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Abstract: A high consumption of vegetables belonging to the Brassicaceae family has been related to a
lower incidence of chronic diseases including different kinds of cancer. These beneficial effects of,
e.g., broccoli, cabbage or rocket (arugula) intake have been mainly dedicated to the sulfur-containing
glucosinolates (GLSs)—secondary plant compounds nearly exclusively present in Brassicaceae—and
in particular to their bioactive breakdown products including isothiocyanates (ITCs). Overall, the
current literature indicate that selected Brassica-derived ITCs exhibit health-promoting effects in vitro,
as well as in laboratory mice in vivo. Some studies suggest anti-carcinogenic and anti-inflammatory
properties for ITCs which may be communicated through an activation of the redox-sensitive
transcription factor nuclear factor erythroid 2–related factor 2 (Nrf2) that controls the expression of
antioxidant and phase II enzymes. Furthermore, it has been shown that ITCs are able to significantly
ameliorate a severe inflammatory phenotype in colitic mice in vivo. As there are studies available
suggesting an epigenetic mode of action for Brassica-derived phytochemicals, the conduction of
further studies would be recommendable to investigate if the beneficial effects of these compounds
also persist during an irregular consumption pattern.
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1. Introduction

Chronic inflammatory diseases are a major risk factor for cancer development, especially regarding
the gastro-intestinal tract [1,2]. In addition to the beneficial effect of inflammation as the primary
response to infection and injury, a sustained production of inflammatory mediators, like cytokines
and reactive oxygen species (ROS), may cause alterations in DNA integrity and lead to malignant
cell transformation and cancer [3,4]. Cancer is a major public health problem and the incidence and
mortality is still growing, currently accounting for over 12% deaths worldwide [5]. The concept of
cancer chemoprevention was originally introduced by Wattenberg [6] and describes the protective
mechanisms of natural or synthetic compounds that block the initiation of carcinogenesis. The
identification of dietary compounds that may exert anti-inflammatory and chemopreventive actions
and the investigation of the underlying cellular mechanisms is an important future challenge for
improving cancer prevention. Especially, a high consumption of cruciferous vegetables, like cabbage,
broccoli, and rocket (arugula), is associated with beneficial effects on the development of cancer [7–9].
Although the underlying mechanisms are yet not fully understood, the health-promoting effects of
a diet rich in cruciferous vegetables have been linked to the breakdown products of glucosinolates
(GLSs) [10–13].
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2. Isothiocyanates (ITCs), the Bioactive Breakdown Products of Sulfur-Containing Glucosinolates
(GLSs), Are Released by Myrosinase (MYR) Activity

GLSs are characteristic secondary plant compounds present in Cruciferae/Brassicaceae and they are
stable water-soluble N-hydroxysulfates with a sulfur-linked β-D-glucopyranose moiety and a variable
amino acid-derived side chain (R) (Figure 1) [14]. Bioactive ITCs arise from their parent GLSs when the
plant tissue is damaged by insect herbivores, during food preparation or chewing. Subsequently, the
plant enzyme MYR, a thioglucohydrolase (E.C. 3.2.1.147), located in so-called myrosin cells separated
from the GLSs, comes in contact with its GLS substrate previously stored apart in the vacuoles and
catalyses the hydrolysis of the thioglucosidic bond [15–17]. Glucose is cleaved and the unstable
aglycone thiohydroxamate-O-sulfonate spontaneously rearranges in various products depending on
the specific parent GLS, the reaction pH and the presence of ferrous ions or the epithiospecifier protein
(ESP) (Figure 1) [16].
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epithiospecifier protein.

In addition to plant-derived MYR-dependent GLSs cleavage, microorganisms within the murine
and human gut seem to be capable of metabolizing GLSs to ITCs [19,20]. Table 1 gives an overview
of the side chain chemical structures of selected GLSs. At neutral pH conditions, ITCs emerge from
GLSs with aliphatic or aromatic side chains. The GLS glucoerucin (GER) is present in significant
amounts in rocket seeds and sprouts and it is the precursor of 4-(methylthio) butyl-ITC (erucin) [21,22].
The GLSs glucoraphanin (GRA) and sinigrin (SIN), e.g., present in broccoli and red cabbage, yield
sulforaphane (SFN; 4-(methylsulfinyl) butyl-ITC) and allyl-ITC (AITC; 2-propenyl-ITC), respectively.
In vivo, erucin can be inter-converted to SFN [23–26]—the ITC that is the most extensively studied for
its chemopreventive and anti-inflammatory properties in vitro, as well as in vivo [27–29].
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Table 1. Food sources of the GLS test compounds and chemical structures of the GLS side chains.

