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During the maturation of intestinal epithelial cells along the crypt/surface axis, a multitude
of acid/base transporters are differentially expressed in their apical and basolateral
membranes, enabling processes of electrolyte, macromolecule, nutrient, acid/base
and fluid secretion, and absorption. An intracellular pH (pHi)-gradient is generated
along the epithelial crypt/surface axis, either as a consequence of the sum of the
ion transport activities or as a distinctly regulated entity. While the role of pHi on
proliferation, migration, and tumorigenesis has been explored in cancer cells for some
time, emerging evidence suggests an important role of the pHi in the intestinal stem cells
(ISCs) proliferative rate under physiological conditions. The present review highlights
the current state of knowledge about the potential regulatory role of pHi on intestinal
proliferation and differentiation.
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INTRODUCTION

Mechanisms of acid/base control in the gastrointestinal tract came into focus a century ago,
because during the decades of very high gastric ulcer prevalence, a relationship between peptic
ulcers and gastric acidity had been recognized (Banic et al., 2011). The ability to assess pHi
in mammalian gastrointestinal cells with the use of fluorescent dyes (Thomas, 1986) made
the study of pHi-recovery after an acidic or alkaline insult possible, as well as the delineation
of the involved ion transporters (Flemstrom and Isenberg, 2001; Kaunitz and Akiba, 2006;
Seidler, 2013). pHi measurements have also been utilized to outline the transport proteins
involved in intestinal absorptive and secretory processes (Zachos et al., 2005; Hug et al., 2011;
Seidler and Nikolovska, 2019).

In the apical membranes, the anion channel cystic fibrosis transmembrane conductance
regulator (CFTR) and the Cl−/HCO3

− exchanger SLC26A3 (and possibly SLC26A6) export
HCO3

− into the lumen and are therefore “acid loaders.” Likewise, proton-coupled nutrient
transporters load the enterocytes with acid moieties during digestion. The activity of acid loaders

Abbreviations: ISCs, intestinal stem cells; CFTR, cystic fibrosis transmembrane conductance regulator; SLC26A3, Solute
Carrier Family 26 Member 3 (Cl−/HCO3

− exchangers); NHE1/2/3/8 (SLC9A), sodium/hydrogen exchangers 1/2/3/8; AE2
(SLC4A2), Anion exchange protein 2; NBCn1 (SLC4A7), Electroneutral sodium/bicarbonate-dependent cotransporter;
NBCn1 (SLC4A4), Electrogenic sodium/bicarbonate cotransporter; GI, gastrointestinal; WT, wild type; KO, knock out; CF,
cystic fibrosis; EGF, epidermal growth factor; BMP, bone morphogenetic protein; Dvl, Disheveled; Fz, Frizzled receptor; Hh,
Hedgehog signaling.
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is counteracted by the apical acid extruders, the Na+/H+
exchangers NHE2, NHE3, and NHE8 (SLC9A2/3/8); a process
that results in salt and water absorption. Apical proton ATPases
are also expressed in various cell types along the GI tract. The
basolateral membranes also express both acid loaders, such as
the Cl−/HCO3

− exchanger AE2 (SLC4A2), and acid extruders,
such as the NHE1 and the Na+/HCO3

− cotransporters NBCn1
(SLC4A7) and NBCe1 (SLC4A4). Immunostaining and in situ
hybridization techniques localized these transporters in the
respective membranes, often with an expression gradient along
cryptal or crypt/villus axis, and along the proximal to distal gut
axis (Strong et al., 1994; Ameen et al., 1995; Ameen N. et al.,
2000; Ameen N.A. et al., 2000; Alper et al., 1999; Chu et al.,
2002; Jacob et al., 2002; Wang et al., 2002; Boedtkjer et al., 2008;
Jakab et al., 2011; Singh et al., 2013b). Figure 1 depicts a colonic
crypt, with experimentally determined pHi-gradient along its
axis, and the relevant acid/base transporters on the apical and
basolateral membranes.

