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Abstract

The outbreak of acute respiratory disease in 2019, namely Coronavirus Disease-2019 (COVID-19), has become an
unprecedented healthcare crisis. To mitigate the pandemic, there are a lot of collective and multidisciplinary efforts in
facilitating the rapid discovery of protein inhibitors or drugs against COVID-19. Although many computational methods to
predict protein inhibitors have been developed [1–5], few systematic reviews on these methods have been published. Here,
we provide a comprehensive overview of the existing methods to discover potential inhibitors of COVID-19 virus, so-called
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). First, we briefly categorize and describe computational
approaches by the basic algorithms involved in. Then we review the related biological datasets used in such predictions.
Furthermore, we emphatically discuss current knowledge on SARS-CoV-2 inhibitors with the latest findings and
development of computational methods in uncovering protein inhibitors against COVID-19.
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Introduction
Since the first instance of the new coronavirus, Coronavirus
Disease-2019 (COVID-19), was uncovered in Hubei Province,
China in December 2019, there have been approximately
18 months after turning the local pandemic into the global
one. As of 8 June 2021, a total of about 174 million people were
infected by COVID-19, including over 3 870 000 deaths worldwide
[6]. The pandemic has devastating consequences not only on
humans lives but also on the global economy, including more
than 8.5 trillion US dollars lost in 2020 and 2021 [7, 8]. Therefore,
there is an urgent need to control the pandemic by accelerating
the development or production of effective drugs against severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
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According to the previous studies [9, 10], SARS-CoV-2 is the
single-stranded enveloped RNA virus with a symmetrical nucle-
ocapsid. The viral genome of SARS-CoV-2 is highly similar to
those of SARS-CoV and MERS-CoV [11], whose outbreaks hap-
pened within two decades in China and Saudi Arabia, respec-
tively. Hence, the drugs or inhibitors designed for SARS-CoV
and MERS-CoV were considered to be applied for SARS-CoV-2 as
well. For example, SARS-CoV enters into the target cells through
the structure spike (S) protein by binding to the angiotensin-
converting enzyme 2 (ACE2) receptor [10]. The conservation of
spike protein of SARS-CoV-2 suggests that the same interac-
tion between the spike protein and the ACE2 receptor would
be remained during the processing of inflection. In addition,
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other small molecules can be potential targets that play crit-
ical roles in viral genome replication and gene transcription,
e.g. RNA-dependent RNA polymerase (RdRp), or cleavage and
activation of the spike protein to enter the host genome and
assist genome replication, e.g. type 2 transmembrane serine
protease (TMPRSS2). They also keep the similar conservative
characteristics among SARS-CoV, MERS-CoV and SARS-CoV-2.

Regardless of their unknown side effects, effective vaccines
have been developed against the SARS-CoV-2 infection, like
BioNTech vaccine (from Germany), Moderna vaccine (from the
USA), Sinopharm vaccine (from China) and AstraZeneca vaccine
(from Britain) [12]. Among them, messenger RNA (mRNA)-
based vaccines are a relatively novel technology that remained
to be further proven. Both available mRNA-based vaccines,
Moderna and BioNTech, encode the spike protein of SARS-CoV-
2 binding with the ACE2 receptor. But the SARS-CoV-2 virus
has mutated frequently during its evolution and transmission
[13, 14], resulting in genetic variations in the population of
circulating viral strains throughout the COVID-19 pandemic.
Until June 2021, multiple major variants of SARS-CoV-2 have
dominated the world, e.g. Alpha virus (found in England), Beta
virus (found in South Africa), Delta virus (found in India), [15].
Variants of SARS-CoV-2 have different characteristics, leading to
unknown efficacy of the existing vaccine against the mutated
virus [16]. Hence, design of inhibitors or drugs for specifically
mutated SARS-CoV-2 is still necessary and challengeable.
Figure 1 presents the timeline of major events related to the
SARS-CoV-2 outbreak and vaccine development during 2020 and
2021 until 30 June 2021.

Compared with the traditional drug/inhibitor design process
which is time-consuming and costly, computational methods for
drug/inhibitor design are highly efficient to predict or identify
potential molecules for the disease treatment [17]. Thus, the
computer-aided approaches have great potentials for rapidly
designing drugs or vaccines for mutated SARS-CoV-2. In the
past months, there were several small molecules identified as
potential inhibitors targeting SARS-CoV-2, even though more
experimental validations are needed on the molecular targets.
Among the molecular targets of SARS-CoV-2, main protease
(Mpro) or 3-chymotrypsin-like protease (3CLpro) [18], structure
proteins (e.g. spike protein), and nonstructure proteases, such
as RdRp, and helicase [19], are highly conserved as well as
essential to the viral life process. The structural information
and functional roles of these major molecular targets against
SARS-CoV-2 are summarized in Table S1 in the supplementary
material.