Parent Glucosinolate Side Chain Isothiocyanate Food Sources *

Glucoerucin (GER)
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3. Chemoprevention and Nuclear Factor Erythroid 2–Related Factor 2 (Nrf2)

The multi-stage process of carcinogenesis is divided into three operationally-defined stages:
tumour initiation, then promotion, followed by tumour progression [32]. Endogenous repair
mechanisms to maintain the integrity of genomic DNA can be impaired by oxidative stress
induced by aerobic metabolism, the generation of ROS and reactive nitrogen species due to
inflammation, ultraviolet radiation, pollutants, or dietary chemicals [33]. Initially, the exposure
to endogenous or exogenous carcinogens may lead to irreversible genomic DNA damage. During
this chemically-induced tumour initiation, the carcinogen interacts with nucleic acids leading to
the activation of oncogenes and/or inactivation of tumour suppressor genes. The second step of
carcinogenesis, tumour promotion, is a reversible process characterized by the expansion of initiated
tumour cells and requires a sustained exposure to the carcinogen. Finally, the growth of a tumour with
invasive and metastatic characteristics leads to the progression of neoplastic transformed cells [32].
Phytochemicals may regularly intervene in different stages of this process [34]. Blocking agents
prevent carcinogens (1) from reaching target sites by inactivation or direct antioxidant activity, (2) from
undergoing metabolic activation by inducing antioxidant enzymes, or (3) from interacting with crucial
cellular macromolecules, even by epigenetic modifications [35,36]. Furthermore, chemoprevention
may target progressed stages of carcinogenesis through the inhibition of proliferation and angiogenesis
as well as through the induction of apoptosis and the attenuation of inflammation [37,38].

The induction of cytoprotective enzymes by phytochemicals is a crucial preventive step at the
initiation stage of carcinogenesis and may protect DNA from damage and mutations. Previous
studies show that GLS-derived compounds like ITC, and mainly SFN, are potent activators of the
redox-sensitive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) [39–41] which is a
member of the cap ‘n’ collar family of basic leucine zipper transcription factors [42] and represents an
important regulator of a battery of genes involved in chemoprevention and inflammation [43]. Under
basal conditions, Nrf2 is bound to its inhibitor protein Kelch-like ECH-associated protein 1 (Keap1)
leading to constant ubiquitination and degradation by the proteasome through Cullin 3-dependent
E3 ubiquitin ligase [44]. Upon activation by electrophilic agents or oxidative stress, the cytosolic
Keap1-Nrf2-complex is destroyed through the modification of cysteine residues of Keap1 [45], Nrf2 is
released and translocates to the nucleus (Figure 2) [46]. The activation of Nrf2 can as well be mediated
by mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK),
p38 or c-Jun NH2-terminal kinase (JNK), that transmit various extracellular signals into intracellular
responses through serial phosphorylation cascades [47,48]. In the nucleus, Nrf2 dimerizes with small
musculo aponeurotic fibrosarcoma (Maf) proteins and binds to the cis-acting antioxidant responsive
element (ARE) located in the promotor region of target genes. Hence, Nrf2 induces the expression of
genes including phase II and antioxidant enzymes like heme oxygenase 1 (HO-1), γ-glutamylcysteine
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synthetase (γGCS) and NAD(P)H quinone oxidoreductase 1 (NQO1) [49–52]. Phase II enzymes convert
xenobiotics and potential carcinogens to inactive metabolites which can be readily excreted [53]. NQO1
is an obligate two-electron reductase that generates antioxidant forms of ubiquinone and vitamin E
relevant for cytoprotection [54]. γGCS catalyzes the rate-limiting step in the biosynthesis of the
intracellular antioxidant tripeptide glutathione (GSH) [55,56] and is composed of two subunits, the
light chain (28 kDa) and the heavy chain (73 kDa), the latter possessing all the catalytic activity [57].
The antioxidant enzyme HO-1, the inducible form of HO, is ubiquitously expressed in systemic tissues
and catalyses the initial and rate-limiting step in the degradation of heme into biliverdin/bilirubin,
carbon monoxide (CO), and ferritin induced by the release of free iron [58]. The metabolic products of
HO-1 reaction have distinct anti-oxidative and anti-inflammatory functions important for the cellular
homeostasis in response to ROS-mediated stress [59–66] and therefore the induction of HO-1 gene
expression may be a compromising target in cancer chemoprevention.
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Figure 2. Proposed mechanisms of chemopreventive effects of GLS-derived isothiocyanates (ITCs)
via nuclear factor erythroid 2–related factor 2 (Nrf2)-dependent antioxidant- and nuclear factor κB
(NFκB)-mediated anti-inflammatory signalling pathways, considering a possible cross-talk between the
two redox-sensitive transcription factors (modified from [18]). γGCS: γ-glutamylcysteine synthetase;
NQO1: NAD(P)H quinone oxidoreductase 1, HO-1: heme oxygenase 1; TNFα: tumour necrosis factor
alpha; IL6: interleukin 6; iNOS: inducible nitric oxide synthase; COX2: cyclooxygenase 2; IKK: IκB
kinases; Keap1: Kelch-like ECH-associated protein 1; Maf: musculo aponeurotic fibrosarcoma; MAPK:
mitogen-activated protein kinase; ROS: reactive oxygen species; ARE: antioxidant responsive element.