The role of the steady-state pHi in the cellular physiology of
the intestinal epithelium has not been addressed experimentally,
partially because of experimental uncertainties in the calibration
process that allows conversion of the fluorometric intensity
into an actual pHi value (O’Connor and Silver, 2013), and
because of the short lifetime of isolated intestinal mucosal
preparations. Recent progress toward preservation of functional
intestinal stem cells and therefore cultivation of native intestinal
epithelium in so-called “organoid cultures” has enabled scientists
to observe cellular functions, including the pHi, of the intestinal
epithelium in “steady-state.” This minireview highlights recent
novel findings regarding the role of pHi in intestinal proliferation
and discusses the potential role of pHi in the signaling pathways
that regulate the constant renewal of the intestinal mucosa.

pHi-Regulatory Studies in the Intestinal
Epithelium
Temporal changes in the pHi of epithelial cells in the GI
tract are imposed physiologically due to changes in luminal
pH. For example, the consequences of short-term exposure of
the mouse gastric and duodenal epithelium to acidic luminal
perfusate (mimicking the stage of gastric emptying), or of the
colonic epithelium by short chain fatty acids (mimicking bacterial
metabolism), have been studied in detail. The epithelium
counteracts this intracellular acidification by activation and/or
rapid trafficking of a variety of ion transporters to the brush
border and basolateral membrane, facilitating proton extrusion,
and HCO3

− import to re-establish the resting pHi (Chu and
Montrose, 1995; Akiba et al., 2001; Singh et al., 2013a). These
processes are coordinated by a large array of neural, paracrine,
and direct epithelial regulatory mechanisms (Smith et al., 2006;
Singh et al., 2012; Takeuchi et al., 2012; Akiba and Kaunitz, 2014).

In contrast to transient pHi alterations, the consequences
of sustained deviations from the resting pHi as a result of
impaired ion transport have hardly been studied in the native
intestinal epithelium. For decades, the role of steady-state
pHi alterations has been addressed primarily in tumor cells.
In cancer cells numerous H+ extrusion and base loading

mechanisms are upregulated, which generally leads to an inverted
transmembrane pH gradient, characterized by alkalization of
intracellular pH and extracellular acidosis, which is considered
a hallmark of cancer metabolism (Webb et al., 2011; Swietach
et al., 2014; Pedersen et al., 2017; Flinck et al., 2018; Becker
and Deitmer, 2020; Liu et al., 2020). In this scenario, both
the high intracellular and the low extracellular pH contribute
to the malignant behavior (Pillai et al., 2019; Boedtkjer and
Pedersen, 2020). Early studies supporting a role of mitogenic
activation of Na+/H+ exchange and intracellular alkalinization
in proliferation of non-transformed cells, such as fibroblasts
(Grinstein et al., 1989) has been met with criticism because a
concomitant activation of acid loaders abolished the rise in pHi in
fibroblasts in the presence of CO2/HCO3

− in the medium (Gillies
and Martinezzaguilan, 1991). Recent technological advances and
an expanded knowledge about the molecular nature of acid/base
transporters as well as the mechanisms of epithelial growth and
differentiation allow addressing the question about the influence
of pHi in epithelial homeostasis.

Alkaline Steady-State pHi Caused by
Loss of the CFTR Channel in Intestinal
Stem Cells (ISCs) Is a Causative Factor
in ISC Hyperproliferation
Simpson et al. (2005) had identified an alkaline pHi in the intact
epithelium of Cftr−/− compared to identically treated wild type
(wt) mouse duodenal mucosa. When techniques became available
for intestinal stem cell maintenance and thus long term culture of
native intestinal organoids, the same group used the technique
to demonstrate a sustained alkalized resting pHi in the epithelial
cells of small intestinal organoids grown from Cftr−/− crypts
(Walker et al., 2016). Interestingly, the group demonstrated that
the alkaline pHi was not primarily due to the defective HCO3

−

conductance via CFTR, but to its defective Cl− conductance,
resulting in intracellular Cl− retention and an inability of the
basolateral acid loader AE2 to export HCO3