We will start the review with diverse computational methods
for drug and inhibitor design, followed by detailed descriptions
and discussions on the findings of multiple enzymes as valid
targets for potential inhibitors to treat coronaviruses diseases.

Insights to the Computer-Aided Drug Design
Computer-Aided Drug Design (CADD) emerged as an efficient
method to uncover potential lead compounds and aiding the
development of possible drugs for a wide range of diseases
based on the knowledges collected by huge compound libraries
[20]. Typically, CADD has three types of approaches, including
structure-based drug design (SBDD), ligand-based drug design
(LBDD) and virtual screening (VS). Furthermore, machine
learning-based drug design (MLDD) has been widely applied with
the rapid development of computer science communities [21,
22]. Herrin, we will provide a brief summary of CADD approaches
and related databases as seen in Figure 2.

Structure-based drug design

With the development of chemical biology and structural biology
technology, the structural information of more and more drugs
has been uncovered, providing essential elements for SBDD.
Depending on the 3D structure of targets (proteins), such as X-
ray crystallography or NMR spectroscopy, SBDD method predicts
the potential interaction by evaluating the strength of the bind-
ing force between small molecule compounds and targets with
the known structure. Molecular docking, a molecular modeling
technique as the most basic method in SBDD, allows exhaustive
search for the most suitable binding conformation of small
molecules in the binding pocket of the protein. The framework of
molecular docking is a search algorithm in which the ligand con-
formation is computed recursively until it converges to the low-
est energy. It can effectively determine the ligand molecules that
match the spatial and electrical characteristics of the active sites
of the target receptors. At present, molecular docking plays an
increasingly important role in SBDD [23]. Some common molec-
ular docking software are listed in Table S2, including AutoDock
[24], AutoDock Vina [25], AutoDockFR [26], ZDOCK [27], Glide [28],
Flare [29], Induced Fit [30], MolDock [31] and M-ZDOCK [32].

Ligand-based drug design

However, the 3D structures of some drug targets have not
been resolved successfully. For such cases, people developed
another approach for direct drug design, LBDD, by taking
advantage of existing compounds with known biological
activities then establishing the relationship between query
molecules and the bioactive molecules. In general, LBDD first
converts the molecular structure into digital descriptors from a
constructed database, e.g. molecular fragments, physiochemical
properties, topology and pharmacophores, then generates the
relationship between the molecular activities and constructs
these descriptors by specific design models. The new drug
molecules can be predicted or designed based on proper
statistical methods, whereas their possible targets can be
inferred from the bioactive molecules having high chemical
affinities with the query. In addition to two common LBDD
methods, quantitative structure–activity relationship (QSAR)
and pharmacophore model [33], other popular LBDD-based
software and their corresponding information are listed in
Table S3, including McQSAR [34], SYBYL-X [35], TOPS-MODE [36],
LigandScout [37], PLIP [38], FindSite-metal [39], CORAL [40].

Virtual screening

VS is another technique that uses a high-performance computer
to analyze large databases of compounds to identify potential
drug candidates that bind well to known structural targets [22].
There are two specific strategies for VS: receptor structure-based
and ligand similarity-based. Despite different detailed strategies
in the VS, the following four steps are essential: (i) preparing tar-
get protein and compound database; (ii) docking the molecules
in the molecular library with the target one by one; (iii) obtaining
a reasonable binding mode according to scores of the binding
modes between small molecule and target, then evaluating the
binding strength; (iv) purchasing selected preranked screened
compounds followed by the activity tests.

The whole VS process can be carried out on computers by
indexing the structures of compound molecules in the database
instead of purchasing and testing the real compound molecules
before the selection. Obviously, VS method is more convenient,
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Figure 1. Major events about the SARS-CoV-2 outbreak, transmission, and SARS-CoV-2 vaccine development during 2020 and 2021 until 30 June 2021.

cost efficient and quicker, compared to the experimental syn-
thesis. Table S4 lists some common VS tools with brief introduc-
tions, e.g. PyRx [41], LiSiCA [42], MTiOpenScreen [43], iScreen [44],
DockThor [45], GOLD [46], FlexX-Scan [47].

