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Neural stem cells (NSCs) are multipotent stem cells that reside in the fetal and adult
mammalian brain, which can self-renew and differentiate into neurons and supporting cells.
Intrinsic and extrinsic cues, from cells in the local niche and from distant sites, stringently
orchestrates the self-renewal and differentiation competence of NSCs. Ample evidence
supports the important role of NSCs in neuroplasticity, aging, disease, and repair of the
nervous system. Indeed, activation of NSCs or their transplantation into injured areas of the
central nervous system can lead to regeneration in animal models. Viral invasion of NSCs
can negatively affect neurogenesis and synaptogenesis, with consequent cell death,
impairment of cell cycle progression, early differentiation, which cause neural progenitors
depletion in the cortical layer of the brain. Herein, we will review the current understanding of
Zika virus (ZIKV) infection of the fetal brain and the NSCs, which are the preferential
population targeted by ZIKV. Furthermore, the potential neurotropic properties of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which may cause direct
neurological damage, will be discussed.
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NEURAL STEM CELLS

Development of Neural Stem Cells
Neural stem cells (NSCs) are multipotent stem cells present in the fetal and adult mammalian brain,
which can self-renew and differentiate into the three main components of the central nervous
system: neurons, astrocytes, and oligodendrocytes (1) (Figure 1).

During the early embryogenesis of mammals, the neural plate and neural tube comprise a single
layer of proliferating neuroepithelial cells. Around gestational week (GW) 7-9, neuroepithelial cells
line the inner part of the neural tube and, later, of the cerebrospinal fluid (CSF)-filled ventricles,
named the subventricular zone (SVZ) (Figure 1, left panel). Neuroepithelial cells form a
pseudostratified layer of mitotically active cells that rapidly amplify their pool before they
differentiate into ventricular radial glial cells (RGCs) (2). RGCs are polarized cells in contact with
the monolayer of ventricular ependymal cells on the apical side, and with the meninges and blood
vessels on the basolateral side (3, 4). The ependymal cells establish a barrier and a transport system
between the brain interstitial fluid and the CSF, which support neurogenesis regulation (5). Unlike
the SVZ of other mammals, the human expanding SVZ, between GW 14 to 17, entails of a smaller
inner SVZ (iSVZ) and an expanded outer SVZ (oSVZ) separated by a cell-poor region, the inner
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fiber layer (IFL) (6). The human oSVZ contains a new class of
actively proliferating progenitors, the basal radial glial cells, that
lost contact with ventricles from the apical surface, leading to a
discontinuous RG scaffold (7). The basal RGCs initiate
asymmetric cell divisions to generate neurons, but then quickly
differentiate into intermediate progenitor cells (IPCs), a type of
transit-amplifying cell, which further mature into neurons. This
mechanism leads to the formation of a highly heterogeneous
population of progenitor cells that generate diverse subtypes of
differentiated neurons (8). After the neurogenic stages, the
human RGCs become gliogenic, generating astrocytes or
oligodendrocytes (4). RGCs are often referred to as neural
stem cells (NSCs) since they can differentiate into neurons,
astrocytes, and oligodendrocytes. The peculiar architecture of
the human SVZ sustains the development of several neuronal
and glial cell types in the complex cerebral cortex of primates (9).

In the mammalian adult brain (Figure 1, right panel), NSCs
are present only in two niches, the ventricular-subventricular
zone (V-SVZ) of the lateral ventricles, and the subgranular zone
(SGZ) of the dentate gyrus (DG) in the hippocampus, which are
dedicated to the generation of young neurons of the olfactory
bulb (OB) and hippocampus, respectively (10). The SVZ
organization of the human brain differs from that of
Frontiers in Immunology | www.frontiersin.org 2
well-studied rodents, which allowed the characterization of
several functions of NSCs. Indeed, the human SVZ consists of
four layers: cell bodies are accumulated in a ribbon (layer III)
separated from the ependymal layer (layer I) by a gap that is
largely devoid of cells (layer II), originated as a consequence of
neuroblast depletion (11). The astrocytic ribbon (layer III)
contains cell bodies of large astrocytes, a subset of which
proliferate in vivo and show in vitro multipotency and self-
renewal characteristics. Layer IV is a transitional region to the
brain parenchyma. During fetal development, the proliferative
activity within the SVZ progressively declines (12), but it remains
active in neonates, along the wall of the lateral ventricle,
generating diverse subtypes of neurons (13, 14).

