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Liver cancer is a global disease with a high mortality rate and limited treatment options.
Alternations in apoptosis of tumor cells and immune cells have become an important method
for detailing the underlying mechanisms of hepatocellular carcinoma (HCC). Bcl-2 family,
Caspase family, Fas and other apoptosis-related proteins have also become antagonistic
targets of HCC. Da Huang (Rhei Radix et Rhizoma, RR), a traditional Chinese herb, has
recently demonstrated antitumor behaviors. Multiple active metabolites of RR, including
emodin, rhein, physcion, aloe-emodin, gallic acid, and resveratrol, can successfully induce
apoptosis and inhibit HCC. However, the underlying mechanisms of these metabolites
inhibiting the occurrence and development of HCC by inducing apoptosis is complicated
owing to the multi-target and multi-pathway characteristics of traditional Chinese herbs.
Accordingly, this article reviews the pathways of apoptosis, the relationship between HCC
and apoptosis, the role andmechanism of apoptosis induced bymitochondrial endoplasmic
reticulum pathway and death receptor pathway in HCC and the mechanism of six RR
metabolites inhibiting HCC by inducing apoptosis.
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INTRODUCTION

Liver cancer is one of the five most common malignancies worldwide and comprises the second
leading cause of cancer-related deaths, with an increasing incidence rate (Marengo et al., 2016).
Hepatocellular carcinoma (HCC) accounts for 80–85% of liver cancer cases, and its frequency of
occurrence varies greatly from region to region. Most new cases occur in East Asia and southern
Africa (Lafaro et al., 2015). Without early detection, HCC patients face extremely low survival rates
and limited treatment options with high costs (Gravitz 2014; Orcutt and Anaya 2018). During the
past decade, both pharmacologic and nonpharmacologic treatments for HCC, such as resection,
suppression, transarterial chemoembolization, and ablation, have improved and become widely
used. Small-molecule targeted agents, monoclonal antibodies, and other medicines have gradually
been refined (Jindal et al., 2019; Chen et al., 2020). Recently, the role of insufficient apoptosis in the
development and progression of some cells, including hepatocytes, has become the primary focus in
detailing the underlying mechanism and potential treatment targets of HCC.

As a natural barrier inhibiting the development of cancer, apoptosis is a programmed cell death
mechanism that is finely regulated at the genetic level, leading to the effective elimination of damaged
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cells (such as DNA-damaged or infected cells) (Fuchs and Steller
2011). However, the evasion of and resistance to apoptosis are
hallmarks of cancer cells, often leading to chemotherapy failure
(Hanahan and Weinberg 2011; Cai et al., 2004). Therefore, a
therapeutic strategy for apoptosis-resistant molecules may be
effective.

RR comprises the dried roots and rhizomes of Rheum
palmatum L., Rheum tanguticum Maxim. ex Balf., or Rheum
officinale Baill. According to traditional Chinese medicine theory,
RR eliminates heat toxicity, thereby eliminating stagnation and
stasis. The most commonly used variety is R. officinale (Q. Huang
et al., 2007). The main active metabolites of RR are
anthraquinone derivatives. The 2020 edition of the Chinese
Pharmacopoeia considers the contents of emodin, rhein,
emodin, aloe-emodin, and chrysophanol in dried RR as quality
control standards. Total anthraquinone content was calculated
using these five metabolites. Some of these anthraquinone
derivatives have attenuated HCC through apoptosis.

SEARCH STRATEGIES

For this review, research articles on the treatment of HCC with
active ingredients of RR were collected from PubMed, the
Cochrane Library Web of Science, and the EMBASE database.
According to the quality control standard of RR in Chinese
Pharmacopoeia and the quality evaluation index of RR in the
articles, the relationship between 13 active ingredients and
apoptosis in HCC was searched in the databases. Such as
emodin, rhein, aloe-emodin, physcion, chrysophanol,
sennoside B, sennoside A, gallic acid, catechins, resveratrol,
epigallocatechin gallate, epicatechin and epicatechin gallate.

Active metabolites that is not related to apoptosis were
excluded. And the following types of article were excluded
from our review: studies not lacking scientific value and those
with obvious methodological errors. Overall, we have
systematically explained the pharmacological mechanism of
emodin, rhein, physcion, aloe-emodin, gallic acid, resveratrol
regulating apoptosis in HCC cells, providing a reference for
future research (Figure1).