4. Nuclear Factor κB (NFκB) in Inflammation and Cancer

The transcription factor NFκB regulates the expression of genes involved in multiple biological
processes including inflammation, cell proliferation and apoptosis [67] and might be a key link between
inflammation and cancer [68]. “NFκB” is used as a generic term for a protein family including five
main proteins, namely RelA (p65), RelB, c-Rel, NFκB1 (p50/p105), and NFκB2 (p52/p100) occurring in
various (combined) dimeric complexes [69]. In unstimulated resting cells, the dimeric transcription
factor remains transcriptionally inactive in the cytoplasm bound to its specific inhibitory proteins
(IκBs). Phosphorylation by IκB kinases (IKK), ubiquitination and proteasomal degradation of the IκBs
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lead to the release of NFκB from IκBs and, thereby, activation of NFκB. Activated NFκB translocates to
the nucleus where it binds to specific DNA sequences in the promotor region of its target genes [67,70].
In the classic (canonical) NFκB transactivation pathway, the p50/p65 heterodimer is basically activated
by pro-inflammatory cytokines like interleukin (IL) 1 beta (IL1β) and tumour necrosis factor alpha
(TNFα) and by viral infections resulting in an enhanced expression of multiple inflammatory and innate
immune genes (e.g., the cytokines IL6, IL1β, TNFα and the chemokine IL8). Moreover, expression
of the inducible effector enzymes cyclooxygenase 2 (COX2) and inducible nitric oxide synthase
(iNOS) and adhesion molecules (e.g., epithelial cell adhesion molecule (Epcam)) [71] is elevated.
An alternative (non-canonical) pathway for NFκB activation is triggered by cytokines of the TNF
family such as lymphotoxin β and B-cell activating factor (BAFF) and the activation of a subset of
necessary receptors predominantly results in the nuclear translocation of p52–RelB dimers [72]. This
alternative pathway seems to play a pivotal role regarding the expression of genes involved in the
development of secondary lymphoid organs, such as the spleen and lymph nodes and adaptive
immune response [73,74]. Regarding tumourigenesis, NFκB target genes are involved in all steps of
tumour cell development comprising cell survival, proliferation, tumour invasion, and angiogenesis to
final metastasis [2]. Even though the physiological function of this signalling cascade is the protection of
the cell from harm, a deviating activation may provoke the transition from inflammation to cancerous
growth. Hence, the inhibition of pro-inflammatory NFκB signalling pathways may be a critical
mechanism in preventing inflammation-associated diseases.

5. Protection against Colitis by Targeting Nrf2

In addition to genetic, environmental, and intestinal microbial factors [75], a dysregulation
regarding the luminal microflora and dietary antigens are discussed to contribute to the pathology
of the chronic and relapsing inflammatory bowel diseases (IBDs) colitis ulcerosa (UC), and Crohn’s
disease (CD) [76]. CD is characterized by transmural inflammation that may occur at any site of
the gastrointestinal tract from mouth to anus, but mainly affects the terminal ileum and the colon,
whereas UC strikes the large bowel and is manifested in mucosal and sub-mucosal inflammation and
ulceration [76]. In IBD patients, the disruption of the epithelial cell barrier involves an errant balance
of the immune homeostasis between tolerance to the intestinal host microflora, on the one hand, and
initiation of inflammation by the secretion of cytokines, chemokines, and antimicrobial agents on
the other hand [77]. Gastrointestinal-related symptoms of patients suffering from IBD are diarrhoea,
abdominal pain and cramping, permanent blood loss from chronically-inflamed mucosa, loss of
appetite, weight loss, and micronutrient deficiencies [78,79]. The sustained chronic inflammation
dramatically increases the risk for developing a colitis-associated colorectal cancer—the most serious
long-term complication in IBDs [80]. The disease patterns of human IBDs can be experimentally
mimicked in mice by the induction of a colitis development by the application of dextran-sodium
sulphate (DSS) in the drinking water [81]. The regular rectal localization of DSS-induced colitis in
mice is comparable to human UC, whereas histological alterations, like transmural inflammation, due
to the DSS administration characterize CD [81,82]. DSS exhibits a direct toxicity to colonic epithelial
cells [83] and causes erosions of the epithelium accompanied by an increase in permeability of the
colonic mucosa for large molecules like DSS [84]. The assessment of clinical parameters, like weight
loss and faecal occult blood during DSS administration in combination with histopathological analyses
of the colon, allows the evaluation of the effect of secondary plant compounds or xenobiotics/drugs
on intestinal inflammation using a therapeutic or even a preventive experimental approach [85–87].

