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Texture analysis is the process of highlighting key characteristics thus providing an exhaustive and unambiguous mathematical
description of any object represented in a digital image. Each characteristic is connected to a specific property of the object. In
some cases the mentioned properties represent aspects visually perceptible which can be detected by developing operators based
on Computer Vision techniques. In other cases these properties are not visually perceptible and their computation is obtained by
developing operators based on Image Understanding approaches. Pixels composing high quality medical images can be considered
the result of a stochastic process since they represent morphological or physiological processes. Empirical observations have shown
that these images have visually perceptible and hidden significant aspects. For these reasons, the operators can be developed by
means of a statistical approach. In this paper we present a set of customized first and second order statistics based operators to
perform advanced texture analysis of Magnetic Resonance Imaging (MRI) images. In particular, we specify the main rules defining
the role of an operator and its relationship with other operators. Extensive experiments carried out on a wide dataset ofMRI images
of different body regions demonstrating usefulness and accuracy of the proposed approach are also reported.

1. Introduction

As it is well known, there is no univocal definition of texture
[1–3]. This is due to the various and heterogeneous aspects
involving the texture analysis process. In particular, two
aspects influence more than other textural detection and re-
cognition approaches: image classification and target defini-
tion. The first is used to classify images as belonging to the
natural domain (e.g., cell movement) or artificial domain
(e.g., gear movement) [4, 5]. Although this discrimination
may seem obvious, it can present ambiguities due to both
kind of image and acquisition method. The second aspect
regards type and detail of the extracted key characteristics to
define different textures. In some cases it could be sufficient to
extract coarse information to highlight macroscopic textural
aspects (i.e., macrotextures) of studied objects. In other cases
it could be necessary to extract more detailed information to
describe microscopic textural aspects (i.e., microtextures)
[6–10]. In our context, we have analyzed MRI images of
organs and tissues (e.g., brain). These images represent the

morphological aspects of biological entities and they belong
to the natural domain [11, 12]. In MRI, the pixels composing
an image can be considered a reliable representation of water
distribution in the body [13, 14], and the obtained images can
be seen as the result of a stochastic process. This last assump-
tion influences the choice of the reference model to be used
for supporting the feature extraction method of the texture
elements. The model is usually implemented by one of the
following three descriptive approaches: statistical, structural,
or hybrid [15–19]. It also includes the theoretical guidelines to
develop the textural operators. The latter represents the core
of the paper that will be detailed in the next section where
the window based top-down image browsing method and
the implementation of the customized first and second order
statistics based operators will be described.

The operators applied on a wide dataset containing in
vivo MRI images were conceived to detect macroscopic and
microscopic textural features supporting a complete and
unambiguous mathematical description. Artifacts in the
treated images could make the texture analysis process
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qualitatively ineffective since macro- and microvariations of
the textural structures are linked to the spatial and contrast
resolution of these images. Fortunately the current MRI
scanners provide high quality images reasonably free from
serious artifacts [20, 21].

Different works in the literature concerning the descrip-
tion of the natural domain by texture analysis processes [22–
28], as well as our preliminary intuitions supported by some
preparatory experimental observations on pixel arrangement
of the MRI images, led us to focus on CV and IU based sta-
tistical operators. These included some operators to estimate
the human visual perception of well-known textural features
(e.g., contrast) and some operators to detect significant
hidden textural features (e.g., entropy). Subsequently, our
approach was refined by studying some remarkable works in
texture analysis ofMRI images. In a first set of works, detailed
in [29–31], the authors described a method to model the
objects contained in the layout of MRI images. After a train-
ing phase on a given image dataset to distinguish different
target objects (e.g., brain mass, background), the approach
was customized to achieve established tasks (e.g., layout
segmentation) supporting a set of suitable Computer Aided
Diagnosis (CAD) functionalities (e.g., mass identification).
Their system architecture was composed of three main
modules. The first (i.e., recognition) performed a feature
extraction process on a set of template images to define
numerical classes able to describe the different target objects
composing the image layout. The second (i.e., classification)
analyzed the source images, using the numerical classes
defined in the previous module, to provide a classification of
the different image zones. Finally, the last (i.e., segmentation)
defined the boundaries between heterogeneous zones and
merged homogeneous ones. Although their method included
a set of statistical operators similar to those used in the
present work, the authors did not produce any adequate
explanation about operator potentiality, limits, and func-
tional characteristics. Moreover, they neither showed any
relationship between operators nor explained rules for their
use. All these last aspects that make possible the reutilization
of the operators to define new tasks on new target objects
are addressed in the present work. Another reference work
is [32], where the ability of the texture analysis in detecting
micro- and macrovariations of the pixel distribution was
described. The authors introduced an approach to classify
multiple sclerosis lesions. Three imaging sequences were
compared in quantitative analyses, including a comparison
of anatomical levels of interest, variance between sequential
slices, and two methods of region of interest drawing. They
focused on the classification of white matter and multiple
sclerosis lesions in determining the discriminatory power
of textural parameters, thus providing high accuracy and
reliable segmentation results. A work in the same direc-
tion is [33]: the concept, strategies, and considerations of
MRI texture analysis were presented. The work summarized
applications of texture analysis in multiple sclerosis as a
measure of tissue integrity and its clinical relevance. The
reported results showed that texture based approaches can be
profitably used as tools of evaluating treatment benefits for
patients suffering from this type of pathology. Another basic