−
i in exchange for

Cl−o. Accordingly, pHi could be normalized by normalizing
[Cl−]i in Cftr−/− enterocytes (Walker et al., 2016). Employing
an array of sophisticated methods, the group demonstrated an
expression and functional activity of CFTR in murine ISCs,
an alkaline intracellular pHi in Cftr−/− ISCs, accompanied by
hyperproliferation in Cftr−/− organoids. These findings suggest
that the Cftr−/−-associated crypt and villus elongations, which
are also observed in the absence of inflammatory markers (Tan
et al., 2020) and the hyperproliferation described in murine
Cftr−/− intestinal epithelium (Gallagher and Gottlieb, 2001)
may be partially a consequence of the lack of CFTR in ISCs.
Crossbreeding of Cftr−/− and wt mice with transgenic mice
which express a fluorophore (EGFP)-labeled WNT transducer
Disheveled (Dsv) and the cell membrane-targeted, two-color
fluorescent Cre-reporter RosaTmT/mG enabled the group to study
the proximity of Dsv to the membrane receptor Frizzled 7,
which has been recognized as a key event in WNT signaling
(Axelrod, 2001) in Cftr−/− and wt ISCs with live cell imaging.
Subjecting the organoids to manipulations that reduced inner
membrane negative charge, [Cl]i or pHi, the authors established
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FIGURE 1 | Representation of experimentally determined pHi gradient and the major signaling cascades in the colonic crypt that together control intestinal
homeostasis. Wnt and EGF are essential for proliferation and maintenance of ISCs. Notch signaling targets the proliferating cells directing them to secretory or
absorptive lineage differentiation. Hedgehog (Hh), expressed by epithelial cells in the upper part of the crypt maintains the myofibroblasts and prompts BMP ligand
expression, which then promotes differentiation while restraining cell proliferation of the epithelial cells. Since they are involved in different steps of intestinal
homeostasis, the signaling pathways form an opposing gradient along the crypt axis. The activity of the signaling pathways is influenced by a pHi gradient spread
along the crypt, with more acidic pHi values present at the bottom and more alkaline values toward the cryptal surface. The pHi gradient is generated by the activity
of the different ion transporters expressed on the intestinal epithelial cells. Proliferating cells are characterized by high activity/expression of CFTR, NHE2, and NHE8
on their apical membrane, and NBCn1, NKCC1, AE2, and NHE1 on the basolateral membrane. As the cells transition from proliferating to differentiated state, the
expression of NHE3, DRA (Slc26a3), and ENaC becomes more dominant at the apical membrane and NBCe1, NHE1, and AE2 on the basolateral membrane.
Tightly regulated expression and activity of the ion transporters at different segments of the crypt allows maintenance of distinct pHi values that in turn control the
activity of the signaling pathways essential for synchronized proliferation and differentiation to retain intestinal homeostasis. Increase of pHi caused by alterations in
ion transporter expression/activity (e.g., Cystic Fibrosis-CF) or tumors leads to activation of certain signaling pathways and hyperproliferation.

the causative role of pHi alkalinity for increased WNT signaling
in Cftr−/− ISCs.

Loss of CFTR function in CF patients is associated with a
significantly increased risk of developing digestive tract cancers,
but not of lung cancers (Neglia et al., 1995; Maisonneuve et al.,
2003, 2013; Scott et al., 2020). CFTR is expressed in ISCs, but not
detectable in the progenitor basal cells of the respiratory mucosa
(Plasschaert et al., 2018). Since both organs are subjected to the
typical CF epithelial manifestations of dysbiosis, inflammation,
and remodeling, the findings by Strubberg et al. (2018) may have
identified an intrinsic factor favoring malignant growth in the CF
intestinal epithelium.

Associations Between pHi and/or
Acid/Base Transporters and Epithelial
Morphogenesis in Native Intestinal
Epithelium
From the existing literature pool, only the study done by
Strubberg et al. (2018) provides a molecular mechanism linking

steady-state pHi and proliferation in native epithelium. In a
number of cellular systems, however, it is found that slightly
alkaline pH (∼0.3 pH units above the steady-state pHi)
is important for initiating DNA synthesis and proliferation
[reviewed in Flinck et al. (2018)]. Here we report studies in
native intestinal epithelium in which pHi and/or proliferation
was measured, but the molecular mechanism linking the two has
yet to be explored.

SLC4A4 (NBCe1) is expressed predominantly in small
intestinal villous (Jakab et al., 2011) and colonic surface cells
and NBCe1 KO proximal surface colonocytes have significantly
reduced steady-state pHi compared to WT (Yu et al., 2016). Due
to the short life span and the tiny intestine of these mice, the
proliferation rate in the colon was not addressed, but a study
with LS174 cells (human colonic adenocarcinoma cells) showed
that SLC4A4 knockdown impaired cell proliferation (Parks and
Pouyssegur, 2015). The Cl−/HCO3

− exchanger Slc26a3, which
mutation is the molecular cause of congenital chloride diarrhea,
is mainly expressed in the colonic absorptive epithelial cells
lining the luminal surface, not in the ISCs (Hoglund et al., 1996;
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Xiao et al., 2012). Loss of Slc26a3 function, in the colon leads
to increased steady state pHi in the surface epithelium (Xiao
et al., 2014). Colonic epithelial hyperplasia has been described in
the original publication of the Slc26a3−/− mouse (Schweinfest
et al., 2006). Possibly the alkaline pH interferes with intracellular
acidification required to trigger programmed cell death at the
colonic surface epithelium (Park et al., 1999; Kniep et al., 2006).
Increased crypt length, seen in Cftr−/− epithelium, is not a
feature of Slc26a3−/− colonic epithelium (Kini et al., 2020).