In DSS-induced animal models of experimental colitis, the generation of ROS by epithelial cells
and infiltrating inflammatory cells have been shown to be a driving force of tissue damage and
reflects the underlying pathophysiology of UC [88–90]. Nrf2 regulates the transcription of several
detoxification enzymes and antioxidant proteins involved in the cellular defence against oxidative
stress [91]. Nrf2-deficient mice tend to be more susceptible to DSS-induced colitis in comparison
with their wild type counterparts, which was shown to be associated with the reduction of phase II
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detoxifying/antioxidant enzymes and the elevation of inflammatory markers in Nrf2-null mice [92].
Additionally, a Nrf2 gene polymorphism that reduces the activity of Nrf2 has been shown to be
associated with an increased risk of developing ulcerative colitis in a Japanese population [93].

Several dietary ingredients/plant compounds have been identified to possess the capacity to
alleviate experimentally induced colitis via an Nrf2 pathway activation. Therefore, the decrease
of oxidative stress as a target for the therapeutic treatment of IBD, with e.g., 5-aminosalicylic acid
preparations like mesalazine [94], may be complemented by dietary interventions.

In our own study, pre-treating C57BL/6 mice with the ITC sulforaphane for seven days
ameliorated a DSS-induced colitis phenotype which has been approved by an amendment of the disease
activity index, the colon length, the appearance of the intestinal mucosa assessed by colonoscopy,
the histopathology and the expression levels of pro-inflammatory markers and Nrf2-regulated
cytoprotective enzymes [95]. Resistant glycogen reduced colitis in experimental mice models of
colitis by decreasing oxidative stress and increasing HO-1 expression in the large intestine of mice.
This effect was shown to be triggered by the activation of (ERK1/2)- and JNK signalling and
subsequent phosphorylation of Nrf2 in macrophages [96]. Khodir and co-workers [97] investigated the
coloprotective potential of coenzyme Q10 in a rat model of experimental colitis and documented
the Nrf2/HO-1 pathway to be mainly responsible for the suppression of inflammatory marker
release and the recovery of the oxidant/antioxidant homeostasis. Additionally, luteolin (3’, 4’, 5,
7-tetrahydroxyflavone) attenuated disease patterns of a DSS-induced colitis in mice and activated
Nrf2-dependent gene expression of HO-1 and NQO1 [98].

In human NCM460 colonocytes, CPUY192018, an inhibitor of the Keap1-Nrf2 protein-protein
interaction, activated the Nrf2 pathway resulting in an increase of both, cellular and nuclear Nrf2
protein levels which in consequence increased the expression of Nrf2 downstream cytoprotective
genes [91]. Interestingly, the DSS-mediated induction of oxidative stress and cell damage in NCM460
cells was antagonized by the inhibitor CPUY192018. Furthermore, in a DSS-induced mouse model of
UC, a CPUY192018 treatment alleviated disease symptoms accompanied by a decreased expression
of inflammatory cytokines TNFα, IL6, and IL1β, and a significant up-regulation of Nrf2 and its
cytoprotective target genes HO-1, γGCS, and GPx2 in the colon of CPUY192018-treated DSS-mice [91].