Little is known about the precise role of neural stem cells in
the adult human brain. Although the debate is still open, it has
recently been reported that some degree of neurogenesis persists
in adulthood, contradicting two decades of history stating that
the human brain has no regenerative capabilities (15). In 1998,
Eriksson and colleagues detected adult hippocampal
neurogenesis in a post-mortem study of brains from neoplastic
patients treated with bromodeoxyuridine (BrdU) for tumor-
staging purposes. Proliferating cells (BrdU+) have been found
in both the SVZ of the lateral ventricle and the subgranular zone
FIGURE 1 | Neurogenesis in human fetal and adult SVZ. In the fetal brain, the neurogenic niche is organized into different strata: the ventricular zone (VZ), the
subventricular zone (SVZ), the intermediate zone (IZ), and the marginal zone (MZ). Apical radial glial cells of the SVZ remain in contact with the ependymal cells and
with the meninges and blood vessels, while the basal radial glial cells, which constitute the region of the SVZ called outer SVZ (oSVZ), lose contact with ventricles
leading to a discontinuous scaffold of radial glial cells (RGCs). Apical and basal RGCs generate neurons through two mechanisms: either directly or indirectly through
intermediate progenitor cells, which also originate astrocytes and oligodendrocytes. In the adult brain, the SVZ consists of four distinct stratified areas: layer I formed
by ependymal cells in contact with the lumen of ventricles; the hypocellular gap (layer II), mainly formed by displaced ependymal cells and DCX+ astrocyte processes;
layer III constituted by type B astrocytic cells; a transitional region to the brain parenchyma (layer IV) formed by mature neurons and oligodendrocytes.
February 2022 | Volume 13 | Article 826091
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of the dentate gyrus. In SGZ, some of these newly generated cells
were observed to be capable to differentiate into neurons (16).
Ernst and colleagues reported the presence of neuroblasts not
only in SVZ but also in the adjacent striatum, suggesting that
neuroblasts and new neurons in the adult human striatum derive
from the SVZ (17). Hippocampal cell turnover during adult life
was also confirmed by the quantification of integrated
radiocarbon into DNA of replicated cells (18). Different studies
proved that hippocampal neurogenesis persists throughout adult
life (19–21) showing a lower age-associated decline in humans
compared to mice (18). The preservation of hippocampal
neurogenesis during evolution could be related to human
cognitive adaptability. Interestingly, in patients with advanced
Alzheimer’s disease, hippocampal neurogenesis has been
described to drop sharply (19). In a small cohort of patients
with amyotrophic lateral sclerosis (ALS), neural progenitor
proliferation was increased in the SVZ and decreased in the
SGZ (22) Methodological challenges, however, render studies
about adult human neurogenesis of difficult interpretation, and
contradictory results may depend on the use of diverse
technologies (23). The development of new tools such as
single-cell RNA sequencing, neuroimaging techniques, and the
identification of novel reliable NSC markers will clarify the role
that adult human neurogenesis plays in hippocampal function,
neuroplasticity, and brain repair.

Neurogenic and Non-Neurogenic
Functions
The NSC functions have been extensively studied in mouse
models in which, under physiological conditions, they can be
divided into neurogenic and non-neurogenic activities.

In the SGZ of the hippocampus, new neurons are generated to
regulate and refine the existing neuronal circuits. Indeed,
hippocampal NSCs have been shown to have an important role
in adult behavior and other learning-related tasks, as the
preservation of spatial memory, memory acquisition and
maintenance (24). The effects on neurogenesis have been
extensively described in animal models. Mice in which the
apoptosis-promoting gene Bax was conditionally ablated in NSCs
to potentiate neurogenesis, showed an increased behavioral
performance when tested with a specific cognitive task (25). On
the contrary, decreased neurogenesis is associated with a prolonged
hippocampus-dependent period of associative fear memory, likely
aimed at preserving learning abilities by disposing of old memories
(26). In the SVZ, immature neurons and NSC perform different
tasks. Immature neurons tangentially migrate to three main areas:
the olfactory bulbs (OBs) along the rostral migratory stream (RMS),
the human prefrontal cortex along the medial migratory stream
(MMS) (13), and the frontal lobe along the arc pathway (14). NSCs
residing within the SVZ may contribute to the maintenance and
reorganization of the central nervous system, to neurocognitive
maturation and plasticity, although their functional role remains
controversial (24).

Results from recent studies showed that, besides pure
neurogenic functions, NSCs might play a comprehensive range
of bystander, non-neurogenic activities to maintain brain
Frontiers in Immunology | www.frontiersin.org 3
homeostasis (27). NSCs produce and secrete an array of
mediators that, in turn, regulate complex functions in the
brain. For instance, neuroblasts derived both from the SVZ
and SGZ can phagocytose apoptotic neuronal progenitors, an
essential function in maintaining neurogenesis (28). Moreover,
NSCs can curb microglial activation, proliferation, and
phagocytosis by secreting factors like the vascular endothelial
growth factor. Unchallenged microglia present in the adult SGZ
maintain the homeostasis of the neurogenic cascade by removing
apoptotic newly born cells by bilateral crosstalk between NSCs
and microglia (29, 30). Furthermore, as demonstrated by Snyder
and colleagues, neurogenesis-deficient mice mount a more severe
response to acute stress, by showing increased food avoidance,
behavioral despair in the forced swim test, and anhedonia in the
sugar preference test. Thus, SGZ-derived newly generated
neuroblasts seem to dynamically regulate stress responses by
controlling the hypothalamic-pituitary-adrenal axis (31).
GLIOGENESIS