APOPTOTIC PATHWAY

Apoptosis signals are mainly conducted through extrinsic and
intrinsic apoptosis pathways (Pistritto et al., 2016). Intrinsic
apoptosis mainly includes mitochondrial-dependent pathway
and endoplasmic reticulum-dependent pathway. Intrinsic
apoptosis is comprised of caspase-dependent apoptosis and
caspase-independent apoptosis. Extrinsic apoptosis is mostly
initiated by the binding of death receptors and ligands (Susin
et al., 2000).

Intrinsic apoptosis pathways, which depend on mitochondria,
are induced by a variety of highly heterogeneous intracellular
stresses. These pathways are regulated by mitochondrial outer
membrane permeabilization (MOMP), which can be changed by
permeability transition pore complexes (PTPC) and the B-cell
lymphoma-2 (Bcl-2) protein family members with pore-forming
activity (Green and Kroemer 2004; Vande Walle et al., 2007).
Intracellular stress signals, such as oxidative stress (OS), DNA
damage, cytosolic Ca2+ overloads, and an accumulation of
unfolded proteins in the endoplasmic reticulum, can activate
the Bcl-2 protein family members of Bax and Bak, thereby
damaging MOMP and releasing toxic proteins. These include

FIGURE 1 | Chemical structures of active metabolites of RR.
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cytochrome C (CYTC), secondmitochondria-derived activator of
caspases (SMAC), high temperature requirement protein A2
(HTRA2), apoptosis-inducing factor (AIF), and endonuclease
G (ENDOG), and are usually retained in the mitochondrial
intermembrane space (IMS). These proteins are released to the
cytosol, causing caspase-dependent and caspase-independent
apoptosis (Danial and Korsmeyer 2004). Caspase is a cysteine
protease family that contains 14 identified members, which are
divided into two subgroups: interleukin 1β invertase (ICE) and
abnormal cell death gene product 3 (CED-3). CED-3 subfamily,
which is divided into initiator and executioner, is a major
participant in the process of apoptosis. Caspase−2, −8, −9 and
−10, as promoters of apoptosis, activate the executor of apoptosis
through self-activation. Caspase−3, −6 and −7 are the executor of
apoptosis and can directly degrade intracellular proteins to
induce apoptosis after activation by promoter (Yan et al.,
2021). Cytosolic CYTC promotes apoptosis by participating
with apoptosis protease activating factor-1 (APAF-1) and
dATP in forming apoptosomes, which recruit pro-caspase-9
and trigger the cleavage of pro-caspase-3. SMAC and HTRA2
depress caspase inactivation through inhibiting several members
of the IAP family, thereby promoting the caspase-9→caspase-3

proteolytic cascade (Slee et al., 1999). AIF and ENDOG induce
caspase-independent apoptosis by relocating to the nucleus,
where they mediate large-scale DNA fragmentation (Büttner
et al., 2007). In addition, HTRA2 can also act on the
cytoskeleton because of its serine protease activity (Vande
Walle et al., 2007). Endoplasmic reticulum stress (ERS) is the
core of endoplasmic reticulum-dependent pathway. ERS refers to
the accumulation of misfolded proteins, unfolded proteins, or
correctly folded proteins in the endoplasmic reticulum, as well as
changes in Ca2+ concentration and cholesterol synthesis,
resulting in increased endoplasmic reticulum pressure and
disturbance of cell balance (L. Zhang and Wang 2016). The
unfolded protein reaction (UPR) triggered by the
accumulation of unfolded proteins or misfolded proteins is
the primary pathway of ERS. UPR is a self-protective measure
for cells to promote endoplasmic reticulum folding ability. It
depends on protein kinase R-like endoplasmic reticulum
kinase (PERK), inositol requiring enzyme 1 (IRE1), and
activating transcription factor-6 (ATF6). UPR can initiate
cell apoptosis through signal molecules such as CHOP,
caspase-12, JNK, Bax, etc. when cell damage is severe
(Metcalf et al., 2020).