Machine learning-based drug design

Machine learning (ML) is an advanced data analysis method
to improve the model automatically through the learning pro-
cess from data and patterns [48]. ML technologies have been

widely used in many fields, such as computer vision [49–51],
natural language processing [52–55] and bioinformatics [56–60].
MLDD adopts various algorithms, such as recursive partition-
ing, support vector machine (SVM), k-nearest neighbors and
neural networks [61–63], to investigate the activities of com-
pounds against a target before the clinical trials [64, 65]. For
example, Holden et al. [66] applied the SVM classification algo-
rithm to the analysis of structure–activity relationship to predict
the inhibition of dihydrofolate reductase by pyrimidines. Meng
et al. [67] proposed persistent spectral-based ML models for drug
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Figure 2. Schematic diagram of Computer-Aid Drug Design approaches (CADD).

design, which consist of the persistent spectral graph, persistent
spectral simplicial complex and persistent spectral hypergraph
based on the spectral theory. Now the integration of SARS-CoV-2
related studies with modern ML algorithms becomes a hot topic
in drug repurposing models [68–70].

Databases

Drug discovery and development have initiated many databases
containing essential information and knowledge of combinato-
rial chemistry synthesis, genomics/genetics and drugs or drug
candidates. In turn, these databases enhance and improve the
CADD. Generally, publicly available datasets about drugs or drug
candidates’ discovery can be classified into seven scenarios
(Table S5): (i) chemical molecules for activities against biological
assays (e.g. PubChem [71] and ChEMBL [72]); (ii) chemical features
for drug compounds (e.g. DrugBank [73] and SuperDRUG2 [74]);
(iii) drugs verified by FDA (e.g. e-Drug3D [75]); (iv) drug targets
with genetic and proteomic information (e.g. BindingDB [76] and
BioGRID [77]); (v) metabolome or pathway related information
(e.g. HMDB [78] and SMPDB [79]); (vi) drug side effects (e.g. Drug-
Matrix [80] and SIDER [81]); (vii) clinical databases (e.g. AACT
database [82] and PharmGKB [83]).

These databases provide a variety of knowledges about drug
candidates including physicochemical properties, molecule
structure, in addition to diverse data in vitro, in vivo and from
clinical. For example, PubChem [71] is a database of chemical

molecules collected by the National Center for Biotechnology
Information (NCBI). The NCBI now hosts three dynamically
growing primary databases, including 111 million entries of
compounds, 293 million entries of substances, and bioactivity
results from 1.25 million high-throughput screening assays.
Similar to PubChem, ChEMBL [72] is a publicly available database,
containing information on binding, functional and ADMET for
drug-like bioactive compounds. Currently, the database consists
of 5.4 million bioactivity measurements for more than 1 million
compounds and 5200 protein targets, which were manually
abstracted from the primarily published literatures. There are
some databases about drug compounds. For example, DrugBank
[73] combines drug data with the information of drug targets
and drug actions, which has been widely used in drug-target
discovery, drug design, drug docking or screening, and drug
interaction prediction. It collects approximately 4900 drug
entries including 60% more FDA-approved small molecules
and 10% more experimental biotech drug rugs. DrugBank has
significantly improved the simplicity of its infrastructure and
text query searches in the later updates. The e-Drug3D [75] is a
3D chemical structure database for drugs that provides several
collections of drugs and commercial drug fragments. It currently
contains 1519 annotated 3D structures of 1305 different FDA-
approved drugs with molecular weight less than 2000. In
the meantime, the drug databases in genetic and proteomic
provide another scenario for drug design or discovery. As of
September 2018, BioGRID [84] has recorded 1 598 688 biological
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interactions manually annotated from 55 809 publications for 71
species. BioGRID also accumulates details for over 700 000 post-
translational modification sites. The recently updated BioGRID
also annotates genome-wide CRISPR/Cas9-based screens with
gene-phenotype and gene–gene relationships.

During the drug development phases, biological information
for therapeutic or metabolism are important and valuable. For
example, the HMDB [78], released in 2007, is now considered
as the standard metabolomic resource for human metabolic
studies including information about human metabolites,
physiological concentrations, disease knowledge, chemistry
associations, reference spectra and metabolic pathways. Side
effects, known as adverse events to a drug, are a crucial research
point in drug repurposing. DrugMatrix [80] has been developed
based on drug toxicities, consisting of the comprehensive
results of thousands of highly controlled and standardized
toxicological experiments. It focuses on toxicities research
with more than 200 compounds tested in vivo in rat tissues
and 125 compounds in the in vitro rat hepatocytes. There is
no doubt thought of clinical data which can provide high-
quality information supporting drug design or discovery.
PharmGKB [83] is an open-access database with clinically
relevant information, collecting approved drug labels, gene-
drug interactions and relationships between genotype and
phenotype. The corresponding detailed information can be
found in Table S5.