work showing the importance of the texture analysis applied
on the brain is [34], where the authors focused their efforts on
characterizing healthy and pathologic human brain tissues:
white matter, gray matter, cerebrospinal fluid, tumors, and
edema. In their approach each selected brain region of inter-
est was characterized with both its mean gray level values and
several texture parameters. Multivariate statistical analyses
were then applied to discriminate each brain tissue type
represented by its own set of texture parameters.Thanks to its
rich morphological aspects, not only brain can be widely
studied through texture analysis approaches but also other
organs and tissues where they can appear less noticeable. In
[35] the feasibility of texture analysis for the classification
of liver cysts and hemangiomas on MRI images was shown.
Texture features were derived by gray level histogram, cooc-
currence and run-length matrix, gradient, autoregressive
model, and wavelet transform obtaining results encouraging
enough to plan further studies to investigate the value of
texture based classification of other liver lesions (e.g., hep-
atocellular and cholangiocellular carcinoma). Another work
following the same topic is [36], where a quantitative texture
feature analysis of double contrast-enhanced MRI images
to classify fibrosis was introduced. The approach, based
on well-known analysis software (MaZda, [37]), was imple-
mented to compute a large set of texture parameters for
each image.A statistical regularization technique, generalized
linearmodel path, was used to define an effectivemodel based
on texture features for dichotomous classification of fibro-
sis category. Different texture analysis approaches for liver
segmentation and classification are reported in [38].Thework
treated images coming from MRI as well as other imag-
ing modalities (e.g., ultrasound) to support complete liver
description to allow specific algorithms development to solve
different diagnostic tasks. Studies similar to those carried out
on brain and liver are increasingly performed on the heart to
investigate its patterns and structures. For example, in [39] a
method for automating the myocardial contours identifica-
tion to optimize the detection and the tracking of the grid
of tags within myocardium was presented. Endocardial and
epicardial contours detection was based on the use of tex-
ture analysis and active contours models. In particular, the
authors adopted the texture analysis to define energy maps
supporting the whole segmentation process, and the results
were very promising. A similar work was proposed in [40],
where the authors described a dynamic texture based motion
segmentation approach to address the challenging problem
of heart localization and segmentation in 4D spatiotemporal
cardiac images. The method introduced time-dependent
dynamic constraints intomodel based segmentation, with the
advantage of producing segmentation results both spatially
and temporally consistent. Another interesting method
focused on heart characteristics was described in [41], where
an automatic segmentation of the left ventricle in 2D tagged
MRI images based on contrast enhancement was presented.
The method applied histogram modification and local con-
trast enhancement for improving contrast between tagged
lines and nontagged tissue. The ventricular blood filled and
tagged regions were isolated by subtracting gray minimum
from maximum within a small window. In this context,
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wide feature values represented textured regions, and small
values highlighted homogeneous ones, respectively. Finally,
boundaries of the left ventricle were extracted. A last case
study is focused on bone structures that more than others
seem to present hidden and weak textural patterns. In [42]
an approach to assess the ability of specific texture parameters
to detect exercise load-associated differences in MRI images
representing the neck cross-section was presented. In par-
ticular, the femoral neck trabecular bone at the level of the
insertion of articular capsule was divided manually into
regions of interest representing four anatomical sectors:
anterior, posterior, superior, and inferior. Selected cooccur-
rence matrix based texture parameters were used to evaluate
differences in apparent trabecular structure between the
exercise loading groups and anatomical sectors of the femoral
neck. The reported results showed qualitative and quan-
titative evaluations in detecting and classifying structural
differences in trabecular bone associated with specific exer-
cise loading. Another remarkable work was [43], where the
authors described a unified framework for automatic seg-
mentation of intervertebral disks of scoliotic spines from
different types of magnetic resonance image sequences.Their
method exploited a combination of statistical and spectral
texture features to discriminate closed regions representing
intervertebral disks from background in acquired images of
the spine. A set of texture features were extracted from every
closed region obtained from an automatic segmentation
procedure based on the watershed approach. The authors
validated their approach by using a supervised k-nearest-
neighbor classifier on a wide number of images. A final work
on this topicwas [44], where amethod for automatic segmen-
tation of the tibia and femur in clinical magnetic resonance
images of knees was presented. The texture information was
incorporated into an active contours framework through the
use of vector-valued geodesic snakes with local variance as a
second value at each pixel, in addition to intensity. The use
of this additional information allowed to develop a system to
better handle noise and nonuniform intensities found within
the structures to be segmented. Besides those mentioned,
other works [45–49] were focused on the texture analysis on
medical images to accomplish heterogeneous tasks; among
these we considered only approaches related to four specific
anatomical regions (brain, heart, liver, and bones) since they
represented the images onwhichwe used the customized first
and second order statistics based operators. Unlike the works
cited above that adopted texture analysis to achieve specific
targets (e.g., lesion detection, mass classification, and 3D
reconstruction), our intent was to provide a set of customized
first and second order statistics based operators to support the
definition of any new task. We designed a general purpose
texture analysis approach to evaluate the behavior of each
operator on the established medical domains. In addition,
having each operator a different numerical feedback when
applied on images belonging to a specific domain, we defined
some main rules specifying the role of an operator and its
relationship with others in distinguishing different textural
aspects. For all these reasons, our approach is not directly
comparable with others since any work regarding roles and
rules of operators is given. Moreover, our method to extract