FIGURE 2 | Pro-apoptotic capacities of active metabolites of RR in HCC (Created with BioRender.com).
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The extrinsic apoptosis pathway is a caspase-dependent
subroutine of cell death induced by extracellular stress signals
that are sensed and propagated by specific transmembrane
receptors. When a death receptor is stimulated by its
corresponding death ligand, its death domain (DD), a
protein–protein interaction domain within the cell, interacts
with other DD-containing proteins (Boldin et al., 1995;
Schulze-Osthoff et al., 1998; Fulda and Debatin 2003;
Guicciardi and Gores 2009). Subsequently, adaptor proteins
recruited at the DD of Fas, i.e., a Fas-associated protein with a
DD (FADD) or TNFR-associated DD (TRADD), capture other
proteins. These may include receptor-interacting protein kinase 1
(RIP1), multiple isoforms of cellular FADD-like interleukin-1
converting enzyme inhibitory proteins (c-FLIP), cellular
inhibitors of apoptosis proteins (cIAPs), and pro-caspase-8
and/or -10. These protein combinations form the death-
inducing signal complex (DISC), which regulates the activation
of caspase-8 (or -10) (Boatright and Salvesen 2003; Chang et al.,
2003). Pro-caspase-8 (−10) catalyzes the proteolytic maturation
of downstream effectors (e.g., caspase-3, -6, and -7), thereby
triggering cell death (Budd et al., 2006; Kuribayashi et al., 2006).
Some cells require an expansion step induced by caspase-8. In this
case, capase-8 activates the cleavage of the BH3-interacting
domain death agonist (BID), thereby generating truncated BID
(tBID), which induces MOMP (Plati et al., 2008). Therefore, this
works in conjunction with the intrinsic apoptosis pathway.

APOPTOSIS IN HCC

In normal hepatocytes, apoptosis is finely regulated by a series of
genes to maintain homeostasis. Dysregulation of the balance
between cell replication, growth, differentiation, and apoptosis
is possibly related to the occurrence of preneoplastic lesions and
hepatocarcinogenesis Figure 2.

Mitochondria-Mediated Apoptosis Pathway
in HCC
Mitochondria mediated apoptosis is closely related to the Bcl-2
family which Bcl-2 family is divided into three main groups
(Youle and Strasser, 2008). The first group is members of the
anti-apoptotic family, including Bcl-2, Bcl-XL and Mc1-1, etc.
Bcl-2 is usually located in the mitochondrial membrane and
endoplasmic reticulum, and inhibits the activity of pro-
apoptotic proteins and prevents MOMP by binding to the
domain of pro-apoptotic protein BH3. The second group is
pro-apoptotic family members, mainly including Bax, Bak and
so on. Bax mostly exists in cytoplasm in the form of monomer,
and after receiving apoptotic signal stimulation, Bax is
transferred to the outer membrane of mitochondria, where
Bax and Bak play a pro-apoptotic role together. A decrease
in Bcl-2 leads to the fall of Bcl-2/Bax ratio, which is considered
as a reliable signal of apoptosis. The third group is BH3-only
pro-apoptotic family members, including Bad, Bid and BNIP3,
which can induce apoptosis by blocking Bcl-2 or cooperating
with Bax (Neophytou et al., 2021).

The expression of anti-apoptotic and pro-apoptotic members
of Bcl-2 family is different at different stages of HCC. Most
studies have shown that the expression of anti-apoptotic
members such as Bcl-2 and Bcl-XL is elevated in tumor tissues
of HCC patients (Hosseini-Khah et al., 2021; Y. YangZhu et al.,
2011; Watanabe et al., 2004). Also, their elevation showed a
significant anti-apoptotic effect on HCC cells such as HCC-9204
and SMMC-7721 in vitro (L. Yang et al., 2002; Yao et al., 2012)
The decrease of Bax, Bad and other pro-apoptotic members in
HCC tissues is associated with adverse clinical features such as
vascular invasion, tumor differentiation and AFP (Hu et al., 2015;
Garcia et al., 2002). Other studies have shown that Bcl-2 and Bcl-
XL are expressed in a lower level in HCC than in normal liver
tissues (X.Z. Guo et al., 2002). A research found that Bcl-2
expression was not even observed in HCC tumor tissues
(Yoon et al., 1998). This is consistent with more active
apoptosis in HCC cells than in normal liver tissues. Lower
levels of Bcl-2 may inhibit the growth of tumors, and may
also clear senescent tumor cells and promote the development
of HCC. In conclusion, the Bcl-2 family tree changes in different
tissues and stages of HCC. Interestingly, the expression of Bax
decreased in different situations where Bcl-2 was increased or
decreased. When Bcl-2 is lowered, Bax dropped more drastically,
leading to the change of Bcl-2/Bax (X.Z. Guo et al., 2002).
Changes in the ratio of anti-apoptotic members Bcl-2/MCL-1
also have an important impact on the efficacy of anti-tumor drugs
in HCC (Tutusaus et al., 2018). Therefore, in mitochondria
mediated apoptosis pathway, the balance of anti-apoptotic
protein and pro-apoptotic protein is vital in the occurrence
and development of HCC.