CADD against SARS-CoV-2: targeting Mpro

The main protease (Mpro, also known as 3CLpro) is recognized
as a key enzyme to play a dominant role in the processing
of mediating viral transcription and replication [85]. Since the
binding pocket of this enzyme is highly conserved among all
coronaviruses, like SARS-CoV, MERS-CoV and HCV, the antiviral
drug targeting Mpro may be effective against SARS-CoV-2 as well
[86]. Indeed, a lot of recent studies have been published that
employed CADD to discover anti-SARS-CoV-2 agents against Mpro

by different strategies, e.g. structure-based, ligand-based, VS or
ML-based approaches (Figure 3).

For example, people used the structure-based docking
approaches to predict the inhibitory activity and help drug
design against SARS-CoV-2 Mpro [87]. Yu et al. [88] screened
potential drugs by molecular docking to examine the effects
of some common antiviral drugs like ribavirin, remdesivir,
chloroquine and honeysuckle (a traditional Chinese medicine)
as shown in Figure 4. Importantly, they recognized the luteolin
as the control molecule is the main flavonoid in honeysuckle
(Figure 3), which had a high binding affinity to the same sites of
the main protease of SARS-CoV-2. Motonori Tsuji [4] performed
structural refinement and energy calculations in the presence
of peptidomimetic α-ketoamide inhibitors (PDB ID: 6Y2G, shown
in Figure 5A). They found 28 bioactive compounds, including
CHEMBL3236740, CHEMBL1447944 and others, were identified as
effective anti-SARS-CoV-2 drug candidates (Figure 3). Singh et al.
[89] identified several compounds, glucogallin, mangiferin, N3,
remdesivir and X77 which had stronger binding affinities with
Mpro. Furthermore, the results suggest that the phlorizin had the
lowest binding free energy toward Mpro (Figure 4), followed by
glucogallin and mangiferin.

However, long-range interactions have not been discussed
as often as the short-range interactions during the selection
of candidate inhibitors. Sencanski et al. [90] used the protocol
with both long-range and short-range interactions to select
inhibitor candidates. They applied the informational spectrum

method and molecular docking for small molecules to search
the DrugBank database. Interestingly, 57 drugs were identified
as potential SARS-CoV-2 Mpro inhibitors. Additionally, tinospora
crispa (Figure 3) was recognized as one potential COVID-19 Mpro

inhibitor based on another independent molecular docking
study [91].

To rapidly discover lead compounds for clinical treatments,
Jin et al. [86] investigated a mechanism-based inhibitor (N3) by
CADD and the crystal structure of Mpro of SARS-CoV-2 with com-
plex N3. They built a predicted model by integrating structure-
based virtual and high-throughput screening, which assayed
over 10 000 compounds as inhibitor candidates of Mpro. One of
these compounds, named ebselen, also had potential antiviral
ability in cell-based assays (Figures 3 and 4).

Besides small molecules, some researchers have tried much
effort to find potential candidates from natural products (NPs)
against SARS-CoV-2 [92] [93]. For example, Ibrahim et al. [94]
screened the MolPort database with molecular docking tech-
niques. The top 5000 natural-like products (NLPs) were chosen
according to the corresponding docking scores, like MolPort-000-
708-794 and MolPort-044-179-844 (Figure 3). They found that the
most promising NPs shared the same binding mode with key
amino acid residues including HIS164, HIS163 and GLU166 based
on molecular docking and molecular dynamics. The findings of
these studies are expected to provide insight into the field of
COVID-19 drug discovery [95–102].

Some recent studies have shown the feasibility of employing
VS in inhibitor design of targeting Mpro. For example, Abel et al.
[103] developed a VS method with both ligand- and structure-
based approaches. The proposed VS was performed for two
NPs databases, Super Natural II [104] and Traditional Chinese
Medicine [105]. Additionally, they used an integrated drug repur-
posing approach to identify potential inhibitors against SARS-
CoV-2 Mpro. Some drugs, like naldemedine, SN00017653, and
pseudostellarin C, were identified as potential inhibitors for the
first time (Figure 3). Lee et al. [1] identified potential inhibitors
against COVID-19 from the Korea Chemical Bank drug repurpos-
ing (KCB-DR) database [106]. The results suggest ceftaroline fos-
amil (Figure 4) and the hepatitis C virus (HCV) protease inhibitor
telaprevir as potential inhibitors against Mpro.