textural features can be considered novel with respect to the
current state of the art.

The paper is structured as follows. Section 2 details the
proposed texture analysis process, including the first and
second order statistics based operators. Information about
their potentiality, limits, and functional characteristics are
also reported. Section 3 summarizes and discusses the exten-
sive experimental results showing the application of each
operator on MRI images of brain, heart, liver, and bones.
Finally, Section 4 concludes the paper.

2. Materials and Methods

This section details the designed texture analysis process.The
mentioned process is the same on each established type of
image (i.e., brain, heart, liver, and bones), where only the
definition of some parameters has to be adjusted depending
on both the specific type of image (e.g., brain or heart) and the
fixed targets (e.g., brain mass or heart lesions identification).
Being different targets heterogeneous and hugely numerous,
our purpose is to provide a guideline onwhy and how to adopt
the developed method and related operators without a spe-
cific case study. In the rest of the paper, we suppose that every
image (e.g., brain) is analyzed by our approach in a supervised
way in order to study the numerical feedback of each operator
according to different constitutive parts of the image (e.g.,
background, cerebral tissue, on skull).This step is fundamen-
tal since it leads the segmentation activity, the basic process
to support each complex task in biomedical image analysis
[50, 51].

Each image is entirely browsed by a window (recognition
window, RW) of fixed size (i.e., 𝑛

𝑎
×𝑛
𝑏
, 𝑛
𝑎
, 𝑛
𝑏
∈ 𝑁), in top-to-

down and left-to-right way without overlapping. It is impor-
tant to note that any other non-overlapping browser strategy
would give the same results. The size of the window can
change depending on the specific target, the type of the image,
and its spatial resolution. The first aspect points out that
the patterns associated to different textural analysis processes
(e.g., ventricular lesion discovery, semilunar valve identifica-
tion) on a given dataset of images (e.g., heart) can be detected
by a suitable set of operators trained to identify different pixel
configurations. The second highlights that the study of the
micro- and macrotextural components depends on the spe-
cific organ or tissue. Finally, the last aspect draws attention to
the relationship between the scanning window and the image
spatial resolution. Our approach is conceived to face the first
two aspects, while in the experimental section (Section 3)
we show the image technical characteristics and the related
assumptions for the browsing window size.

Each RW contains a set of pixels (i.e., 𝑝
𝑖
) elaborated from

the whole set of functions (i.e., operators: 𝑓
𝑖
) to provide a

corresponding set of numerical values (i.e., 𝑄
𝑗,𝑓
𝑖

), each one
representing a characterization of the mentioned pixels
depending on the adopted operator (see the next subsection).
Formally, we can summarize the general operation of the
developed functions as follows:

𝑄
𝑗,𝑓
𝑖

= 𝑓
𝑖
(𝑝
0
, 𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
) , (1)
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Figure 1:The source image is browsed by the operator𝑓
𝑖
to obtain the related feature map FM

𝑓𝑖
.Themap is subsampled as each RWprovides

a pixel as result. In the example the source image is analyzed by 64 RW thus providing a subsampled 8 × 8 image.

where 𝑄
𝑗,𝑓
𝑖

∈ 𝑁
3 represents the new pixel 𝑗 ∈ 𝑁 of the new

image (i.e., feature map, FM
𝑓𝑖
) depending on the function 𝑓

𝑖
.

The pixel is structured in (𝑥, 𝑦, 𝑧) ∈ 𝑁
3 where (𝑥, 𝑦) ∈ 𝑁

2

sets the spatial position of the pixel, while 𝑧 ∈ 𝑁 sets the
amplitude value. 𝑓

𝑖
: 𝑁
𝑛

× 𝑁 represents the operator 𝑖 ∈ 𝑁

with domain in 𝑁
𝑛 and codomain 𝑁, and 𝑛 ∈ 𝑁 represents

the number of elaborated pixels (i.e., pixels contained in RW).
𝑝
𝑖
∈ 𝑁
3 represents a pixel contained in the RW having the

same structure of 𝑄
𝑗,𝑓
𝑖

.
As shown in Figure 1, the elaboration of each source

image provides a subsampled FM
𝑓𝑖
. The numerical values

contained in this new map represent the behavior of the
operator 𝑓

𝑖
in processing the different pixel configurations

belonging to the different constitutive parts of the image. By
performing this operation on the whole dataset of images, we
obtain an equal number of subsampled images (i.e., feature
space, FS

𝑓𝑖
) related to the operator 𝑓

𝑖
; furthermore, following

the same method, we can obtain the feature space related
to each specific operator (FS

𝑓1
, FS
𝑓2
, . . . , FS

𝑓𝑚
, 𝑚 ∈ 𝑁).