The anti-apoptotic mechanism of HCC is most closely related
to MAPK and PI3K signaling pathways. MAPK pathway is an
important signal transduction system of eukaryotic cells, which is
comprised of four subfamilies. Extracellular signalregulated
protein kinase (ERK), C-Jun N-terminal KINse/stress-activated
protein kinase (JNK/SAPK), P38 kinase, and ERK5. Activation of
ERK can promote the phosphorylation of Bcl-2, inhibit the
apoptosis of HCC cells, and promote tumor development. The
anti-apoptotic effect of ABT26-3, Gossypol and other Bcl-2
inhibitors is determined by the activation of ERK pathway (B.
Wang et al., 2014; X. Zhao et al., 2011). The therapeutic effects of
some natural products and anticancer drugs on HCC also involve
the inhibition of ERK pathway, reduction of Bcl-2 (Tsai et al.,
2020; W.T. Chen et al., 2019). Activation of JNK pathway
promote the evasion from tumor surveillance. On the
contrary, blocking JNK expression can inhibit the development
of HCC cells, increase caspase recruitment, and induce apoptosis
(Mucha et al., 2009). The p53 tumor suppressor gene (TP53) is a
common downstream target of JNK and MAPK pathways. P53
can rely on the pro-apoptotic members of the Bcl-2 family such as
Bax and Bak to send death stimuli to the mitochondria and
induce apoptosis. P53 mutation is a common phenomenon in
various cancers, and mutated P53 is also exist in HCC. The
expression of Bax and Bak decreased significantly after p53
mutation, and the proliferation and metastasis of tumor cells
induced by p53 mutation is an important mechanism of HCC
(Meng et al., 2014). Bcl-2 and p53 antagonize each other. Bcl-2
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can resist the pro-apoptotic effect of wild-type p53 in tumor cells,
and the expression level of bcl-2 is increased in various tissues of
p53 knockout mice. The induction of apoptosis through the
activation of p53/Bcl-2 pathway in HCC cells is the main
mechanism some antitumor drugs (Jiang et al., 2015).
Coincidentally, the decreased p53 function is accompanied by
overexpression of Bcl-xL and MCL-1, as well as a lack of response
to Fas owing to the downregulation of FasL and the reduced
expression of Bid in HCC associated with hepatitis B or C
infections (May and May, 1999).

Phosphoinositide 3-kinase (PI3K) family is a proto-oncogene
that regulates both inositol and phosphatidylinositol (PI). PI3K/
Akt is an important pathway for regulating apoptosis in cancer
cells. PI3k-activated Akt regulate apoptosis through the
phosphorylation of downstream proteins mTOR, NF-ΚB, Bcl-
2, Bad and Caspase-9 (G. Song et al., 2005). The activation of the
PI3K/Akt/mTOR pathway negatively regulates Bad and
positively regulates anti-apoptotic Bcl-2 family members,
thereby promoting tumor growth and progression (Pollak,
2012). Additionally, the activation of nuclear factor-ΚB (NF-
ΚB) upregulates the caspase-8 inhibitors c-FLIP, 191 c-IAP1, and
c-IAP2, as well as the anti-apoptotic proteins Bcl-xL and Mcl-1
(Wajant et al., 2003). Activation of Akt in Hep3B increases cell
resistance to antitumor drugs. Activation of Bcl-2 can increase the
cancer stem cell-like behavior of Hep3B, promoting cell growth
and tumor metastasis (You et al., 2017). CD133+ HCC cells
contribute to chemoresistance through preferential activation of
Akt/PKB and Bcl-2 cell survival response (S. Ma et al., 2008).