Although some drugs, such as remdesivir, favipiravir or
dexamethasone, have been known beneficial for COVID-19
treatment, they have limitations clinically for different reasons.
Hence, Nayak et al. [107] accomplished the VS of a variety of
US-FDA-approved drugs using computer-aided tools. The US-
FDA-approved drug structures were selected from DrugBank.
Among them, arbutin, terbutaline, barnidipine, tipiracil and
aprepitant were identified as potential hits. Moreover, tipiracil
and aprepitant bound to the Mpro consistently, demonstrating
potentially promising effects in pharmacologic treatments for
COVID-19.

Structure-based VS is adopted to predict the best interaction
between a ligand and a molecular target by scoring function.
For example, Kumar et al. [108] utilized structure-based VS to
identify hit molecules binding with the highest affinity to Mpro.
The results indicated that the hydrogen bonding and hydropho-
bic interactions are the major contributing factors in binding
pocket of COVID-19 Mpro. In addition, Hage-Melim et al. [109]
used VS approaches based on the structure of the enzyme and
two compound libraries to identify apixaban as a potential drug
for future treatment of COVID-19. Fischer et al. [110] used shape
screening and two docking protocols relevant for pharmacoki-
netics to narrow down commercially available compounds, lead-
ing to the natural compounds (−)-taxifolin and rhamnetin as

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab416#supplementary-data
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Figure 3. Summary of literatures using CADD to target Mpro of SARS-CoV-2.

potential inhibitors of Mpro (Figure 3). These new findings may
bring insight into our further understanding and discovery of
inhibitor candidates targeting Mpro [5, 111–113].

The reliability and accuracy of the ligand-based CADD
method have been proven [114]. Han et al. [2] utilized the
ligand–protein docking and molecular dynamic simulation for
ab initio study to explore the binding mechanism or inhibitory
ability by comparing two types of drugs: (i) clinically approved
drugs including chloroquine, hydroxychloroquine, remdesivir,
ritonavir, beclabuvir, indinavir and favipiravir, and (ii) a designed
α-ketoamide inhibitor (13b) (Figure 3). The results suggested
chloroquine had the strongest binding affinity with Mpro/3CLpro.
Meanwhile, inhibitor 13b has a higher research priority to
treat the SARS-CoV-2 since its improved inhibition efficiency.
Eleftheriou et al. [115] uncovered that anticoagulant therapy has
been proposed for the treatment of severe SARS-CoV-2 caused
pneumonia, particularly, DPP-4 inhibitors may be more effective
for SARS-CoV-2-infected diabetic patients.

QSAR model, the classical ligand-based CADD method, was
also utilized in recent inhibitor design studies. For example,
Ishola et al. [116] selected SARS coronavirus 3C-like protease
(3CLpro) inhibitors data from the CHEMBL database. They con-
structed a QSAR model using the data with high correlations,
which made the model statistically significant. The analysis
revealed that 3CLpro-compound 21, 3CLpro-compound 22, 3CLpro-
compound 40 complexes (Figure 3) were steadier than the base-
line complex (3CLpro-X77). Alves et al. [3] developed QSAR models
of these inhibitors then applied these models in VS with drugs in
the DrugBank by conducting similarity searching and molecular
docking in parallel. As a result, 42 compounds were identified
as consensus computational hits. They were reported coinci-
dentally in subsequent experimental screening studies (https://o

pendata.ncats.nih.gov/covid19/). Kumar et al. [117] developed
a 2D-QSAR model based on multiple linear regression (MLR)
with 3CLpro inhibitors. The proposed model clearly exhibited
the structural features which enhanced the inhibitory activity
against the 3CLpro enzyme. Additionally, the most and least
active molecules were investigated using molecular docking
tools to explore the molecular interactions involved in bind-
ing. Gogoi et al. [118] screened a library of 44 citrus flavonoids
using molecular docking. The nontoxic compounds were further
investigated with molecular dynamics simulation and predicted
activity (IC50 value) with the 3D-QSAR model. They suggested
taxifolin (Figure 3) as a potential inhibitor against SARS-CoV-2
Mpro which can be further analyzed by subsequent experiments
for treatment of COVID -19. There are more literatures about
ligand-based CADD in inhibitor candidates designing targeting
Mpro [119, 120].