These spaces suitably managed and interpreted represent
the basic statistical information to implement an ad hoc
mathematical model to achieve different targets (e.g., brain
mass identification). We adopt the pyramid based texture
analysis approach [52, 53] (i.e., subsampling strategy) to avoid
redundant values in modeling definition. Despite this, the
proposed approach is fully parametric thus allowing RW
shape and size modification, image browsing process setting
(i.e., with and without overlap), and number of the pyramidal
levels choice. In Section 3 we detail and fix the whole set of
parameters.

2.1. Operator Implementation. This section shows the CV
and IU textural operators customized after our investigative
experience regarding the established domains: brain, heart,
liver, and bones. Since the browsing process determines the
(𝑥, 𝑦) ∈ 𝑁

2 position of the new pixel within the related
feature map, in the following formalization we can omit it.
Finally, we highlight that the observations related to the
numerical feedback of the operators have to be considered
tied to the established natural domains without general
implications on different kinds of images.

The first two operators we consider are based on the first
order statistic, specifically, 𝑁-order moment (𝑀

𝑛1
) and 𝑁-

order central moment (𝐶
𝑛2
):

𝑀
(𝑛1)

=

𝐿−1

∑

𝑖 = 0

𝑖
𝑛1
⋅ 𝑝 (𝑖) , 𝐶

(𝑛2)
=

𝐿−1

∑

𝑖 = 0

(𝑖 − 𝑀
𝑛1
)

𝑛2

⋅ 𝑝 (𝑖) ,

(2)

where 𝑝(𝑖) represents the probability that the gray level 𝑖 ∈
[0 ⋅ ⋅ ⋅ 𝐿 − 1] appears within the RW, 𝐿 represents the number
of levels of color in the source image, and 𝑛

1
, 𝑛
2
represent the

orders of the𝑀
(𝑛1)

and 𝐶
(𝑛2)

, respectively.
The following constraints must hold:

∀𝑖 ∈ [0 ⋅ ⋅ ⋅ 𝐿 − 1] ⊂ 𝑁, 0 ≤ 𝑝 (𝑖) ≤ 1,

𝐿−1

∑

𝑖 = 0

𝑝 (𝑖) = 1; 𝑛
1
, 𝑛
2
∈ 𝑁.

(3)

Actually, they are not properly textural operators, since
their task is only to measure the informative content of
different image zones. In particular, the first operator (𝑀

(𝑛1)
)

calculates the average of the levels of color related to the pixels
contained within the RW; the second operator (𝐶

(𝑛2)
) mea-

sures the amplitude dispersion that the pixels contained
within the RW have compared to their average (i.e., 𝑀

(𝑛1)
).

The order of the two operators leads the dynamic and the
detail of the obtained numerical values. In our context, these
operators aremainly used to distinguish the backgroundof an
image from the rest of image. In fact, the background image
zones are usually characterized by very low𝑀

(𝑛1)
values and

low 𝐶
(𝑛2)

values. Moreover, these operators are also used
to support the discrimination of regions of interest (ROIs)
which present high 𝑀

(𝑛1)
and very high 𝐶

(𝑛2)
. A last use of

these operators regards the detection of zones belonging to
ROIs and not to background; this generally occurs in those
areas across two different textural zones (e.g., cerebral tissue
and skull) which present low𝑀

(𝑛1)
and high 𝐶

(𝑛2)
.

The rest of the operators introduced in this section are
fully texture based since theywork both on spatial disposition
and amplitude value of the pixels contained within the RW.
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They are based on the Haralick et al. studies [54, 55] which
were oriented to discriminate different meaningful textural
features through the utilization of co-occurrence matrices.
Currently, there are more advanced methods to discover
textural features on natural images [56, 57]; despite this, our
preliminary studies on the established domains have led us
in using the proposed approach which seems completely
suitable and profitable. Experimental results supported our
efforts. Actually, we have adopted a variation of the classical
approach which is designed to detect textural features by
considering only four fixed directions (i.e., 0∘, 45∘, 90∘, and
135∘). As shown in Figure 2, our method considers each pixel
contained within the RW as the center of a discrete circum-
ference whose radius (𝑑) can be freely defined (in Figure 2:
𝑑 = 2). Each pair of points formed by the current central
point and the one located on the perimeter of the circum-
ference will increase the related position within the cooc-
currence matrix. A careful analysis of the numerical results
obtained by this approach allows for obtaining both textural
aspects related to the pixels contained within the RW and
contextual information of the pixels positioned around the
RW. In this way, changing the parameter 𝑑 of the RW, we can
analyze the dynamic of the textural variations in a significant
neighborhood of the RW.