Endoplasmic Reticulum Mediated
Apoptosis Pathway in HCC
When ERS is persistent, UPR is the main cause of apoptosis. UPR
can initiate apoptosis through signal molecules such as CHOP,
caspase-12, JNK, Bax, etc. CCAAT/enhancer binding protein
homologous protein (CHOP) is infrequently expressed in
normal cells and mostly activated in ERS state. CHOP triggers
apoptosis through Inositol Requiring (IRE) 1-CHOP, PKR-like
ER kinase (PERK)-CHOP, and activating factor (ATF) 6-CHOP,
respectively. In HCC, CHOP can transcriptively up-regulate the
death receptor TNF-related apoptosis ligand receptor 2 (TRAIL
receptor 2), and then activate the extrinsic apoptosis pathway. In
addition, CHOP induces apoptosis by the transcriptional
induction of Bim (Yamaguchi and Wang 2004). ATP Citrate
Lyase, a critical enzyme that inhibits cancer metabolic
reprogramming, induces ERS in HCC cells and promotes
apoptosis of HCC cells by activating the P-EIF2α/ATF4/CHOP
axis (Zheng et al., 2021) Both PI3K inhibitors and melatonin can
increase the expression of CHOP in HCC cells and inhibit the
PI3K/Akt pathway to reverse ERS-induced adriamycin resistance
(Fan et al., 2013). Silencing the expression of CHOP in HCC cells
can significantly reduce ERS-induced apoptosis (Lei et al., 2017).

Caspase-12-mediated apoptosis is unique to the endoplasmic
reticulum pathway. Caspase-12 exists in the outer membrane of
the endoplasmic reticulum and is a key protein in the
endoplasmic reticulum-mediated apoptosis pathway (Vande
Walle et al., 2016). Caspase-12 is activated by tumor necrosis

factor receptor associated factor 2 (TRAF2), calproteinase, and
caspase-7, and induces apoptosis of HepG2 and BEL-7402 cells
(Song et al., 2021).

Persistent ERS can also be activated by phosphorylation of
JNK through IRE1-α. JNK directly regulates Bcl-2/Bax ratio and
induces apoptosis by increasing death receptor level and
mitochondrial permeability (Shigemi et al., 2017). In vivo,
mice deficient in both JNK1 and JNK2 have an increased risk
of developing HCC (Das et al., 2011). In vitro, activation of JNK
promotes apoptosis of Hep3B cells (S.Y. Kim et al., 2020).

Death Receptors Mediated Apoptosis
Pathway in HCC
Death receptors associated with HCC apoptosis include Fas, DR5,
DR4, DR3 and TNFR1, which exist on the cell surface in the form
of membrane molecules and bind with TNF-related apoptosis-
inducing ligand (TRAIL) to induce apoptosis. The expression rate
of Fas in serum of HCC patients is 100% while it is reduced in
poorly differentiated cancer cells. The level of Fas/FasL in cancer
cells can be used as a prognostic indicator for HCC patients and
predict the recurrence of HCC (Ito et al., 2000; Sacco et al., 2000).
The expression of Fas on immune cells also plays an important
role in HCC. The interaction of Fas/FasL can lead to excessive
turnover of CD8+ T cells in HCC patients (C.L. Guo et al., 2014).
Elevated Fas expression is related to increased apoptosis of
circulating CD8 (+) T cell in HCC patients. This may be an
important mechanism of immune escape of HCC cells. Death
receptor 5 (DR5) is rarely expressed in normal liver cells, but
highly expressed in HCC cell lines. The specific agonistic
antibody against DR5 can selectively induce HCC cell
apoptosis in vitro and is harmless to normal hepatocytes (Zhu
et al., 2006). Therefore, DR5 is also a critical target in HCC cell
apoptosis induced by a variety of natural drugs and anti-tumor
drugs (Kawahara et al., 2013; J; Yang et al., 2011). Death receptor
4 (DR4) and death receptor 3 (DR3) also induce apoptosis in
HCC cells. In Hep3B and other HCC cell lines, DR4 is targeted by
Mir-106b, and Mir-106b inhibitors can induce increased DR4
expression and enhance TRAIL-mediated HCC apoptosis (Xu
et al., 2017). The expression of DR3 increases in HepG2, Huh7,
SMMC7721 and BEL-7402 HCC cells. Silencing DR3 in BEL-
7402 inhibited the expression of NF-κB and p53, enhanced the
expression of Fas, caspase-3 and caspase-8, and induced the
apoptosis of HCC cells (Zhang Y. C. et al., 2015). Tumor
necrosis factor receptor 1 (TNFR1) has a dual role in the
development of HCC. The formation of TNFR1-complex I
supports cell survival while TNFR1-complex II leads to
apoptosis (Zou et al., 2020).