As ML techniques can be applied to the predictive scenario
based on previous knowledges and well-known patterns, some
recent studies have contributed to the development of ML-
based CADD methods targeting Mpro. For example, Huang et
al. [121] developed a biological activity-based modeling (BABM)
approach, by which the compound activity can be predicted for
a new target or other assays by using profiles across multiple
well-defined assays. This model obtained 311 compounds
against SARS-CoV-2, 32% of which showed antiviral activity
in a cell culture live virus assay. More importantly, the most
potent compounds presented nanomolar concentration levels
for a half-maximal inhibitory. Nayarisseri et al. [122] proposed
a shape-based ML method, which generates the 3D shaped
pharmacophoric features of the seed compound. Furthermore,
molecular docking was performed with optimized potential for
liquid simulations (OPLS) algorithms to recognize high affinity
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Figure 4. Two-dimensional (2D) chemical structures of some drugs and drug

candidates with corresponding available binding energies to Mpro. All structures

were collected from the DrugBank database.

compounds targeting Mpro. The shape-based ML reported that
remdesivir, valrubicin, aprepitant and fulvestrant were the best
therapeutic drugs (Figure 3) since the highest affinities with the
target protein. They also found a novel compound ‘nCorv-EMBS’,
which is not included in public chemical databases (PubChem,
ZINC or ChEMBL) so far. The results of toxicity analysis suggested
nCorv-EMBS was valuable to further research as the main
protease inhibitor in COVID-19 [122].

Inspired by ensemble learning, Gimeno et al. [123] first
applied molecule docking against the structure of Mpro using
three popular tools: Glide [28], FRED [124] and AutoDock Vina
[25]. Then, they proposed a hybrid ensemble approach to
generate hypothetic binding modes replying on three score
functions. Seven possible SARS-CoV-2 Mpro inhibitors were
predicted including perampanel, carprofen, celecoxib, alpra-
zolam, trovafloxacin, sarafloxacin and ethyl biscoumacetate
(Figure 3). Battisti et al. [125] also proposed an inhibitor predicting
framework, which not only combines molecular dynamics
simulations with molecular docking but also focuses on the
feature information of pharmacophore modeling and the
flexibility of molecular dynamics simulations simultaneously.
The proposed approach identified 10 compounds with high
coronavirus inhibition potential.

In addition to the traditional data-driven ML modeling,
some studies used deep learning-based approaches to predict
potential inhibitors of SARS-CoV-2 Mpro [126]. For example,
Park et al. [127] recognize some potentially drugs against

Figure 5. Crystal structures (orthorhombic form) of target proteins and formed

complexes. (A) SARS-CoV-2 (2019-nCoV) main protease and potential inhibitors.

(B) SARS-CoV-2 S-ACE2 complex. (C) SARS-CoV-2 RdRp/RNA complex. (D) SARS-

CoV-2 Helicase complex. (E) Human PARP-1 bound to a DNA double-strand break.

(F) Human TMPRSS2 with Nafamostat. All structures were collected from the

protein data bank database.

SARS-CoV-2 using the pretrained deep learning drug-target
interaction model called Molecule Transformer-Drug Target
Interaction. They found that atazanavir, remdesivir, efavirenz,
ritonavir and dolutegravir were the chemical compounds,
showing an inhibitory potency against the SARS-CoV-2 3CLpro.
Interestingly, they found that lopinavir, ritonavir and darunavir,
which were designed to target viral proteinases, also bound to
the replication complex components of SARS-CoV-2. Bung et
al. [128] employed deep generative and predictive models to
discover small molecules targeting inhibiting Mpro. The transfer
learning and reinforcement learning was applied to optimize
the proposed deep learning model, which learned chemical
space around the protease inhibitors. Other features, including
multiple physicochemical property filters and VS scores, were
used for the final screening as well. Finally, they proposed 33
potential compounds for further synthesis and testing against
SARS-CoV-2. Based on the structural model, Zhang et al. [129]
performed a deep learning-based VS method to rank and identify
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protein–ligand interactions. The summary of drugs or inhibitors
targeting SARS-CoV-2 Mpro/3CLpro can be found in Table S6.

CADD against SARS-CoV-2: targeting the
structure protein
SARS-CoV-2 contains four structural proteins, including mem-
brane protein (M), spike protein (S), envelope protein (E) and
nucleocapsid protein (N), in addition to 16 nonstructural proteins
(NSP1–16 as seen in the next section) [130]. Among them, the
S protein can mediate the process of coronaviruses entering
into host cells, so it becomes an attractive antiviral target for
COVID-19 treatment.