The first two textural operators belonging to the second
order statistic are customized to emulate twomain visual per-
ceptions related to theCVfield [58], specifically, homogeneity
(HG(𝑑)

(𝑛3)
) and contrast (CT(𝑑)

(𝑛4 ,𝑛5)
):

HG (𝑑)
(𝑛3)

=

𝐿−1

∑

𝑖 = 0

𝐿−1

∑

𝑗 = 0

[𝑝
𝑑
(𝑖, 𝑗)]
𝑛3
,

CT (𝑑)
(𝑛4 ,𝑛5)

=

𝐿−1

∑

𝑖 = 0

𝐿−1

∑

𝑗 = 0

|𝑖 − 𝑗|
𝑛4
⋅ [𝑝
𝑑
(𝑖, 𝑗)]
𝑛5

,

(4)

where 𝑝
𝑑
(𝑖, 𝑗) represents the probability that two pixels, with

distance 𝑑, have, respectively, 𝑖 ∈ [0 ⋅ ⋅ ⋅ 𝐿−1] and 𝑗 ∈ [0 ⋅ ⋅ ⋅ 𝐿−

1] amplitude values. 𝑛
3
, 𝑛
4
, and 𝑛

5
represent the parameters

of the generalized HG(𝑑)
(𝑛3)

and CT(𝑑)
(𝑛4,𝑛5)

.
The following constraints must hold:

∀ (𝑖, 𝑗) ∈ [0 ⋅ ⋅ ⋅ 𝐿 − 1]×[0 ⋅ ⋅ ⋅ 𝐿 − 1] ⊂ 𝑁
2

, 0 ≤ 𝑝
𝑑
(𝑖, 𝑗) ≤ 1,

𝐿−1

∑

𝑖 = 0

𝑝
𝑑
(𝑖, 𝑗) = 1, 𝑛

3
, 𝑛
4
, 𝑛
5
∈ 𝑁.

(5)

HG(𝑑)
(𝑛3)

measures the degree of uniformity associated
to the different image zones. It provides high values on those
zones having a high homogeneity level, while low values
denote zones highly disconnected, as well as zones containing
different textures. By comparing numerical values of adjacent
image zones, the operator can measure the changing of tex-
tural structures covering a portion of an image. In particular
high or low variations of the analyzed image zones reflect
light or wide changes in textural structures, respectively.
The results obtained from the described operator are highly
dependent on the setting of the radius 𝑑 since in natural

domains, including the established ones, the uniformity is
a characteristic with rapid changes depending on the local
pixel distribution. Finally, the parameter 𝑛

3
serves to define

the dynamic of the obtained results: it has to be customized
according to both image kind and specific target.

CT(𝑑)
(𝑛4 ,𝑛5)

measures the amplitude variation between
different image zones. When applied to textures composed
of pixels with constant intensities (i.e., similar amplitude
values), it provides very low values (CT(𝑑)

(𝑛4 ,𝑛5)
≈ 0). On

the contrary, the operator provides high numerical values on
image zones having high variations of the pixel intensities,
thus reflecting amplitude changes and density transitions.
From a different point of view, this operator can be seen as
a measure of how textural components are structured on dif-
ferent image zones. In fact, the passage between very high and
very low values belonging to different zones reflects a definite
structured pattern while constant values do not show any
significant modification. Also in this case, the value of the
radius 𝑑 influences the result of the operator. This is due to
the possible amplitude variations of the texture. However, the
operator shows significant diversifications only considering
distant radius values. Finally, the parameters 𝑛

4
and 𝑛

5
have

to be experimentally investigated to define the sensibility of
the operator in discovering the structural variations of the
involved patterns.

In our context, HG(𝑑)
(𝑛3)

and CT(𝑑)
(𝑛4 ,𝑛5)

can be seen
as the measure of macrotextural aspects of the MRI images
tied to the visual perception to immediately identify the basic
components contained within the layout of the treated
images.

The other two textural operators belonging to the second
order statistics are customized to determine two hidden
significant features useful to identify both the period and the
size of the involved patterns, specifically, inverse difference
(ID(𝑑)

(𝑛6 ,𝑛7)
) and entropy (ET(𝑑)

(𝑛8 ,𝑛9)
):

ID (𝑑)
(𝑛6 ,𝑛7)

=

𝐿−1

∑

𝑖 = 0

𝐿−1

∑

𝑗 = 0

[𝑝
𝑑
(𝑖, 𝑗)]
𝑛6

1 + (𝑖 − 𝑗)
𝑛7
,

ET (𝑑)
(𝑛8 ,𝑛9)

= −

𝐿−1

∑

𝑖 = 0

𝐿−1

∑

𝑗 = 0

[𝑝
𝑑
(𝑖, 𝑗)]
𝑛8
⋅ [log
𝑘1

(𝑝
𝑑
(𝑖, 𝑗))]

𝑛9

,

(6)

where 𝑛
6
, 𝑛
7
, 𝑛
8
, 𝑛
9
, 𝑘
1
∈ 𝑁 represent the parameters of the

generalized ID(𝑑)
(𝑛6 ,𝑛7)

and ET(𝑑)
(𝑛8 ,𝑛9)

. The other terms are
defined as in (5).