6. GLS-Derived Phytochemicals Modulate Inflammation by Inducing Nrf2 and
Suppressing NFκB

So far, various ITCs have been identified as potent Nrf2 inducers. In our own studies, the ITCs
AITC, 2-phenylethyl-isothiocyanate (PEITC), and butyl ITC induced phase II and antioxidant enzymes
via Nrf2 in cultured murine fibroblasts which was attended by the activation of the upper MAPK
ERK1/2 [39]. SFN is the most intensively-studied ITC and a prominent plant-derived Nrf2 inducer
in vitro, as well as in vivo [41,52,99,100], which also shows anti-inflammatory activities [95,101,102].
Figure 2 gives an overview of postulated mechanisms by which ITCs activate Nrf2 and suppress
NFκB and downstream target gene expressions. Overall, the underlying mechanisms of how ITCs
modulate the NFκB pathway are poorly understood. The aberrant activation of NFκB and its target
genes associated with the inhibition of apoptosis, induction of cell cycle progression, angiogenesis,
and metastasis is a crucial link between inflammation and cancer [103]. Furthermore, NFκB is
involved in physiological processes, such as the innate and adaptive immune responses regulating the
transcription of inflammatory mediators, including cytokines, chemokines, proteases, and COX2 [104].
The modulation of the NFκB signalling pathway by GLS breakdown products has been shown
to block pro-inflammatory signals in vitro and in vivo [105]. DIM has been described to reduce
the nuclear translocation of the p65 NFκB subunit and its transcriptional activity by repressing
IKK/IκB phosphorylation. This results in lower levels of inflammatory mediators such as iNOS
and COX2 in LPS-activated macrophages [106], during brain inflammation [107], as well as during
colonic inflammation in mice [108,109]. Anti-inflammatory/NFκB-inhibitory effects of both SFN
and PEITC have been described in stimulated macrophages and cancer cell lines [110–114], as well
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as under acute and chronic DSS-induced inflammatory settings in the colon of mice [115]. PEITC
and SFN have also been shown to reverse the UV-induced apoptosis in HaCaT keratinocytes and
ex vivo skin samples [116]. Park and co-workers [117] revealed a suppressive effect of PEITC on
LPS-stimulated toll-like receptor (TLR) signalling during inflammation. The lower levels of TLR
adaptor molecules inhibited the activation of the transcription factors NFκB and interferon regulatory
factor 3 and, consequently, the production of pro-inflammatory cytokines and type I interferons [117].
SFN may also decrease DNA binding of NFκB subunits without affecting the nuclear translocation [101].
A direct interaction of SFN with NFκB subunits was suggested via dithiocarbamate formation and
binding to essential Cys residues of NFκB subunits [101]. On the other hand, the inhibition of
NFκB DNA binding by SFN was suggested to be indirectly mediated by the negative modulation of
the thioredoxin/thioredoxin reductase system responsible for regulating NFκB DNA binding [118].
The involvement of redox modulation and thiol reactivity in the regulation of NFκB-dependent
transcription by SFN was substantiated by a study from Kim and colleagues [119], where SFN
selectively inhibited NFκB activation through an interaction with thiol groups of NFκB in an in vitro
model of osteoclastogenesis. Furthermore, SFN downregulated COX2 expression in LPS-activated
murine macrophages by inhibiting transcriptional coactivators of NFκB, namely CCAAT/enhancer
binding proteins (C/EBP), cAMP responsive element binding protein (CREB), and activator-protein 1
(AP-1), in the COX2 gene promotor [102].

ITCs may also directly inhibited the pro-inflammatory cytokine macrophage migration inhibitory
factor (MIF) by covalently modifying the N-terminal proline residue of MIF, which resulted in the loss
of catalytic tautomerase activity and disruption of protein conformation [120–123].

SFN seems to directly inactivate NFκB subunits or relevant co-activators in the nucleus by
thiol-dependent modifications without interfering with the nuclear translocation of the p50 and
p65 NFκB subunits [101]. COX2 expression induced by LPS-stimulation was suppressed in murine
macrophages by SFN via the modulation of different promoter activities involved in the COX2
transcriptional regulation [102]. Furthermore, both PEITC and benzyl ITC reduced the secretion
and mRNA level of pro-inflammatory cytokines IL6, IL1β, and TNFα in LPS-stimulated RAW 264.7
macrophages [124,125]. PEITC and benzyl ITC inhibited LPS-induced NFκB signalling by preventing
the LPS-induced increase in phospho-IκBα levels and by the inhibition of p65 nuclear translocation as
well as by the suppression of NFκB DNA binding activity.

7. The Nrf2-NFκB Cross-Talk

Sustained oxidative stress is a major cause of chronic inflammation and the development of
cancer [104]. The Nrf2-dependent signalling pathway is crucial for the cellular defence against
oxidative stress and a modulation of the Nrf2 pathway may also affect the redox-sensitive
pro-inflammatory response regulated by the transcription factor NFκB [126]. Interestingly, the
bioactivity of the majority of phytochemicals, including SFN and curcumin, was demonstrated to be
mediated by anti-inflammatory as well as antioxidant properties [127–130]. A possible cross-talk of
redox-sensitive NFκB- and Nrf2 signalling pathways may exist concerning the phosphorylation of
the transcription factors as well as their upstream kinases and thiol modifications/oxidation of their
inhibitor proteins resulting in a concurrent regulation of downstream gene expression levels [131].

Studies in Nrf2 knockout mice demonstrate an interplay between the Nrf2 and NFκB pathway
because animals lacking Nrf2 showed an inflammatory phenotype (e.g., nephritis, brain injury, retinal
disease, colitis) together with an augmentation of cytokine production compared with the wild-type
animals [92,132–135].

Liu and colleagues [43] observed a suppression of the Nrf2-ARE signalling pathway by the
NFκB subunit p65 in vitro, which was not triggered by a direct interaction of p65 with ARE-associated
proteins such as Keap1, Nrf2 and small Maf protein MafK or an interference of p65 with protein stability,
subcellular localization and DNA-binding activity of Nrf2. Actually, Nrf2 was inactivated by the
deprivation of the coactivator CREB binding protein (CBP) and p65 promoted the recruitment of histone
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deacetylase (HDAC) 3, which is a co-repressor of ARE. The anti-oxidative and anti-inflammatory
effects of ethyl pyruvate in a microglia cell line were found to be mediated by a nuclear accumulation of
Nrf2 and the recruitment of p300, a transcriptional co-activator for both Nrf2 and p65, which inhibited
an interaction of p65 with p300 and impeded the expression of LPS-induced iNOS expression [136].