ACTIVE INGREDIENTS OF RHEI RADIX ET
RHIZOMA USED FOR HCC TREATMENTS

Emodin
Emodin (1, 3, 8-trihydroxy-6-methylanthraquinone) is a natural
product derived from several Chinese herbs, including R.
palmatum, Polygonum cuspidatum, and Polygonum
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multiflorum. It comprises an orange-red powder or crystal that
exists in the form of its glycosides (X. Dong et al., 2016). Emodin
is an insoluble compound with a melting point of 255°C and is
soluble in alcohol and dimethyl sulfoxide (Semwal et al., 2021).
Emodin directly regulates both intrinsic and extrinsic apoptosis
as well as affects upstream pathways such as the MAPK, PI3K/
AKT, VEGFR, and miRNA.

Lin et al. have demonstrated that emodin inhibits the
proliferation of SMMC-7721 cells and induced apoptosis in a
dose- and time-dependent manner and suppressed tumor growth
in BALB/c-nu nude mice inoculated with SMMC-7721.
Moreover, emodin may exert these effects by activating p38
and inhibiting p-AKT. In addition, emodin mildly suppresses
the activation of c-Jun N-terminal kinase (JNK). Given that JNK
is a sub-pathway of the MAPK pathway and plays an important
role in apoptosis, the JNK pathway may minimally influence
emodin’s proapoptotic effect (Lin et al., 2016). Yang et al.
incubated BEL-7402 cells with emodin at 25, 50, 100, 200,
400, and 600 μmol/L for 12, 24, and 48 h, and found the
emodin successfully regulated intrinsic apoptosis by
upregulating the expressions of BAX, CTYC, actin fiber-
associated protein 1 (AFAP1), cleaved-caspase-9, cleaved-
caspase-3, and Bcl-2. Moreover, the sterol regulatory element
binding protein 1 (SREBP1) was also regulated, and a significant
decrease in the expression of mRNA and proteins of SREBP1 was
observed. Furthermore, apoptosis and similar changes in protein
expressions were found in SREBP1 knockout B cells, but the
apoptosis rate was lower than that in emodin-treated cells; this
suggests that RR induces apoptosis through both SREBP1-
dependent and SREBP1-independent pathways (N. Yang et al.,
2019). A recent study by Cui et al. indicated that emodin induced
intrinsic apoptosis and extrinsic apoptosis in HepG2 cells, in
which treatment with 10–100 μM of emodin attenuated the
phosphorylation of AKT and ERK and promoted
phosphorylation of p38. Notably, inhibiting PI3K/Akt and
ERK and activating p38 can strengthen emodin-induced
apoptosis (Cui et al., 2016). Similar results were also observed
in another study by Bai et al., who studied the mechanism of
emodin from the perspective of the VEGF-AKT-ERK1/2
signaling pathway. In their study, emodin reduced p-VEGFR2,
p-ERK, p-ERK1/2, and p-AKT levels in both HepG2 cells and
BALB/C nude mice subcutaneously injected with HepG2.
Additionally, emodin increased the expression level of miR-
34a and reduced the protein levels of SMAD2, SMAD4, and
p-SMAD2 (Bai et al., 2020). Subramaniam et al. treated HepG2
cells with 10, 25, and 50 μM of emodin and found that emodin
induces apoptosis through inhibiting the STAT3 signaling
cascade. Specifically, emodin suppressed STAT3
phosphorylation, its translocation to the nucleus, and its
binding capacity to DNA in HepG2, which is mediated by
modulating the activation of upstream kinases c-Src, JAK1,
and JAK2 (Subramaniam et al., 2013). The Hippo pathway is
closely related to OS with Yes-associated protein 1 (YAP1) as one
of its key downstream targets and a transcriptional activator that
mediates reactive oxygen species (ROS) signals. Large tumor
suppressor homolog 1 (LATS1) is a signal protein related to
the Hippo pathway. (Morinaka et al., 2011; Wada et al., 2011;

