by

〈δz2〉 ≃ 1
C∫ ∣ z(l) − z(l′) ∣2 ⋅ e− l − l′ 2

4Dat dl dl′ , (E.1)

where C is the same normalization factor as in Eq. (13), and Da is diffusivity along the 

axonal skeleton. In the narrow pulse limit, the (apparent) axial diffusivity due to undulation 

is by definition D∥(t) ≡ ⟨δz⟩2)/(2t). Substituting Eq. (C.8) into Eq. (E.1), we obtain the bulk 

diffusivity along axons:

D∥(t) ≃ Da
ξ2 ≡ D∞

∥ , t ∞

≃ Da 1 − ∑
n

1
2w0n

2 kn
2 .

(E.2)

To explore the axial diffusivity time-dependence, it is necessary to derive z = z(l) entering 

Eq. (E.1). For simplicity, here we provide an approximate solution of the 1-harmonic model, 

perturbatively in the undulation amplitude w0. The expansion is controlled by the small 

parameter ϵ = (w0k/2)2 = (πw0/λ)2 ≪ 1, To the first order in ϵ, the sinuosity (C.3) is ν = 1 + 

ϵ. In what follows, we will need to explore z = z(l) up to ϵ2, since the time-dependence will 

turn out to be an O(w0
4) effect.
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Fig. E.1. 
Simulated axial diffusivites D∥(t) along undulating axons with a constant radius r = 0.5 μm. 

The undulation of each axon is composed of only one harmonic with (a) undulation 

wavelength λ = 16 μm and undulation amplitude w0 = 0.70, 1.05, 1.40, 1.75, or 2.10 μm, 

respectively, and (b) undulation amplitude w0 = 0.7 μm and undulation wavelength λ = 8, 

12 , 16 , 24 , and 48 μm, respectively. (c-d) The simulated D∥(t) time-dependence scales as 1/

t at long t, as predicted in Eq. (E.3). (e) The fit parameters and D∞
∥  and c∥ in Eq. (E.3) are 

consistent with the theoretical prediction in Eq. (E.4), after the shift w0 w0 ≃ w0 + r. 
Notably, the above simulations demonstrate that the 1/t-dependence in axial diffusivity is 

applicable to 1-harmonic undulating fibers in a wide range of ϵ ≡ (w0k ∕ 2)2.

Expanding the definition (C.1a) for the 1-harmonic model (C.2) up to ϵ4, we find
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l(z) ≃ ∫0
z

dz 1 + (dw ∕ dz)2
2 − (dw ∕ dz)4

8

= ξz − (ϵ − ϵ2)sin(2kz)
2k − ϵ2sin(4kz)

16k ,

where ξ(ϵ) = 1 + ϵ − 3
4ϵ2 + O(ϵ3) is defined after Eq. (C.8). We then invert the above relation 

perturbatively to obtain z = z(l). After some trigonometry needed to keep the term sin(2kz) ≈ 
sin(2kl/ξ) + (ϵ/2) sin(4kl) exact up to O(ϵ), and substituting sin 4kz → sin 4kl as that term is 

already O(ϵ2), we obtain

z(l) ≃ 1
ξ ⋅ 1 + ϵ

2kl ⋅ sin 2kl
ξ − ϵ2

2kl sin(2kl) − 5
8 sin(4kl) .

Substituting z(l) into Eq. (E.1), we expand the square (z(l) – z(l′))2 up to ϵ2. We see that the 

first term in the above expression for z(l), (l – l′)2/ξ2, yields D∞. For the other terms 

employing the trigonometric functions, we change variables to l+ = (l + l′)/2 and l− = l − l′, 

and observe that most of them vanish after integration over dl+ in the limit of axon length L 
→ ∞, including the hard-earned ϵ2 terms from the third term in the above z(l). The only 

nonzero term at the ϵ2 level comes from the second term in z(l) above, ~ϵ2(sin(2kl) − sin(2kl
′))2 ~ ϵ2 cos2 (2kl+) sin2 (kl−). Remarkably, this means that l(z) expanded up to O(ϵ) only 

would be enough — but it was not obvious from the outset. Using the integration result right 