In a murine colitis model, a synthesized chalcone derivative significantly ameliorated
chemically-induced colonic damage and mucosal ulcerisation [137]. In HT-29 cells, a pre-treatment
with the chalcone derivative inhibited the TNF-α-induced NFκB activation and activated Nrf2 via
ERK1/2 and p38 and enhanced HO-1 expression. The authors suggest that the subsequent induction
of HO-1 protein interferes with the nuclear translocation step of NFκB subunit p65 without affecting
IκBα phosphorylation and degradation [137]. Bilirubin and CO are metabolites/products of the HO-1
catalyzed cleavage of the porphyrin ring of heme and additionally both display anti-inflammatory
effects protecting against experimental colitis in mice [138–142]. The activation of Nrf2 and the
induction of HO-1 expression by the flavonoid quercetin also repressed the expression of NFκB and
pro-inflammatory markers in the livers of nickel-treated mice [143]. Moreover, in LPS-activated
macrophages and septic mice, an induction of HO-1 inhibited the expression of pro-inflammatory
mediators through Nrf2 activation and NFκB inhibition [144].

The loss of the coordinated balance between Nrf2 and NFκB pathways in handling the
inflammatory response of a cell/tissue is associated with several diseases [145]. The cross-talk
between the Nrf2 and NFκB pathway occurs through diverse complex molecular interactions including
transcriptional and post-transcriptional mechanisms [146]. However, details of the co-regulation and
negative feedback in this cross-talk are not yet fully elucidated. The consumption of Nrf2 activating
and anti-inflammatory food-derived compounds may be a promising strategy in disease prevention
by attenuating chronic inflammation.

8. Epigenetic Mechanisms: Relevance for the Nrf2 Pathway and Epigenetic Impact of
Brassica-Derived Phytochemicals

Cellular organization of the genomic DNA is achieved via the chromatin structure and this defined
compact structure greatly influences the ability to activate or silence genetic information. Epigenetics
describes the study of heritable changes in gene expression that occur independently of changes
in the primary DNA sequence [147]. Epigenetic modifications, namely DNA methylation, histone
modifications and nucleosome positioning, are important regulators of cellular processes, including
gene and microRNA (miRNA) expression, DNA-protein interactions, and cellular differentiation [148].
DNA methylation at the 5′ position of cytosine residues within CpG dinucleotides catalysed by DNA
methyltransferases (DNMT: DNMT1, DNMT3a, and DNMT3b) epigenetically controls DNA stability
and integrity and often occurs within regulatory regions of genes [149]. A hypermethylation of
CpG islands usually silences gene expression, while demethylation often reactivates genes [149,150].
Histone acetyltransferases (HATs) transfer acetyl groups to lysine residues in histone tails resulting in
an open chromatin structure and an activation of genes. On the other hand, HDACs remove histone
acetyl groups by catalysing their transfer to coenzyme A and regulate gene silencing by preserving the
condensed chromatin state [151].

Cancer cells show epigenetic characteristics like global DNA hypomethylation, altered cellular
HDAC activity and modified miRNA expression [152]. An uncontrolled proliferation may be
the consequence of epigenetic silencing of e.g., detoxifying enzymes, tumour suppressor genes,
cell cycle regulators, and genes responsible for DNA repair or apoptosis. Due to the reversible
nature of epigenetic aberrations, a modulation of epigenetically caused changes in gene expression
by phytochemicals may be a promising approach in cancer prevention at the initiation step of
carcinogenesis [153].

In vitro studies, using different cancer cells, have shown that, besides ITCs, bioactive food
components including polyphenols, allyl compounds, folate, selenium, retinoids, and fatty acids
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influence global DNA hypomethylation, tumour suppressor gene promoter hypermethylation and
histone modifications [154].