Glia includes cells of ectodermal origin with diverse and dynamic
functions - radial glia, astrocytes, oligodendrocyte progenitor cells
(OPCs), oligodendrocytes - which orchestrate fundamental aspects
of nervous system development and function (32). During brain
development, distinct glia cells accomplish key tasks: neuronal birth,
migration, axon specification, synaptogenesis, plasticity,
homeostasis, constantly monitoring CNS structure and function
(Figure 2). Transplantation experiments (33) showed that spinal
cord progenitors that are restricted to glial lineage can recover
neurogenic potential upon transplantation into the dentate gyrus,
but not upon transplantation into the spinal cord or the non-
neurogenic CA1 area of the hippocampus. Thus, adult glial
progenitor cells are not lineage-restricted but can generate
neurons upon exposure to appropriate environmental cues.

Astrocytes produce and secrete molecules that can drive the
differentiation of adult neural stem/progenitor cells into neurons
(33). Despite the adult hippocampus being composed greatly of
neuroglia, which is four times more abundant than neurons (34),
the lack of appropriate technical tools has delayed the study of
the role of these supporting cells in adult neurogenesis. In recent
days, the use of genetic tools and electron microscopy has started
revealing that astrocytes and neural stem cells communicate with
each other, both in physiological states and disease. It is now
clear that astrocytes interact with neurons and other glial cells by
secreting soluble mediators that act as gliotransmitters,
neuromodulators, trophic factors, and hormones (35).
Interestingly, some of these neuroactive molecules can exert
either a driving or inhibitory role toward neurogenesis
depending on the step in which they act. For instance, ATP,
FGF2, and TSP1 have been found to stimulate adult NSCs
(aNSC) proliferation (34). Also, neurogenesin-1, IL-1b, IL-6,
and WNT3 have been shown to increase neuronal
differentiation, while IGFBP6, enkephalin, and decorin reduced
it. Neuronal maturation and synaptic integration are also
boosted by D-serine. Moreover, Casse et al. (36) reported that
February 2022 | Volume 13 | Article 826091
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astrocytes regulate the synaptic integration of new neurons by
reducing connectivity and glutamate reuptake (34). It has also
been documented by Toni et al. (37) that maturing neurons
depend on pre-existing astrocytes to identify synaptic partners.
In the dentate gyrus, the dendritic spines of new granule neurons
generate synapses with axon terminals already on site.

Any disease or lesion of the nervous system that induces an
immune activation promotes a reactive astrocyte phenotype, with
increased expression of the glial fibrillary acidic protein (GFAP).
More recently, transcriptomic analyses allowed a sharper
distinction between diverse astrocytic subsets in pathological
conditions. For instance, during neuroinflammation, the
expression of genes involved in synaptic transmission and the
release of neurotrophic factors are altered (38). As another
example, in both patients and mouse models of Alzheimer’s
disease, astrocytes rapidly respond to injury by becoming
reactive and activating a series of molecular, cellular, and
morphological changes (35, 36). Finally, cell surface expression
of programmed cell death 1-ligand 1 (PD-L1) driven by the
STAT3 pathway in reactive astrocytes is involved in the
establishment of an immunosuppressive microenvironment in
brain metastases (39).

NSCs also express astrocytic genes in response to the
activation of diverse signaling pathways, triggered by
Frontiers in Immunology | www.frontiersin.org 4
morphogenic proteins (BMPs), which signals mainly through
SMAD, leukemia inhibitory factor/ciliary neurotrophic factor
(LIF/CNTF), which activates the JAK/STAT pathway, and the
Notch pathway. In vitro, lipopolysaccharide (LPS), the classical
inducer of neuroinflammation, stimulates microglia to release a
NFkB-dependent secretome that includes interleukin 1 (IL-1),
tumor necrosis factor TNF, and complement C1q (37).

Although the generation of astrocytes and their function in
the adult brain are not yet well characterized, astroglia remains
the predominant cell type of the neurogenic niche in terms of
number of cells generated. In support of the important role of
astrocytes in adult neurogenesis, Casse et al. (34) described how
astrocytes can dysregulate adult neurogenesis leading to
cognitive impairment in AD. Thus, a clear link exists between
cognitive function and regulations of adult neurogenesis.