Computational approaches have been developed to predict
potential SARS-CoV-2 inhibitors targeting S protein. Previous
studies demonstrated ACE2 as the key factor for SARS-CoV-
2 to enter the host cells being bound by the spike protein of
SARS-CoV-2 (Figure 5B). Hence, ACE2 becomes another common
target of drug intervention. Wen et al. [131] investigated the
existing drugs according to their abilities to block the binding
of S protein to ACE2. According to the pathogenesis of SARS-
CoV-2 from the perspective of S protein and ACE2 binding, they
found some substances, including peptide P6, griffithsin, EK1
and extracts from traditional chinese medicine, which fought
against SARS-CoV-2 through binding ACE2 receptor, S protein,
or inhibiting the host and virus. Faria et al. [132] also focused
on the molecules that can inhibit the interaction between the
S protein and human ACE2. They discovered some molecules
at the interaction sites: four molecules in Tyr-491(Spike)-Glu-
37(ACE2) and one in Gly-488(Spike)-Lys-353(ACE2). Furthermore,
they found that the molecule 1629 and the molecule 2542 had
significant inhibitory effects on the site of Gly488-Ly353 and
Tyr491-Glu37, respectively, suggesting further laboratory tests
on the combination of these molecules that can work at two
interaction sites simultaneously. Additionally, the human furin
protease, cleaving the S1-S2 domains involved in entering the
host cell, may become the third target. CUBUK et al. [133] docked
five drug molecules, favipiravir, hydroxychloroquine, remdesivir,
lopinavir and ritonavir, on not only S protein and main protease
but also human furin protease. The results of molecular docking
revealed that the human furin protease can be a potential target
of SARS-CoV-2, whereas remdesivir, a nucleic acid derivative,
can be used as a template for designing novel furin protease
inhibitors to fight against the disease. Taking advantage of the
DrugBank and PubChem, Unni et al. [134] identified Bisoxatin
(DB09219), a laxative drug, as a promising repurposable drug to
develop a new chemical compound for inhibiting SARS-CoV-2
entry into the host, even though Bisoxatin was used to treat
constipation and preparation. GR 127935 hydrochloride hydrate,
GNF-5, RS504393, and eptifibatide acetate were found to connect
to viral binding motifs of ACE2 receptor by Tomar et al. [135].
Table S6 presents the summary of drugs or inhibitors targeting
SARS-CoV-2 S protein and ACE2.

Many computational approaches also focused on potential
SARS-CoV-2 inhibitors targeting M protein, N protein and E pro-
tein, which were believed to be useful for further structure-based
VS and other CADD drug and vaccine design. Dong et al. [136]
searched the homologous templates of all structural proteins of
SARS-CoV-2, including S, E and N proteins. Banerjee et al. [137]
recognized micromolecules of inhibitors targeting M protein and
E proteins of SARS-CoV-2 by integrating docking and simulation
methods. They investigated some compounds from an Indian
medicinal plant source (Azadirachta indica or Neem) and found 70

compounds against these two proteins. With molecular dynam-
ics simulations, a few common compounds binding to both
M and E proteins were recognized as potentially inhibit their
functions. Table S6 lists drugs or inhibitors targeting SARS-CoV-2
proteins with essential information.

CADD against SARS-CoV-2: Targeting the
nonstructure protein
SARS-CoV-2 nonstructure proteins can be potential targets to
inhibit SARS-CoV-2 as well. For example, RdRp, as shown in
Figure 5C, plays a crucial role in the viral cycle of coronaviruses,
particularly the replication of the viral genome, with the assis-
tance of nonstructure proteins, NSP7 and NSP8, in a polymerase
complex. It is not surprising to see that RdRp has been recog-
nized as an important coronavirus target for drug design. Since
SARS-CoV-2 has high similarity with other SARS viruses, target-
based VS and molecular docking on antiviral molecules of the
SARS explored that the antiviral galidesivir had promise against
SARS-CoV-2 as well [138]. Quinupristin was identified as one
candidate which can bind in the RNA tunnel of RdRP and block
the path and access on both sides with potentials to prevent viral
replication and RNA synthesis [139]. Wu et al. [140] systematically
compared SARS-CoV-2 genes encoding proteins with that from
other coronaviruses, then predicted and built 19 structures with
homology modeling. Based on ZINC drug database and their
own NPs database, they found 78 antiviral drugs for SARS-CoV-2,
which are currently on the market or undergoing clinical trials.