What about the effect of an acidic pHi on proliferation
and differentiation? While many cell lines are viable in acidic
medium, the pharmacological or genetic inhibition of acid
extruders or base loaders generally curbs proliferation and
has been repeatedly suggested as an antiproliferative treatment
in tumors (Chambard and Pouyssegur, 1986). It was recently
reported that a genetic deletion of an acid extruder, namely
NHE8, in colonic ISC displays hyperproliferative phenotype, but
the pHi in the affected cells was not measured (Xu et al., 2019).

Cellular Signaling Pathways That May
Link pHi to Proliferation and
Differentiation
Regeneration, expansion and lineage differentiation of the
intestinal epithelium is modulated by various signaling pathways,
namely Wnt/β-catenin, EGF (epidermal growth factor), BMP
(bone morphogenetic protein), Notch, Hedgehog, and Eph–
ephrin which mainly occur in gradients along the crypt/villus
axis as depicted in Figure 1 (Spit et al., 2018). These signaling
cascades are derived from the epithelial or the mesenchymal
niche (Spit et al., 2018). A potential cross-interaction between the
gradients of signaling pathways and the intracellular pH gradient
along the crypt/villus axis might exist, but is understudied. In
this paragraph we point out important signaling pathways for
proliferation and differentiation in which a relationship to pHi
has been delineated in other cellular system, and which are worth
studying in the native intestinal epithelium.

Wnt signaling is the main driving force of ISC proliferation.
Increased Wnt/β-catenin signaling leads to hyperproliferation
observed in Cftr−/− ISCs as described above. The molecular
mechanism behind the increased Wnt activity involves the
alkaline pHi-facilitated association of the Wnt transducer
Disheveled (Dvl) to the plasma membrane and binding to
the Frizzled-7 receptor (Fz) (Walker et al., 2016; Strubberg
et al., 2018). Similarly, a study in Drosophila melanogaster
cells shows that the activity of dNhe2 (a Drosophila analog of
the mammalian NHE1), which allows maintenance of alkaline
pHi, is necessary for the binding and surface recruitment
of Dvl by Fz (Simons et al., 2009). Another component of
the Wnt signaling pathway, β-catenin is also influenced by
the pHi. Increasing the pHi by glycolysis stimulates β-catenin
acetylation leading to Wnt signaling activation in embryos and
human tail bud-like cells differentiated in vitro from iPS cells
(Oginuma et al., 2020). Intracellular acidification induces the
transcriptional repressor DDIT3 that suppresses the activity of
Wnt, as shown in vitro and in a mouse xenograft tumor model
(Melnik et al., 2018). However, another group has shown that cell

alkalization with NH4Cl in MDCK epithelial cells and Drosophila
melanogaster led to decreased β-catenin abundance at cell–cell
junctions and in the nucleus (White et al., 2018), while lower
pHi in NHE1-deficient PS120 fibroblasts significantly increased
β-catenin at membrane protrusions (White et al., 2018). Recently
the involvement of potassium channels, namely KCNQ1,
in the Wnt/β-catenin signaling pathway has been shown.
A colocalization of KCNQ1and β-catenin at the adherence
junctions was detected in rat colonic crypts and HT29 cells
(Rapetti-Mauss et al., 2017) and KCNQ1 inhibition leads to re-
localization of β-catenin in the cytosol, Wnt/β-catenin signaling
pathway stimulation with increased expression of Cyclin D1
and C-Jun as Wnt target genes (Rapetti-Mauss et al., 2017,
2020). Although, pHi is not directly implied, K+ channels allow
hyperpolarization of the membrane voltage, thus contributing
indirectly to pH regulation (Spitzner et al., 2007).