before Eq. (C.9), we finally obtain

D∥(t) = 〈δz2〉
2t ≃ D∞

∥ + c∥ ⋅ 1
t 1 − e−4D∞∥ k2t ,

≃ D∞
∥ + c∥

t , t ≫ 1
4D∞

∥ k2 ,
(E.3)

where

D∞∥ =
Da
ξ2 , c∥ = ϵ2

8k2 ,

or equivalently, by dropping additional higher order terms of ϵ, we have

Da − D∞
∥

D∞
∥ ≃ 1

2w0
2k2 ∼

w0
2

λ2 , c∥ ≃ 1
128w0

4k2 ∼
w0

4

λ2 . (E.4)

In other words, at fixed w0, the longer the wavelength, the closer the D∞
∥  is to the free Da, 

and the smaller the c∥.

To validate the 1/t-dependence of axial diffusivity due to undulations in Eq. (E.3) and Eq. 

(E.4), we performed MC simulations in undulating axons with a constant radius r = 0.5 μm 

along axons. Each axon in the first setting has a 1-harmonic undulation with the wavelength 
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λ = 16 μm and amplitudes w0 = 0.7, 1.05, 1.40, 1.75, and 2.10 μm, respectively (Fig. E.1a), 

and each axon in the second setting has a 1-harmonic undulation of the amplitude w0 = 0.7 

μm and wavelengths λ = 2π/k = 8, 12, 16, 24, and 48 μm, respectively (Fig. E.1b). The 

above fibers yield ϵ ≃ 0.002 – 0.17 < 1. where taking only the first few terms of ξ(ϵ) is a 

good approximation. For each run, 2 × 107 random walkers diffuse within each axon with 

the same parameters settings as in the narrow pulse regime in the main text, except for the 

implementation of elastic collisions. The simulated axial diffusivity D∥(t) has a tiny 1/t-
dependence (< 0.2% and < 0.07% diffusivity change at t = 20 – 100 ms in Fig. E.1c and d 

respectively), as predicted in Eq. (E.3).

While the 1-harmonic model assumed zero axon radius, in our MC simulations the radius 

was of the order of the undulation amplitude. It turns out that the effect of the finite radius 

was not negligible. Empirically, based on our MC simulations (Fig. E.1e), we find that the 

“interference” of the undulation amplitude w0 and axon radius r is best dealt with by shifting 

w0 w0 ≃ w0 + r in Eq. (E.4) (one can rationalize that finite radius makes the maximal 

deviation from axon axis more pronounced by about ~ r). The above fibers for simulations 

(Fig. E.1a-b) yield ϵ ϵ ≡ (w0k ∕ 2)2 ≃ 0.006 − 0.26 < 1, where taking the first few terms of 

ξ(ϵ) ξ(ϵ ) is still a reasonable approximation.

We also note that the characteristic 1/t-dependence of axial diffusivity in Eq, (E.3) (and the 

exponential one for the corresponding Dinst(t)) is caused by the 1d periodic restrictions of 

the 1-harmonic undulation along the axon. For an undulating axon composed of randomly 
placed undulations (e.g., harmonics with randomly varying phases), one expects a diffusivity 

1 ∕ t‐dependence along the axon (Novikov et al., 2014).
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Fig. 1. 
(a) Realistic microstructure of the intra-axonal space reconstructed from 3d SEM images of 

the mouse brain genu of corpus callosum, and (b) its 3d representation. (c) Segmented IASs 

were aligned along the z-axis to control the orientation dispersion. Only long axons were 

chosen and cropped into 18 μm in length. The mean diameter is ~ 1 μm. The units along x-, 

y-, and z-axis are 0.1 μm. (Adapted from (Lee et al., 2019) with permission from Springer.)