Wong and coworkers [155] investigated the genome-wide effects of SFN and DIM on promoter
methylation in normal prostate epithelial cells and prostate cancer cells. Both SFN and DIM reversed
many of the cancer-associated promotor methylations, including abnormally-methylated genes that
are dysregulated during cancer progression (e.g., cell migration, cell adhesion, cell-cell signalling, and
transcriptional regulation) [155]. In cultured mouse skin epidermal cells, SFN had an anti-cancer effect
involving epigenetic modifications [156]. SFN inhibited the neoplastic transformation of the mouse
skin, chemically induced by 12-O-tetradecanoylphorbol-13-acetate, by decreasing the methylation in
the promotor region of the Nrf2 gene, resulting in an increased Nrf2 mRNA expression. Furthermore,
SFN reduced the protein expression of DNMT1, DNMT3a, and DNMT3b. The total HDAC activity and
the protein expression of HDAC1, HDAC2, HDAC3, and HDAC4 was also decreased by the treatment
of the cells with 2.5 µM SFN for five days. Accordingly, Zhang and colleagues [157] observed an
effect of 2.5 µM SFN on epigenetic mechanisms, including the demethylation of the Nrf2 promotor
and the subsequent activation of the Nrf2 pathway in murine prostate cancer cells after five days.
This effect of hypomethylation was associated with a decreased protein expression of DNMT1 and
DNMT3a as well as reduced protein expression levels of HDAC1, HDAC4, HDAC5, and HDAC7.
In addition to SFN, DIM also targeted Nrf2 via epigenetic modification and exerted chemopreventive
effects in prostate cancer cells and in transgenic adenocarcinoma of mouse prostate (TRAMP) mice
in vivo [158]. Like SFN [157], DIM (2.5 µM in vitro for five days and 1% DIM in the diet for 16 weeks
in vivo) reduced the methylation of the first five CpGs in the promotor region of Nrf2. In TRAMP-C1
cells, the effect of DIM to demethylate the Nrf2 promotor correlated with its potential to decrease the
expression of DNMT and HDAC. The development and promotion of human prostate cancer has
been found to be associated with epigenetic alterations [159] and Nrf2 was shown to be epigenetically
silenced in TRAMP mice [160]. Hence, the demethylation of the Nrf2 gene and the re-activation of the
Nrf2 expression by Brassica-derived phytochemicals like SFN and DIM, but also by curcumin [161] or
tocopherols [162], may be an important target for cancer chemoprevention.

In mice, the protection against intestinal carcinogenesis and the suppression of growth of human
prostate cancer xenografts by SFN was accompanied with epigenetic histone modifications and
was associated with an inhibition of HDAC activity [163,164]. Additionally, in human subjects, the
consumption of SFN-rich broccoli sprouts resulted in the inhibition of HDAC activity [163].

miRNAs are endogenous small non-coding RNA molecules of 17–25 nucleotides in length
that negatively interfere with gene expression by inhibiting the translation and/or triggering
the degradation of target messenger RNAs and, hence, play an important role in epigenetic
regulation of gene expression [165–167]. miRNAs may contribute to carcinogenesis by a multitude
of mechanisms, such as by modulating apoptosis, angiogenesis or the expression of genes involved
in cell migration/invasion [168]. There is evidence from cell culture studies, as well as from in vivo
experiments, that Brassica-derived compounds, such as DIM, indole-3-carbinol (I3C), AITC, PEITC,
butyl-ITC (BITC), and SFN, modulate the abnormal expression of miRNAs in different types of cancer.
Hence, their chemopreventive effect may be partly mediated through their function as potent miRNA
regulators [40,169–176].

For example, PEITC and I3C attenuated the altered expression of several miRNAs in the lung of
rats following the exposure to environmental cigarette smoke (ECS) [171]. PEITC counteracted the
expression of ECS-downregulated miRNAs involved in cellular mechanisms, such as stress response,
NFκB activation, cell proliferation, apoptosis, and angiogenesis. I3C additionally regulated miRNAs
responsible for p53 function [171]. I3C positively modulated deregulated onco-miRNAs, such as
miR-21 in lung tissues of mice exposed to the carcinogen vinyl carbamate [176]. Regarding the
epithelial-to-mesenchymal transition of pancreatic cancer cells, DIM functioned as a modulator of
miRNA expression. In detail, DIM up-regulated miR-200 and the let-7 family, which were increased
in gemcitabine-resistant pancreatic cancer cells, leading to the reversal of the cells to an epithelial
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phenotype [177]. The induction of miR-let-7a expression has been shown to be mediated by SFN
and was involved in the inhibition of K-ras expression and cancer stem cell characteristics during
pancreatic ductal adenocarcinoma progression [169].

In recent years, several miRNAs have been identified to modulate the Nrf2/Keap1 signalling
pathway epigenetically. Dysregulated miRNA expression during tumour progression may result
in elevated Nrf2 activity and tumour growth/cell survival due to the downregulation of affector
miRNAs that normally decrease Nrf2 mRNA level [178]. On the other hand, some effector miRNAs
are influenced by the gain of Nrf2 activity which in consequence causes chemoresistance and, hence,
an alleviation of therapeutic success [178]. As such affector miRNAs, that act independently from the
interaction of Nrf2 with Keap1, miRNAs miR-153, miR-27-a, miR-142-5p, and miR-144 regulated the
Nrf2 expression in neuroblastoma cells [179], and miR-28 targeted the 3’UTR of Nrf2 mRNA decreasing
Nrf2 expression in human breast cancer cells [180]. Increased oxidative stress in sickle erythrocytes
and intravascular haemolysis was shown to be associated with reduced expression levels Nrf2 and
Nrf2-regulated genes [181,182]. In erythrocytes from patients affected by sickle cell disease, miR-144
expression was upregulated while a direct regulatory effect on Nrf2 expression and two putative
binding sites for miR-144 in the 3’UTR of Nrf2 mRNA were identified [183]. An oncogenic potential
and a regulatory effect of miR-93 on Nrf2 protein and Nrf2 target gene expression was observed in a
rat model of mammary carcinogenesis [184]. Recently, Wasik and colleagues [185] found Nrf2 and its
target gene expressions to be reduced in liver specimens from patients with primary biliary cholangitis,
which was associated with an overexpression of miR-132 and miR-34a and increased protein levels of
both Keap1 and p62.