ID(𝑑)
(𝑛6 ,𝑛7)

measures and characterizes the local distri-
bution of pixels within an image zone. The set of numerical
values it provides can be used to define a specific pixel
configuration and its repetitions. In this operator the param-
eters 𝑛

6
, 𝑛
7
, and 𝑑 are adopted to fix experimentally one or

more patterns within the source image by considering their
scale, sizes, and rotations. This operator is conceived to catch
high level of details. For this reason it is suitable to define
microtextural aspects of the analyzed zones.

ET(𝑑)
(𝑛8,𝑛9)

measures the degree of disorder related to
different image zones. Its values are directly proportional to
the randomness level detected within the analyzed zones.
Also in this case the parameters 𝑛

8
, 𝑛
9
, 𝑘
1
, and 𝑑 have to be
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Figure 2:Variation of theHaralick et al. approachwhich considers all the possible directions andnot only the cardinal ones. In the example the
RWcontains 9 pixels; each circumference provides 16 pair of pixels; therefore the current RWprovides 144 values to the co-occurrencematrix.

empirically fixed to support the pattern definition. In par-
ticular, the following strategy provided profitable results to
support the identification of the pixel configuration: start-
ing from image zones having high homogeneity levels
(HG(𝑑)

(𝑛3)
), the behavior of this operator can be analyzed

according to the progressive increments of 𝑑; in this way we
can provide the structural changes of the distribution com-
posing the identified patterns.

In our context, ID(𝑑)
(𝑛6 ,𝑛7)

and ET(𝑑)
(𝑛8 ,𝑛9)

are used to
define the basic features of the microtextural aspects of the
image zones, in particular, to distinguish different significant
textural structures composing the given images (according to
the fixed tasks).

Empirical experiences have allowed us to consider two
other textural operators to support the working of the pre-
vious ones. These operators do not have a specific meaning:
they are utilized to increase the detail and the reliability
of the proposed second order statistics based operators,
specifically, correlation (CR(𝑑)

(𝑛10 ,𝑛11)
) and difference entropy

(DE(𝑑)
(𝑛12 ,𝑛13)

):

CR (𝑑)
(𝑛10 ,𝑛11)

=

𝐿−1

∑

𝑖 = 0

𝐿−1

∑

𝑗 = 0

(𝑖 − 𝜇
𝑥
) ⋅ (𝑖 − 𝜇

𝑦
) ⋅ [𝑝
𝑑
(𝑖, 𝑗)]
𝑛10

[𝜎
𝑥
⋅ 𝜎
𝑦
]

𝑛11
,

DE (𝑑)
(𝑛12 ,𝑛13)

= −

𝐿−1

∑

𝑖 = 0

[𝑝
𝑥−𝑦

(𝑖)]

𝑛12

⋅ [log
𝑘2

(𝑝
𝑥−𝑦

(𝑖))]

𝑛13

,

(7)

where 𝑛
10
, 𝑛
11
, 𝑛
12
, 𝑛
13
, 𝑘
2

∈ 𝑁 represent the parameters
of the generalized CR(𝑑)

(𝑛10 ,𝑛11)
and DE(𝑑)

(𝑛12 ,𝑛13)
. The other

terms are defined as in (5). Moreover

𝜇
𝑥
=

𝐿−1

∑

𝑖 = 0

𝐿−1

∑

𝑗 = 0

[𝑖 ⋅ (𝑝
𝑑
(𝑖, 𝑗))] ,

𝜎
𝑥
= √

𝐿−1

∑

𝑖 = 0

𝐿−1

∑

𝑗 = 0

[(𝑖 − 𝜇
𝑥
)
2

⋅ (𝑝
𝑑
(𝑖, 𝑗))],

𝜇
𝑦
=

𝐿−1

∑

𝑖 = 0

𝐿−1

∑

𝑗 = 0

[𝑗 ⋅ (𝑝
𝑑
(𝑖, 𝑗))] ,

𝜎
𝑦
= √

𝐿−1

∑

𝑖 = 0

𝐿−1

∑

𝑗 = 0

[(𝑗 − 𝜇
𝑦
)

2

⋅ (𝑝
𝑑
(𝑖, 𝑗))],

𝑝
𝑥−𝑦

(𝑘) =

𝐿

∑

𝑖 = 0

𝐿

∑

𝑗 = 0

[𝑝
𝑑
(𝑖, 𝑗)]
𝑞

, where 



𝑖 − 𝑗





= 𝑘.

(8)

CR(𝑑)
(𝑛10 ,𝑛11)

and DE(𝑑)
(𝑛12 ,𝑛13)

are mainly used to recog-
nize relationships between near RWs and different discovered
patterns, respectively. In other words, the first can be used
to identify spatial constraints of RWs composing the same
pattern, while the second can be adopted to determine the
spatial constraints of different textural patterns.