Lee et al. Page 43

Neuroimage. Author manuscript; available in PMC 2021 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Axonal undulation. (a) The axonal skeleton is a curve connecting the center of mass of each 

cross-section along an axon. For a given point on the skeleton (red cross mark), l is the 

axonal length accumulated from an end of the skeleton to the given point. (b) The deviation 

w(l) is the shortest distance from the skeleton to the main axis. (c) The top view of the 

axonal skeleton, the main axis, and the deviation w(l) in (b).
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Fig. 3. 
3d geometries of synthetic axons with randomly positioned beads along z-axis and 

sinusoidal undulations along x- and y-axes. The strength of caliber variation is tuned based 

on the coefficient of variation of the radius CV(r) = 0 – 0.4, and the amplitude of undulation 

is scaled via a factor Au = 0 – 100%. In the narrow pulse limit, diffusivity transverse to 

axons is well approximated by a sum of the independent contributions from pure caliber 

variations (no undulation) and pure undulations (no caliber variation).
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Fig. 4. 
Undulations and caliber variations provide similar contributions to D⊥(t), K⊥(t) and reff in 

the narrow pulse limit: synthetic axons with randomly positioned beads and sinusoidal 

undulations (Fig. 3). (a) Simulated radial diffusivity (RD), D⊥(t), scales as 1/t at long times. 

(b) Effective radius, reff
2  fitted based on Eq. (14a) and simulations, deviates from the 

theoretical prediction 〈r2〉v in Eq. (7) with the consideration of caliber variation only. This 

deviation can be explained by the contribution of axon undulation 〈δw2〉t → ∞ at long times, 

estimated based on the axon skeleton and Eqs. (13) and (15). (c) For the axon with no 

caliber variations and undulations (CV(r) = 0 and Au = 0%, dark blue line in the left panel), 

simulated radial kurtosis (RK), K⊥(t), is constant over time > tD (K⊥ ~ −1/2). For other 

axons, however, K⊥(t) scales as 1/t at long times. Furthermore, RK in t → ∞ limit, K∞ 
fitted based on Eq. (16) and simulations, is consistent with theoretical prediction of Eq. (8) 

when the axon undulation is negligible (Au = 0%, dark blue data points in the right panel).

Lee et al. Page 46

Neuroimage. Author manuscript; available in PMC 2021 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Undulation contribution to D⊥(δ) and reff, WP dominates that of axon caliber variation for 

wide pulses (t = δ): synthetic axons with randomly positioned beads and sinusoidal 

undulations. (a) Simulated RD, D⊥(δ), in axons with caliber variations and undulations 

tuned via CV(r) = 0 – 0.4 and Au = 0 – 100 % respectively. To evaluate the effect of 

undulations on RD, we also simulate in undulating thin axons with no caliber variations. The 

solid lines are fits to the 1-harmonic undulation model in Eq. (24). The black dotted line is a 

reference line ∝ δ−2. (b) For undulating axons (Au > 0%), the effective radius of wide pulse 

sequences, reff, WP estimated based on Eq. (22) and simulations, is much larger than the 

theoretical prediction rcal in Eq. (23) (dark blue dashed line) at long times. (c) The fit 

parameter w0λ of the 1-harmonic undulation model in Eq. (24) is consistent with its 

theoretical value Au(wx2λx
2 + wy2λy

2)1 ∕ 4 in Eq. (30), except for axons with no undulations (Au 

= 0%). (d) Comparison of reff, WP at δ = 1, 10, 100 ms with theoretical predictions in caliber 
regime, rcal in Eq. (23) (dark blue dashed line), and in undulation regime, rund in Eq. (26) 

(solid black line).
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Fig. 6. 
Realistic intra-axonal space, narrow pulse limit: undulations and caliber variations contribute 

similarly, as in Fig. 4. (a-b) Simulated RD and RK, D⊥(t) and K⊥(t), both scale as 1/t at long 

times for most axons. To observe the kurtosis time-dependence, we fitted Eq. (16) to 

simulated K(t) and subtracted the fitted K∞ (RK in t → ∞ limit) from the simulation. (c) 

Effective radius, reff fitted based on Eq. (14a) from the simulations, is larger than theoretical 

predictions in Eq. (7) due to axon undulations, cf. Eq. (15). (d) K∞ fitted based on Eq. (16) 

and simulations, is centered at about −0.2, notably larger (smaller in magnitude) than the 