The process of differentiation along the oligodendroglial
lineage is strictly coordinated by glia-glia and neuron-glia
cross-talks at synaptic sites. Furthermore, according to Antel
et al. (40), also immune-mediated mechanisms can contribute
both positively and negatively to the generation and activation of
OPCs. For instance, a subset of B lymphocytes, the B-1a cells,
greatly contribute to OPC proliferation. B-1a cells can cross the
blood-brain barrier in a CXCL13-CXCR5-dependent manner
and are particularly abundant in the neonatal mouse brain. The
FIGURE 2 | Gliogenesis in human fetal and adult brain. The progression from fetal to adult gliogenesis in the SVZ, which lines the lateral and septal sides of the lateral
ventricle (LV), is shown. Arrows indicate cellular self-renewal or differentiation. Neuroepithelial stem cells, which can generate neurons, border the ventricles throughout
the neuraxis at the stages of neural tube closure. At the beginning of the neurogenesis, neuroepithelial cells differentiate into radial glial cells. Radial glia produces intermediate
progenitor cells and OPCs, which further differentiate respectively into neurons and oligodendrocytes. Radial glial cells have also the capacity to become astrocytes
or produce intermediate progenitors. Lastly, intermediate progenitor cells can generate different subtypes of astrocytes. In adults, neural stem cells are neurogenic,
yet, under some conditions like in response to injury, gliogenesis generate reactive astrocytes and oligodendrocyte-lineage cells. Oligodendrocytes are produced by
either type C cells or OPCs located in the grey matter. Type C cells produce OPCs as well as neurons. The OPCs subsequently differentiate into oligodendrocytes.
February 2022 | Volume 13 | Article 826091
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fact that B-1a cells promote the proliferation of OPCs has been
shown in vitro and further confirmed in vivo since the depletion
of B-1a cells from the developing brain results in a reduction of
both OPCs and mature oligodendrocytes. It has been
demonstrated that B-1a cells secrete a soluble form of Fca/mR,
the receptor for the Fc region of IgM, which promotes OPCs
proliferation and increases the axon myelination in the neonatal
mouse brain (38). Altogether, these data demonstrate that B-1a
cells infiltrating the brain may contribute to oligodendrogenesis
and myelination by promoting OPC proliferation via activation
of the IgM-Fca/mR signaling pathway (38, 40).
NEURAL STEM CELLS AS VIRAL TARGET

Congenital Infections Affecting the
Developing Fetal Neurodevelopment
TORCH infections are a group of congenital infections that can be
transmitted from the mother to the fetus (41). The TORCH
acronym refers to pathogens directly involved in the development
of the congenital disease: Toxoplasma, Rubella, Cytomegalovirus,
Herpes simplex 1 and 2, and Others (Chlamydia, HIV,
Coxsackievirus, Syphilis, Hepatitis B, Chickenpox, and ZIKV)
(39, 40, 42–47). Although viral transmission during the third
trimester of pregnancy has a reduced impact on the developing
fetus, infection during the first trimester is extremely disruptive,
with severe congenital neurological defects in the developing fetus,
which include microcephaly, cognitive and intellectual disabilities,
sensorineural hearing loss, and blindness. Evidence suggests that
NSCs are directly affected by viral infections, which lead to
developmental defects in the cerebral cortex mainly by interfering
with their differentiation into mature neural cells (41). A summary
of themain congenital syndromes associatedwithviral infections, is
presented in Table 1.
Frontiers in Immunology | www.frontiersin.org 5
Here we will focus on two viral outbreaks that created a
substantial impact on public health: ZIKV and SARS-CoV-2.
While ZIKV infection affects fetal neurodevelopment (48),
SARS-COV-2 targets adult endogenous neurogenesis and
affects homeostasis of neuronal circuits (49), while data on
infected neonates are still scarce.
The Case of ZIKV
ZIKV, a re-emerging arthropod-borne flavivirus, was firstly
isolated from the blood of a febrile monkey in 1947 in the Zika
forest of Uganda (50, 51). Through the 20th century, few human
ZIKV infections were reported, and these were recognized as mild
non-life-threatening illnesses (52). Limited seroepidemiology
surveys indicated that as many as 80% of infections were
asymptomatic or subclinical (52). Therefore, little attention was
paid to ZIKV up to the last decade when an outbreak of ZIKV
infection occurred firstly in the Yap Island in the Federal State of
Micronesia in April 2007 (52) and later in 2013 in French
Polynesia when an increased incidence of Guillain-Barrè
syndrome was reported to be associated with ZIKV infection
(53). However, the rapid spread with millions of cases and the
novel association of ZIKV with congenital microcephaly and the
Guillain-Barrè syndrome changed the public health landscape
such that the World Health Organization declared ZIKV
pandemic a Public Health Emergency of International Concern
(54) in 2016. Indeed, a seminal pathology study showed the
presence of Zika virions and viral RNA in the microcephalic
fetal brain with complete agyria and multiple microscopic
abnormalities of an aborted fetus due to symptomatic maternal
ZIKV infection acquired in Brazil (47). This study was followed up
by more investigations, all confirming the pathologic spectrum of
brain injury caused by ZIKV and lack of virus-induced cytopathic
effects outside of the brain (55) (Figure 3, left panel).
TABLE 1 | Main congenital syndromes associated with viral infections.