EGF signaling is another important modulator of ISC
proliferation. EGF is produced by the adjacent fibroblasts and
Paneth cells (Sato et al., 2011; Farin et al., 2014), and activates
the signaling cascade by binding to the EGF receptor (EGFR)
on ISCs. Extracellular pH influences the binding of EGF to its
receptor, with maximized binding at pH8 and reduced interaction
at pH6.5 (Nunez et al., 1993). Early research showed that EGF
can increase pHi in A431 human epidermoid carcinoma cell line
(Rothenberg et al., 1983). Later investigation in chicken granulosa
cells (Li et al., 1991), Hep G2 hepatoma cells (Strazzabosco
et al., 1995), and in primary cultured rabbit surface epithelial
cells (Nylander-Koski et al., 2006) showed that EGF induced
intracellular alkalization occurs via activation of NHE1. These
data point that an alkaline pHi shift, caused by activation of
NHE1 on the basolateral membrane, is an important event in
EGF signaling pathway that stimulates cell proliferation. Indeed,
EGFR forms a complex with NHE1 via NHERF1 (Cardone et al.,
2015). Apical EGF can also activate EGFR signaling and promote
proliferation similarly to basolateraly induced EGFR activation
(Kuwada et al., 1998). EGF impacts the apical NHEs, it stimulates
NHE2 mRNA expression and activity in rat intestinal epithelial
(RIE) cell (Xu et al., 2001), but it has a negative effect on NHE8
expression (Xu et al., 2010). The interplay between apical or
basolateral EGFR activation, different NHEs, and the pHi is not
completely understood. It seems plausible that a constant slightly
acidic pHi in the ISC zone may prevent hyperactivation of the
signaling pathways that could result in hyperproliferation and
possible tumor formation (Liu et al., 2020).

BMP, Notch, Hh, and Eph are more dominant in the upper
sections of the crypt and involved in cell fate decision and
terminal differentiation. Knowledge about the impact of the pHi
on the later signaling cascades is scarce. The activation of the
Notch signaling involves binding of the ligands to the receptor,
and subsequent activation of the endocytosis machinery and this
later step is influenced by the vacuolar (H+)-ATPase (V-ATPase),
a proton transporter involved in the acidification of endosomal
compartments (Yan et al., 2009). Notch signaling plays an
important role in the determination of cell fate by regulating
the balance between cell proliferation and differentiation (Baron,
2003), thus impacting the transit amplifying cells. Therefore,
there is a high possibility that the Notch signaling can be affected
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by the activity of ion transporters present in the transit amplifying
cells, such as NHE2 (Guan et al., 2006) via fine-tuning the pHi
value. A shift in the pHi toward more alkaline values (from 7.4
to a 7.65) has been observed in mouse embryonic stem cells
during their differentiation in vitro (Ulmschneider et al., 2016).
Hh signaling, important for the follicle stem cells differentiation
in Drosophila, is also strongly influenced by pHi alterations.

The reported studies are only examples, which, taken together,
suggest that the pHi may trigger stimulation or inhibition
of different signaling pathways active in proliferation and
differentiation of the intestinal epithelium. However, the exact
molecular mechanism correlating the pHi and signaling pathways
gradient in the intestinal epithelium is yet to be determined.

CONCLUSION AND OUTLOOK

Addressing the role of the steady-state pHi in intestinal epithelial
homeostasis has been hampered by the absence of models that
accurately assess the pHi in different epithelial compartments
along the crypt-villus axis, and to induce long-term and selective
pHi-alterations. The ability to generate intestinal organoids
and monitor their growth over days in culture has enabled
scientists to intensely study the process of intestinal cell renewal
and differentiation. Some of the molecular events that link
the elevated pHi secondary to loss of functional CFTR to
intestinal epithelial hyperproliferation were elegantly explored

by generating intestinal organoids from Cftr−/− and wt mice
crossed onto a variety of transgenic reporter mouse lines
(Strubberg et al., 2018). These seminal studies may provide
clarification of the increased incidence of colorectal cancer in CF
patients and contribute toward their prevention. Recent progress
in the drug development for CFTR corrector and modifiers
with the potential to rescue CFTR function in CF patients may
correct the pHi-regulatory dysfunction and reduce cancer risk
(Phuan et al., 2019; Egan, 2020). The potential to combine
direct pHi assessment with genetic, molecular biological and
pharmacological tools, as already established for tumor cells (Liu
et al., 2020; Stock, 2020), in intestinal organoids may provide
insight into protonation/deprotonation events of key regulatory
proteins in enterocyte proliferation and differentiation.
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