Helicase is another macromolecule viral replication enzyme,
responsible for separating DNA and RNA into two single-
stranded nucleic acids in the coronaviruses viral cycle unwind-
ing (Figure 5D). Some studies have also suggested drugs and NPs
as potential SARS-CoV-2 helicase inhibitors. For example, one
study suggests that vapreotide and atazanavir, two approved
drugs for treating AIDS-related diarrhea and HIV infection, are
observed to interrupt the activities of the SARS-CoV-2 helicase
significantly [141]. Mirza et al. [142] have proposed an integrative
VS and molecular dynamics simulations approach for targeting
the main protease, RdRp and helicase, which warrants in vitro
testing to evaluate compound efficacy.

Iftikhar et al. [143] focused on a small molecule that specifi-
cally binds to three essential proteins (RdRp, 3CLpro and helicase).
They found three FDA-approved drugs binding to 3CLpro, one
drug-like molecule binding to RdRp, and two drug-like molecules
specifically interacting with helicase.

The poly-ADP-ribose polymerase 1 (PARP1, shown in
Figure 5E) is also critical for viral replication [144–146]. Ge et
al. [147] developed a data-driven drug repositioning framework
combining ML and statistical analysis approaches to explore
potential drug candidates against SARS-CoV-2, by integrating
their large-scale data including knowledge graphs and tran-
scriptome data from public domain and literatures. Based on
the model, CVL218, a PARP1 inhibitor, was recognized as the
repurposed therapeutic agent for COVID-19.

The host serine protease TMPRSS2 has a pivotal role in the
viral entry of SARS-CoV-2 (Figure 5F). In the study conducted
by Singh et al. [89], they uncovered the strong binding affinity
between TMPRSS2 and compounds, glucogallin, mangiferin, N3,
remdesivir and X77. Among them, mangiferin showed the lowest
binding free energy, followed by phlorizin and glucogallin.

Additionally, more studies focused on other nonstructure
proteases in the viral replication/transcription process, such as
NSP15 protein [148] (belongs to the EndoU enzyme family), C3

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab416#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab416#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab416#supplementary-data
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(complement component 3) [149] and N7-MTase [150] (Guanine-
N7 Methyltransferase). According to the findings, glisoxepide,
and idarubicin, used to treat diabetes and leukemia, respec-
tively, were identified as the stronger binder of EndoU enzyme
[151]. We summarized drugs or inhibitors targeting SARS-CoV-2
macromolecules as seen in Table S6.

Conclusion
Since the outbreak of COVID-19, people around the world have
put much effort into investing vaccines and drugs against SARS-
CoV-2. CADD and ML techniques have been employed in many
studies to target SARS-CoV-2 macromolecules, which are con-
sidered as feasible options to speed up the processes for drug
design and discovery. Our paper reviewed the theory and appli-
cations of these approaches with specific databases from these
studies. We explored the new findings of inhibitors as potential
interventions and treatments of COVID-19.

However, considering the variations of SARS-CoV-2, we are
still facing big challenges to make sure that developed vaccines
and drugs can keep efficient for different viral strains with
specific mutations. It is known that structural variations on or
even close to the binding sites could dramatically impact ligand
binding properties. Gossen et al. [152] redefined the druggability
of the proteins as an integrated chemical space generated by
multiple conformations of binding sites when ligand binding.
This process revealed the unique blueprint of SARS-CoV-2 Mpro,
leading to a definition of a pharmacophore based on the specific
structure, which provides a strong foundation for rational drug
design for SARS-CoV-2 Mpro. Ugurel et al. [153] analyzed 3458
SARS-CoV-2 genome sequences isolated from 58 countries. They
found the incidence of C17747T and A17858G mutations on
helicase (NSP13) were significantly higher than others. However,
four drugs, including cangrelor, fludarabine, folic acid and poly-
datin, interrupted both the wild type and mutant SARS-CoV-
2 helicase, suggesting that they can be the most potent drugs.
We expect that our review can bring insight to identify antiviral
inhibitors and potential drug candidates against diverse SARS-
COV-2 variants.

Key Points
• Discovering potential inhibitors or drugs of SARS-CoV-

2 is critical in mitigating the pandemic impact of
COVID-19.

• We give a brief overview of existing computer-aid
drug design methods and biological databases used in
predicting drugs or inhibitors.

• We provide a systematic review of current knowl-
edge, latest findings using computational methods to
discover protein inhibitors of SARS-CoV-2.
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