Pathogen Genome Family Mother transmission
route

Congenital syndrome References

Rubella Virus
(RUBV)

single-
stranded
RNA

Togaviridae Aerosols Microcephaly;
diffuse and widely
distributed calcification at basal ganglia; behavioral disorders; mental
retardation.

(39, 42)

Cytomegalovirus
(CMV)

double-
stranded
DNA

Herpesviridae Blood transfusions,
organ transplant and
mucus exposure

Punctate and periventricular or
cortical calcification;
mental retardation;
motor disabilities;
hearing loss.

(40, 43)

Varicella Zoster
Virus
(VZV)

double-
stranded
DNA

Herpesviridae Aerosols and contact with
vesicular fluids

Microcephaly;
ventriculomegaly; skin
and extremities abnormalities.

(44)

Herpes Simplex
Virus (HSV) 1
and 2

double-
stranded
DNA

Herpesviridae Sexual contact and
ascending
infection, perinatal
infection

Skin and
ocular abnormalities.

(45)

Zika virus
(ZIKV)

single-
stranded
RNA

Flaviviridae Mosquito
bites, sexual

Microcephaly;
ventriculomegaly; parenchymal or cerebellar calcification;
arthrogryposis.

(46, 47)
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ZIKV is a single-stranded RNA virus of the Flaviviridae
family and is closely related to other members of this family,
including Dengue, yellow fever, tick-borne encephalitis virus,
West Nile, and Japanese encephalitis virus. ZIKV is commonly
transmitted to humans by bites of infected Aedes mosquitoes
(56). Differently from the closely related virus, cases of ZIKV
sexual transmission have also been reported (57). Although the
members of the Flaviviridae family mentioned above are
neurotropic viruses that can cause severe illness with a
significant possibility of permanent neurological damage or
death (58), ZIKV causes a congenital ZIKV syndrome (CZS)
only when the infection is acquired during the first and the
beginning or whole second trimester of pregnancy (48, 59).
Although some features of CZS are in common with other
viral infections acquired during pregnancy as cytomegalovirus
infection (60) and rubella (61), CZS is peculiar considering the
severe microcephaly, decreased brain tissue, damage to the back
of the eye, hypertonia, and arthrogryposis (https://www.cdc.gov/
pregnancy/zika/testing-follow-up/zika-syndrome-birth-
defects.html).

The finding of ZIKV in the amniotic fluid of pregnant women
and the brain of microcephalic fetuses suggest a potential trans-
placental infection route (47, 62). A potential source of the virus
spreading to placental trophoblasts during the very early phases
Frontiers in Immunology | www.frontiersin.org 6
of pregnancy is represented by endometrial stromal cells,
especially when decidualized by progesterone stimulation (63).
ZIKV can reach and infect decidualized endometrial stromal
cells via the uterine circulation or by sexual viral transmission.

In Vitro ZIKV Infection
The first evidence of the strong ZIKV tropism in NSCs came by
comparing in vitro infection of iPSC derived NSCs with
immature neurons, the last being less permissive to productive
infection than NSCs (64). ZIKV envelope protein was detected in
human iPS-derived NSCs 24 h after exposure to ZIKV, and
infectious virus was detected in the cell culture supernatant 72 h
post-infection, providing evidence of productive infection.
Importantly, viral replication induced cell death and
dysregulation of the cell cycle. To establish the connection
between ZIKV infection and the malformations observed in
fetal brains, Garcez et al. analyzed the impact of ZIKV
infection in a 3D culture system of neurospheres derived from
human iPSC (65). Viral particles were detected on the cell
membrane, in mitochondria, and in intracellular vesicles of
ZIKV-infected cells in the neurospheres. The presence of
apoptotic nuclei, a hallmark of cell death, indicated that ZIKV
was cytopathic for human NSCs, thus impairing the proper
development of neurospheres.
FIGURE 3 | Models of ZIKV and SARS-CoV-2 infection of the CNS. When ZIKV is transmitted to a pregnant woman by bites of infected Aedes mosquitoes,
although it causes mild or no symptoms in the mother, it enters the bloodstream, breaches the placental barrier, and infects the developing CNS of the fetus, with
devastating consequences including microcephaly, decreased brain tissue, damage to the posterior segment of the eye, hypertonia, and arthrogryposis. In vitro
experiments with human neurospheres confirm the direct effect of ZIKV on neural cells. Once SARS-CoV-2 is inhaled into the nasal cavity, it infects the sustentacular
cells of the olfactory epithelium using ACE2 receptor and multiplies causing infection of the olfactory epithelium, the respiratory epithelium, and olfactory bulb through
the numerous ACE2 receptors expressed by the cells of these tissues. From the olfactory bulb, the virus may travel to the CNS by retrograde axonal transport along
olfactory sensory neurons.
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To investigate how ZIKV infection affects brain development
and causes microcephaly, 3D brain organoids derived from
human embryonic stem cells can be used to recapitulate fetal
brain development during the first trimester of pregnancy (66).
Indeed, brain organoids self-organize and show regionalization,
cortical differentiation, the presence of neuronal layers, and an
outer RGC layer (66). ZIKV infection impaired the growth of
human stem cell-derived organoids, with increased apoptosis,
reduced proliferation and the ensuing decrease of neuronal cell-
layer volume mirroring microcephaly (65, 67).