In this context, it is important to note that the whole set of
operators have different degrees of dependence. This means
that the results of each operator have to be considered jointly
with those provided from the others. A single operator is only
able to describe the general features of a complex texture. To
identify more patterns, different textural aspects have to be
adopted within the same mathematical model. Table 1 shows
the dependence between operators which can be considered
as a general guideline to adopt the customized set of textural
operators to implement specific tasks related to the estab-
lished domains. With reference to the first row of Table 1, we
can observe that the operator 𝑀

(𝑛1)
is strongly joint to the

operator 𝐶
(𝑛2)

; this means that they have to be jointly
evaluated to provide a reliable numerical result. Subsequently,
the other dependent levels highlight the order by which the
values coming from 𝑀

(𝑛1)
have to be compared with those

provided from the other operators. This approach is aimed at
refining the obtained results. When two or more operators
have similar dependent level, the choice is empirically per-
formed according to the specific task. The other rows can
be interpreted in the same way. Finally, we highlight that
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Table 1: Relationship between the customized first and second order statistics based operators. The value from 1 (low) to 4 (high) points out
the dependence level between two operators.

Operators 𝑀
(𝑛1)

𝐶
(𝑛2)

HG(𝑑)
(𝑛3)

CT(𝑑)
(𝑛4,𝑛5)

ID(𝑑)
(𝑛6 ,𝑛7)

ET(𝑑)
(𝑛8,𝑛9)

CR(𝑑)
(𝑛10 ,𝑛11)

DE(𝑑)
(𝑛12 ,𝑛13)

𝑀
(𝑛1)

⋅ ⋅ ⋅ 4 3 3 2 2 1 2

𝐶
(𝑛2)

4 ⋅ ⋅ ⋅ 2 3 2 3 2 2

HG(𝑑)
(𝑛3)

3 2 ⋅ ⋅ ⋅ 4 3 3 1 1

CT(𝑑)
(𝑛4,𝑛5)

3 3 4 ⋅ ⋅ ⋅ 3 2 2 2

ID(𝑑)
(𝑛6 ,𝑛7)

2 2 3 3 ⋅ ⋅ ⋅ 4 3 2

ET(𝑑)
(𝑛8,𝑛9)

2 3 3 2 4 ⋅ ⋅ ⋅ 3 3

CR(𝑑)
(𝑛10 ,𝑛11)

1 2 1 2 3 3 ⋅ ⋅ ⋅ 4

DE(𝑑)
(𝑛12 ,𝑛13)

2 2 1 2 2 3 4 ⋅ ⋅ ⋅

the results summarized in Table 1 are derived by analyzing the
behavior of the operators on the established domains accord-
ing to the segmentation task. For this reason, they can be
adopted as general guidelines on each defined new task.

3. Results and Discussion

In order to define qualitative and technical aspects of the
proposed approach, experimental results were obtained from
a wide dataset containing images of brain, heart, liver, and
bones. In particular, the experimental phase was divided into
three sessions: basic parameter definition, model parameter
definition, and qualitative response. The first served to iden-
tify the basic parameters through which the source images
had to be browsed; the second focused on the parameter
definition of each first and second order statistics based
operator according to a specific natural domain; finally, the
third focused on the qualitative aspects of the approach with
respect to a specific basic task (i.e., segmentation). All the
experimental sessions were performed usingMRI transversal
𝑇
1
weighted, 𝑇

2
weighted, and proton density (PD) images

having 8 bit (i.e., 𝐿 = 256) and 512 × 512 pixels.

3.1. Basic Parameter Definition. Table 2 summarizes the pre-
liminary analysis which supported the definition of several
critical parameters of the proposed approach. We used 110
images, collected by 41 different patients suitably subdivided
within the four natural domains. As previously mentioned,
we have focused on the segmentation task since it represents
the basic step of the image processing. Dimension and shape
of the RW represent crucial aspects. An RW too wide causes
the loss of textural details; an RW too small is unable to
detect textural features. On each image both variance (i.e.,
𝐶
2
) and basic entropy (i.e., ET(2)

(2, 3)
) values of the pixel

distribution were empirically evaluated with the aim of
maximizing them and at the same time minimizing the RW.
These observations have shown that a square RW sized 6 × 6

pixels can provide the best solution to catch the micro- and
macrotextural aspects from all studied domains. In some
cases, when noise and low information occur within specific
image zones, it can be useful to enlarge or decrease (of
one unit) the RW size. Moreover, these observations have
also highlighted that the image browsing can be performed
in conventional mode (i.e., top-to-down and left-to-right)

without overlapping, while maintaining the integrity of the
extracted textural information content. Only in some cases,
regarding bones (in particular, the hand) it can be necessary
to browse the image with an overlapping strategy to infer
information about structures and patterns. For the same
reasons, overlapping strategy can be applied on images having
very low textural variations. In this experimental session we
obtained both base (𝐿

0
) and first (𝐿

1
) pyramidal levels. The

base level was considered to analyze variance and entropy
values, while the first level was exploited to support the defini-
tion of image zones having low information content. Finally,
we have also deduced that the usefulness of the first level is
directly proportional to dynamical aspects of the involved
textures. In fact, in brain and heart images which have
high variation of the textural structures, the first level of the
pyramid can provide distinguishing information than liver
and bone images which have textural structures less complex
and heterogeneous.