On the other hand, an elevated expression of Nrf2 in specific tumour cell lines was shown
to be associated with a downregulated expression of miR-1 and miR-206 [186] and the up- and
downregulation of miR-125-b1 and miR-29-b1, respectively [187]. miRNAs may also affect Nrf2
activity by posttranscriptional regulation of Keap1. For example, miR-200-a and miR-141 were
found to bind to the 3’-UTR of the Keap1 transcript leading to reduced Keap1 protein levels and
an enhanced transcriptional activity of Nrf2 [188–191]. The Nrf2-dependent induction of miRNAs
was shown to interact with other molecular pathways, as miR-125b is increased by Nrf2, and
inhibited aryl hydrocarbon receptor (AhR) repressor, which contributed to the protection from acute
kidney injury [192]. A study from our group revealed an interaction between the Nrf2 and the
pro-inflammatory NFκB pathway that was affected by miR-155 [40]. The expression of miR-155 in
murine macrophages was downregulated by AITC and was associated with Nrf2 activation and a
significant reduction of pro-inflammatory TNFα expression.

9. Data from Clinical Trials on the Effects of ITCs In Vivo

During normal gastrointestinal passage, the intestinal cells are the first line of defence.
Therefore, these cells come into direct contact with ITCs which are then absorbed by passive
diffusion [193]. Following the absorption, ITCs are conjugated to GSH by glutathione-S-transferase
(GST), cleaved by γ-glutamyltranspeptidase and dipeptidase and enter the circulation being initially
transported to the liver. Thereafter, N-acetyltransferase forms N-acetylcysteine conjugates which
are further processed to mercapturic acid which is transported to the kidney to be secreted via the
urine [18,193,194]. The inactivation of the ITC-releasing enzyme MYR either by cooking fresh broccoli
or by the blanching-freezing procedure performed for commercially-available frozen broccoli was
shown to reduce the bioavailability of ITCs in humans [26,195]. Furthermore, two studies in human
subjects showed that the bioavailability of SFN was significantly lower following the consumption
of broccoli supplements or GRA-rich broccoli powder lacking MYR compared to fresh or air-dried
broccoli sprouts [24,196]. Additionally, inter-individual variances in ITC metabolism and excretion
may exist due to differences in GST-genotypes [197,198].

An induction of Nrf2-regulated cytoprotective genes was reported in healthy subjects after
the topical application of SFN-rich broccoli sprout extract in human skin [199] and in nasal lavage
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cells following an oral administration of SFN [200]. In patients with chronic obstructive pulmonary
disease (COPD), a treatment with SFN induced Nrf2 activity and cytoprotective enzymes in alveolar
macrophages [201]. However, Wise and coworkers [202] did not observe an effect on Nrf2 and
inflammatory markers by a four week supplementation of both, 25 and 150 µM SFN/day in alveolar
macrophages and bronchial epithelial cells of COPD patients relative to baseline levels and compared
to the placebo group. In a randomized controlled trial investigating an effect of cruciferous vegetable
consumption on systemic inflammation in healthy subjects a significantly lower level of serum IL6
concentrations in response to a 14-day two-dose cruciferous vegetable diet (14 g/kg bodyweight) were
detected, whereas no changes in other inflammatory biomarkers (e.g., IL8, C-reactive protein, TNFα)
could be observed [203].

10. Conclusions

Chemoprevention by dietary ingredients displays an inexpensive, easily-applicable, and
readily-accessible approach which may prevent the onset of chronic diseases, including cancer.
Although research on the underlying molecular mechanisms by which Brassica-derived phytochemicals
mediate their health-promoting effects has been conducted for some decades, the understanding of the
signalling pathways involved still remains mostly unclear. In addition to an effect on chemopreventive
and inflammatory pathways it has been documented that ITCs and other GLS breakdown products
also target epigenetic mechanisms such as histone modifications and DNA methylation which may
contribute to its health-promoting effects. However, further analyses, especially with regard to in vivo
studies comprising animal models and human subjects, are needed to further elucidate the underlying
mechanisms being responsible for the protective effects of Brassica-derived plant bioactives in the
development of chronic diseases.
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