The analysis of the transcriptomic profile of human
embryonic stem cell-derived organoids infected with a
prototype strain of ZIKV showed that the innate immune
receptor Toll-like-Receptor 3 (TLR3) was upregulated after
ZIKV infection (68). Furthermore, TLR3 inhibition decreased
the cytopathic effect of ZIKV infection. Pathway analysis of gene
expression changes upon TLR3 activation identified several
genes associated with neuronal development, indicating that
ZIKV affects neurogenesis by interfering with a TLR3-
regulated pathway. Thus, ZIKV-mediated activation of TLR3
severely affects neuronal cell fate, leading to an overall reduction
of organoid volume mimicking a microcephalic phenotype (68).

Animal Models of ZIKV Pathology
Animal models of ZIKV infection have supported the
characterization of ZIKV pathology. In this regard, direct
evidence that ZIKV infection can cause microcephaly, with
enlarged lateral ventricles and thinner cortical plates as
compared to uninfected animals, was provided by Li and
colleagues, who investigated ZIKV infection of the embryonic
mouse brain, and its effects on brain development (69). Indeed,
the Asian ZIKV strain, SZ01 replicates efficiently in embryonic
mouse brain by directly targeting different neuronal lineages,
including NSCs. ZIKV infected NSCs undergo cell-cycle arrest,
apoptosis, and a differentiation blockage, ensuing cortical
thinning and microcephaly. Gene expression analysis of
infected brains showed the overexpression of flavivirus entry
receptors and aberrant expression of genes related to immune
responses and apoptosis.

The isolation of ZIKV from the amniotic fluids of pregnant
women and the brain of microcephalic fetuses suggests a
potential trans-placental infection route (47, 62). Decidualized
endometrial stromal cells are a crucial target of ZIKV infection
either via the uterine vasculature or by sexual transmission, thus
likely representing a potential source of the virus spreading to
placental trophoblasts during early pregnancy (63). The
transplacental infection has been demonstrated in two mouse
models of ZIKV infection during pregnancy: female mice lacking
type I interferon signaling (Ifnar1−/−) crossed to wild type (WT)
males, and pregnant WT females treated with an anti-ifnar-
blocking antibody. In these models, ZIKV infected trophoblasts
of the maternal and fetal placenta resulting in an intrauterine
growth restriction (70). However, microcephaly, or deficiency of
specific brain structures were not detected, possibly due to the
different timing of brain development in mouse vs. human
fetuses, as the development and maturation of the mouse brain
includes a significant postnatal phase (71, 72).
Frontiers in Immunology | www.frontiersin.org 7
In summary, ZIKV is a congenital infection that has serious
consequences to the fetus and neonates and NSCs represent its
preferred target. After infection, NSCs exit the cell cycle and die.
Nevertheless, ZIKV has not been a major public health concern
throughout the world since mid-2017 as after an estimation of
4,000 newborns with serious brain damage, the virus has
disappeared from the Americas and the Caribbeans. However,
an analysis of travelers who visited Cuba in 2017 or 2018
demonstrated ZIKV infection after their return to the United
States and Europe (73). These results suggest that even during
ZIKV waning infection, outbreaks were undetected until an
immunologically naïve population of travelers became in contact
with the virus. In the absence of an effective vaccine, travel
surveillance is important, particularly for pregnant women.