K∞ = −1/2 for a perfectly straight cylinder. Markers in (c-d) are colored based on the value 

of the coefficient of variation of the radius, Eq. (31). (e) The second-order cumulant due to 

the axonal undulation, 〈δw2〉 in Eq. (13), increases with diffusion time t, and gradually 

approaches a constant at long times. (f) The cumulant 〈δw2〉t → ∞ at long times 

(approximated by the value at t = 200 ms) has a non-trivial contribution to the RD, leading 

to the discrepancy of the effective radius estimation, reff
2 − 〈r2〉v, as predicted by Eq. (15). (g) 

The bias of the effective radius estimate in (c), reff
2 − 〈r2〉v, highly correlates with axon’s 

sinuosity (the linear fit, blue dashed line, yields undulation amplitude λ from Eq. (C.5)). (h) 

The histogram of K∞ based on fitting Eq. (16) to the simulation results, i.e., the values of 

the vertical axis in (d). K∞ for the realistic axonal shapes has an average K∞ ≃ −0.2 (blue 

dashed line), as compared to −1/2 for a perfectly straight cylinder (red dotted line).
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Fig. 7. 
Undulations in realistic axons provide a dominant contribution over the caliber variations to 

reff, WP in the wide-pulse limit, similar to Fig. 5. Simulated results of realistic intra-axonal 

space for the wide pulse pulsed-gradient sequence (t = δ). (a) Simulated RD, D⊥(δ), with 

respect to 1/δ. The data points are simulation results, and solid lines are interpolations solely 

for visualization. The black dotted line is a reference line ∝ δ−2. (b) The effective radius of 

wide pulse, reff, WP estimated based on Eq. (22) and simulations, is larger than theoretical 

prediction solely due to caliber variations, rcal in Eq. (23) practically for all axons (for r < 

0.9 μm), even at very short time δ ~ 1 ms. (c) Simulated D⊥(δ) (data points) fitted to the 1-

harmonic undulation model in Eq. (24) (solid lines). The black dotted line is a reference line 

∝ δ−2. (d) At long time δ ~ 100 ms, the estimated reff, WP is consistent with the effective 

radius due to undulations, rund calculated based on Eq. (26) and fit parameters (w0, λ) in Eq. 

(24). And at relatively short time δ ~ 10 ms, the estimated reff, WP is still partly biased due to 

undulations. This result indicates that the axon size estimation is confounded by undulations, 

unless at very short time δ ≲ 1 ms. (e-f) Histograms of fit parameters of 1-harmonic 

undulation model: undulation amplitude w0 and wavelength λ. The blue dashed lines 

indicate their mean values.
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Fig. 8. 
Factoring out the effect of undulations via directional averaging is most efficient at shortest 

times. Simulation results for realistic intra-axonal space and wide pulse sequence (t = δ) 

with strong diffusion weighting b = 16 – 100 ms/μm2. (a-c) The directionally averaged 

diffusion signal Si of individual axon scales roughly as 1 ∕ b at high b-values for most 

axons. The fit of the full functional form in Eq. (27) to simulated signals yields the estimate 

of diffusivities along and transverse to axons, Da and D⊥ respectively. (d) The fitted 

diffusivity along axons, Da, is smaller than the intrinsic diffusivity D0. (e) The fitted 

diffusivity transverse to axons, D⊥, is small with unphysical negative values in about half of 

axons. (f) Individual axon’s effective radius of wide pulse, reff, WP estimated based on Eq. 

(22) and positive values of D⊥ in (e), is larger than the theoretical prediction rcal in Eq. (23). 

(g) The directionally averaged diffusion signal S of all axons (volume-weighted sum) also 

scales as 1 ∕ b at high b-values. For t/δ = 30/13 ms and 50.9/35.1 ms, the S has positive 

signal intercepts as 1 ∕ b 0, indicating unphysical negative diffusivities D⊥ transverse to 

axons. (h) Effective radius of wide pulse of all axons, reff, WP, is consistent with the 

prediction rcal at short time t/δ = 20/7.1 ms, whereas the corresponding diffusivity Da along 

axons is unexpectedly low. At longer times t/δ = 30/13 ms and 50.9/35.1 ms, the unphysical 
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negative D⊥ (indicated by positive signal intercept as 1 ∕ b 0 in (g)) cannot provides an 

axon size estimation.
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