3.2. Model Parameter Definition. Table 3 summarizes the
parametric definition of the first and second statistics based
operators which define our statistical model. We used 380
images, collected by 160 different patients. Also in this case,
the images were suitably subdivided within the four natural
domains. In this session we analyzed different patients (and
related images) from the previous ones with the aim of
obtaining a more objective investigation. Moreover, this
session was implemented by developing an ad hoc machine-
learning supervised algorithm [59] able to highlight the
differences of the numerical feedbacks provided by the set of
operators during the analysis process. Initially, each param-
eter of each operator was fixed to 1 in order to obtain an
initial state of the algorithm. Subsequently, a skilled user
modified variance (i.e.,𝐶

2
) and basic entropy (i.e., ET(2)

(2, 3)
)

values to identify the different image zones having the
highest numerical feedbacks. Starting from these values the
skilled user implemented a feature vector composed of all
operators. The parameters contained within the vector were
methodically increased or decreased to produce different
feature spaces useful to perform the current task (in this case,
segmentation). In other words, the skilled user modified, in
a supervised way, the parameters contained within the vector
taking into account the role and dependence table (Table 1)
of each operator. The main aim of the parameter variation
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Figure 3: Qualitative response on (a) brain, (b) heart, (c) liver, and (d) bone.

was to increase the numerical feedback of the textural
operators decreasing the variation among “independent” (or
less dependent) operators. Once several feature spaces were
computed (i.e., states of the algorithm), the approach pro-
vided a final set of numerical intervals. These intervals can
be considered as themathematicalmodel describing the fixed
task. In particular, each object contained within the layout of
an image can be defined by a specific set of numerical values
obtained by considering the whole set of operators and
related variations due to the different parameters. Despite the
large amount of parameters shown in Table 3, just a minor
part of them with a restricted set of values define the main
features of the objects. For example, the discrimination of the
background from the informative content is almost always
performed by using 𝑀

(𝑛1)
and 𝐶

(𝑛2)
with 𝑛

1
= 1 and 𝑛

2
= 2,

respectively. The other values are used to solve particular
cases due to noise or artifacts. Similarly, the radius adopted
to the different operators to describe the related textural
features is almost always fixed on 𝑑 = 2 and 𝑑 = 3; the
other values are used to solve particular issues tied to the
boundary detection of two different textural zones. However,
the whole set of parameters shown in the Table 3 can be
considered as a guideline to implement and customize mul-
tipurpose operators. Finally, we observe that when a skilled

user defines a new task (e.g., mass detection) on a well-
established domain, (e.g., brain) a new training stage has to be
performed to define the new reference mathematical model.

3.3. Qualitative Response. Figure 3 summarizes the qualita-
tive response of the proposed approach in relation to the
assigned basic task: the segmentation. In order to obtain com-
parable results independently of the specific natural domain,
the set of images was chosen according to some simple
morphological rules: (a) high stationarity of the texture, (b)
substantial availability of the target objects, and (c) avoiding
ambiguities related to the transition of different objects. All
these aspects can be reasonably satisfied considering images
belonging to “middle” transversal scanner planes where
organs and tissues represent a wide portion of the whole
image (not less than 20%).We report four graphics (Figure 3)
representing the qualitative ratio between the pixels belong-
ing to the real objects and the ones belonging to the seg-
mented objects. In particular, Figures 3(a), 3(b), 3(c), and 3(d)
represent the qualitative measurements of the brain, heart,
liver, and bones, respectively. Note that while the abscissa
in the first three cases represents the increasing amount of
objects due to the transversal scanning plan, in the last case it
represents the amount of objects due to a supervised choice
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of the images. The four figures show that the segmentation
error (over and/or under segmentation) is less than 8% on the
whole set of images by using the same set of operators.

4. Conclusion

Texture analysis of MRI images supports their exhaustive
and unambiguous mathematical description.The base of this
process is composed of a set of feature extractors to detect the
key characteristics related to the objects contained within the
image layout. These characteristics change depending on the
established task (e.g., volume evaluation, lesions identifica-
tion); despite this, our parametric approach designed for spe-
cific MRI images (i.e., brain, heart, liver, and bones) and the
developed set of customizable textural operators can jointly
provide a numerical interpretation of the images according
to the specific task.This numerical interpretation represents a
tool to describe differentmodels to implement heterogeneous
CAD functionalities (e.g., mass identification). To prove the
usefulness and the accuracy of the proposed approach, we
have fixed and tested the segmentation task on the analyzed
domains; these experimental sessions allowed providing a set
of information (i.e., roles, rules, and dependences) on the
developed operators which can be used as guidelines to
implement new tasks and CAD functionalities.
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