The Case of SARS-CoV-2
A novel severe respiratory disease emerged at the end of 2019
(coronavirus disease 2019, COVID-19) in Wuhan, China, and
caused a still ongoing pandemic with more than 370 million
people infected and 5 million deaths worldwide as of January
2022. COVID-19 is caused by a novel coronavirus called severe
acute respiratory syndrome (SARS) CoV-2 (https://www.who.
int/emergencies/diseases/novel-coronavirus-2019/technical-
guidance/naming-the-coronavirus-disease-(covid-2019)-and-
the-virus-that-causes-it) to distinguish it from SARS-CoV that
emerged in the Guangdong province of China in 2003 and
caused the severe clinical condition known as SARS (74). Like
SARS-CoV, SARS-CoV-2 causes pneumonia with severe
inflammation, which can progress to acute respiratory distress
syndrome (ARDS) and death (75). COVID-19 can also be a
multi-organ disease that may affect the brain (76–78) (Figure 3,
right panel). Neurological manifestations including loss of smell
and taste have been reported in concomitance with COVID-19 in
approximately 27% of infected individuals (79) and can persist in
subjects who have recovered from COVID-19 (80). However, it
is unclear whether the sequela of neurological events depends on
the direct infection of the neural tissue, or it is a consequence of
the inflammation and activation of the coagulation cascade
induced by the virus. In this regard, a recent report has
demonstrated the presence of intact virions and SARS-CoV-2
subgenomic RNA (a surrogate of active viral replication) in the
olfactory mucosa of a minority of autoptic specimens obtained
from individuals who died of COVID-19 (81), suggesting that
SARS-CoV-2 can access the central nervous system at the
neural-mucosal interface of the olfactory mucosa via axonal
transport. However, another study in which postmortem
bedside collection of olfactory mucosa and whole olfactory
bulbs was set up, failed to show the presence of SARS-CoV-2
in sensory neurons (82). These discrepancies might be explained
by the difficulties to obtain samples of suitable quality from
deceased individuals. Nevertheless, SARS-CoV-2 RNA was
detected in the leptomeninges (82) suggesting that virions
might have reached the cranial cavity either via migration
through axonal transport or via cerebrospinal fluid and
spillover from meningeal blood vessels. The analysis of single
nucleus transcriptomes from both the frontal cortex and choroid
plexus from autoptic samples of severe COVID-19, has shown
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major neuropathological phenotypes (49). SARS-CoV-2 was not
detected in the brain although earlier neuroinvasion could not be
excluded. These findings indicate that, in COVID-19 patients,
cells of the blood-CSF barrier respond to inflammatory signals
generated in the periphery by SARS-CoV-2 infection (83),
allowing peripheral T cell infiltration (49).

To determine the potential SARS-CoV-2 neurotropism,
iPSCs-derived neural cells have been used for in vitro infection
with SARS-CoV-2 taking advantage of iPSC plasticity to be
reprogrammed towards mature neuronal cells both in
monolayer cells and structured organoids. To dissect the
cellular effects of SARS-CoV-2 infection on the brain,
McMahon et al. reported that glial cells and cells of the
choroid plexus expressed the entry receptor for SARS-CoV-2
angiotensin-converting enzyme 2 (ACE2) but did not detect viral
replication or cell death fragmentation (84). The recent
development of cortical organoids containing pericyte-like cells
(PLCs), allowed the researchers to demonstrate that PLCs can
serve as SARS-CoV-2 ‘replication hubs’, sustaining viral invasion
and spread to neighboring cells, including astrocytes (85).
Indeed, a neuropathological study of post-mortem brain of
COVID-19 patients found that astrocytes are the major site of
SARS-CoV-2 infection and replication (86).

Strong evidence from both patients and experimental models
indicate that human variants of SARS-CoV-2 could reach the
CNS and target neurons, astrocytes, and microglia (87). The
crosstalk between astrocytes and microglia plays a relevant role
not only in the context of the local CNS inflammation but also in
response to peripheral inflammation. In COVID-19 patients,
neuroinflammation might arise and progress in response to the
strong systemic cytokine storm observed in some patients, but
also because of a CNS renin-angiotensin system dysregulation
(87). Following SARS-CoV-2 infection of the brain, microglial
cells get promptly activated, release an array of pro-
inflammatory mediators, reactive oxygen species, and nitric
oxide, recruit immune cells from the periphery and activate
astrocytes (88–90).

SARS-CoV isolated from human specimens can infect C57/
BL6 mice (91). Viral RNA was detected in the brain of infected
mice up to 9 days post-intranasal infection while live virus could
be isolated at later time point (9 to 15 days post-infection) (91).
The virus was mainly localized in the hippocampus (91). Viral
infection is associated with a strong neuroinflammatory response,
which could either be induced by a direct viral infection of cells in
the CNS or by the upregulation of peripheral cytokine levels. The
activation of astrocytes and microglia in response to the elevation
of peripheral cytokines is associated with a switch into a
proinflammatory gene expression program, which could lead to
increased blood-brain barrier permeability (87). Even if astrocytes
andmicroglia may not be direct targets of viral infections, they can
get activated in response to proinflammatory cues from
endothelial cells, macrophages, and/or neurons, thus amplifying
neuroinflammation. These data support the hypothesis that
astroglia and microglia indeed play a relevant role in the
development of the neurological symptoms observed in
COVID-19 patients (87). However, the mechanisms by which
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the infected glia maintains the inflammatory reaction in the CNS
remain to be addressed.

SARS-CoV-2 continuously evolves due to mutations that occur
during replication of the genome. These mutations result in genetic
variations of the circulating variants during the pandemic, which
may spread more easily or show immune evasion and resistance to
treatments. South Africa has witnessed the rapid emergence of
SARS-CoV-2 variants. Some mutations in the C.1.2 lineage, a new
lineage of the SARS-CoV-2 virus, have occured in other SARS-
CoV-2 variants of concern. More data are being gathered to
understand this new variant (National Institute for Communicable
Diseases - NICD, 2021. Detection and frequency of the C.1.2
mutated SARS-CoV-2 lineage in South Africa.

https://www.nicd.ac.za/detection-and-frequency-of-the-c-1-
2-mutated-sars-cov-2-lineage-in-south-africa/). This variant has
not yet been investigated in terms of any effect on the brain and
its cell types.
CONCLUSIONS AND FUTURE
DIRECTIONS

Use of 3D Models to Study Infection of
Neural Progenitor Cells
Human brain organoids derived from iPSCs recapitulate the
developmental process of the fetal human brain. They represent
a physiologically relevant model to dissect mechanisms of
neurodevelopment and study neurological diseases. Indeed,
only the use of 3D models has revealed virus-specific and
complex immune system strategies, emphasizing the power of
brain organoids over 2D systems in modeling viral infections
(85, 92).

Congenital viral infections caused by TORCH pathogens are a
major cause of fetal brain malformation (93). However, the
mechanisms by which distinct TORCH pathogens influence
fetal neurodevelopment is still not known. Krenn et al. (92)
have shown that brain organoid modeling of ZIKV and herpes
simplex virus (HSV-1) infections reveal distinct virus-specific
responses causing microcephaly. Both viruses efficiently replicate
in early-stage brain organoids and reduce their growth by
inducing cell death. However, transcriptional profiling shows
that ZIKV and HSV-1 induce specific cellular responses. While
HSV-1 activates non-neural developmental programs and
impairs neuroepithelial identity, ZIKV infection induces the
activation of antiviral and stress-related pathways without
affecting the organoid cytoarchitecture. Furthermore, the two
viruses display different sensitivities to type I interferons,
although they both induce a weaker type I interferon response
in 3D compared to 2D models.

SARS-CoV-2 has been linked to a wide variety of neurological
conditions (94). The virus can infect the human CNS, either
directly or indirectly via elusive mechanisms, leading to the
inflammation of blood vessels and ensuing clotting, seizures,
strokes, and hemorrhages. Recent studies showed that the virus
entry receptor ACE2 is poorly expressed in neural cells, but
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highly expressed in brain pericytes, specialized cells that wrap
around blood vessels and regulate immune cell entry to the CNS
(95). Indeed, intranasal infection with SARS-CoV-2 induced a
prompt hypoxic/ischemic-like pericyte response in the brain of
transgenic mice expressing human ACE2 (95). Likewise,
immunostaining of human brains demonstrated the presence
of viral dsRNA in the vascular wall, perivascular inflammation,
and a restricted loss of blood-brain barrier integrity (96). Since
human brain organoids including only neural cells could not be
infected with SARS-CoV-2, a human brain 3D model including
also pericytes has been developed and shown to support the entry
and infection of SARS-CoV-2 (85). This improved 3D model
identified ACE2-expressing pericytes as one possible route of
virus entry into the brain. Thus, pericytes can serve as a hub for
SARS-CoV-2 amplification and spreading to other types of
brain cells.

Antiviral Agents Protecting Neural
Progenitor Cells
Heparin, a soluble derivative of heparan sulfate widely used as
anticoagulant, has potentially attractive features including
inhibition of binding and entry of the enveloped viruses, such
as herpes simplex (HSV) (97, 98), human immunodeficiency
(HIV) (99), SARS coronavirus (100), and influenza (H5N1)
(101). The study of heparin effects on ZIKV infection of
human NSCs showed that heparin fully prevented ZIKV-
induced cell death, while minimally affecting viral replication
(102). Moreover, the differentiation potential of NSCs into
neuroglia was fully preserved upon heparin-treatment (103).

Indeed, heparin can be exploited as an antiviral agent offering
a fast therapeutic option for present and future emerging viruses.
In this regard, the activity of heparin against SARS-CoV-2 has
been established using a few in vitro experimental models (104,
105). Importantly, heparin used in both therapeutic and
prophylactic anticoagulant regimes reduced in-hospital
mortality compared with untreated patients (106). As COVID-
19 is a disease that continues to occur despite highly efficacious
vaccines, several drugs, marketed for other therapeutic
Frontiers in Immunology | www.frontiersin.org 9
indications, have been re-purposed to treat COVID-19
patients, and antiviral strategies that include treatment with
remdesivir or convalescent plasma have received emergency
approval (107, 108). Despite promising results, the use of such
treatments is limited, as they can only be delivered intravenously.
Additional treatments are therefore required and, indeed, the
first orally available antiviral drug against COVID-19,
molnupiravir has been approved for use in the UK. There is,
therefore, an urgent need to develop additional treatments to
curtail morbidity and mortality caused by SARS-CoV-2.
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