Xiao et al., 2011). Lee et al. treated HepG2, SK-Hep-1, Huh-7, and
HeLa cells with 3–30 μM of emodin and found that low-dose
emodin exerted cytoprotective effects by attenuating arachidonic
acid and iron-induced OS. Thus, lactate dehydrogenase (LDH)
levels and apoptosis induced by OS decreased. In HepG2 cells,
emodin induced the phosphorylation of YAP and LATS1, but
HeLa cells did not show these changes. In addition, the AMPK
marker p-liver kinase B1 (LKB1), which is the upstream target of
acetyl CoA carboxylase and AMPK, was upregulated, whereas
emodin demonstrated no cytoprotective effect in LKB1-deficient
HeLa cells (Lee et al., 2020).

Emodin contains several free phenolic hydroxyl groups that
are easily oxidized in air and have poor solubility, low oral
bioavailability, and low stability (Liu et al., 2016a). Therefore,
researchers are consistently attempting to improve its
formulation, so that this compound can more accurately,
efficiently, and stably promote apoptosis in HCC cells.
Preparing hydrophobic drugs using nanoparticles as carriers
increases the uptake by HCC cells and reduces drug resistance.
Synergistic drug use can increase drug concentration in target
organs, prolong drug action time, and reduce drug dose and toxic
side effects in organs that are not the intended target, so that the
drug has stronger anticancer effects. Nanoparticles can be
internalized by tumor cells directly without the need for
biofilm transport (Mei et al., 2013; Y. Guo et al., 2013). Liu
et al., 2016a combined heparin and emodin with a nano-
molecular carrier polylactic-co-glycolic acid-D-α-tocopheryl
polyethylene glycol 1,000 succinate (PLGA-TPGS) to form
heparin-loaded PLGA-TPGS nanoparticles and emodin-loaded
PLGA-TPGS nanoparticles, respectively. Moreover, the
researchers found that the two synergistically promote
apoptosis in vivo and in vitro, and inhibit tumor growth in
vivo (Liu et al., 2016a; Liu et al., 2016b). Dong et al.
distributed emodin in a new type of biomaterial
N-acetylaminogalactosyl-poly (lactide-co-glycolide)-succinyl-D-
a-tocopherol polyethylene glycol 1,000 succinate (GalNAc-
PLGA-sTPGS) to form a new type of nanoparticle, EGTPN,
and found that EGTPN in vitro induced HepG2 apoptosis
more effectively than emodin alone (H. Dong et al., 2018). In
addition, combining emodin with other drugs is also a way to
enhance its anticancer effects. Kim et al. revealed that 120 μM of
emodin can enhance the antitumor effects of sorafenib at a low
dose (2 μM) in Hep3B, HepG2, and Huh7 cells. Compared with
emodin or sorafenib alone, the combination of the two drugs
significantly increased the apoptosis rate of HepG2 cells, inhibited
cell proliferation, and induced G1 phase arrest. Furthermore, the
combination of the two drugs can regulate lipid metabolism in
HepG2 and SK-HEP-1 cells and inhibit STAT3 phosphorylation
in HepG2 and PLC/PRF5 cells. This group also performed in vitro
experiments and found that emodin and sorafenib inhibited
tumor growth in xenografted HepG2 and SK-HEP-1 mice
(Y.S. Kim et al., 2018).

Rhein
Rhein (4,5-dihydroxyanthraquinone-2-carboxylic acid) is a
lipophilic anthraquinone that exists in R. palmatum, Cassia
tora L., P. multiflorum, and Aloe barbadensis Miller (Zhou

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 8061756

Jiang et al. Rhubarb and Hepatocellular Carcinoma Apoptosis

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


et al., 2015). Induction of ER stress by regulating the
mitochondrial membrane potential (MMP) and mitochondrial
permeability transition (MPT) are the primary mechanisms by
which rhein promotes apoptosis in HCC cells.

In a previous study, swelling and leakage of Ca2+ were
observed in isolated liver mitochondria when treated with 100
and 200 μM of rhein; however, these changes were inhibited by
1 μM cyclosporin A (CsA), an MPT inhibitor. In addition, rhein
may also induce the loss of MMP, activate caspase-3, release
CYTC, and reduce the production of ATP in HepG2 cells,
whereas CsA may weaken these effects (Du et al., 2013).
Moreover, treatment with 5–80 μM rhein may decrease the
energy metabolism of SMMC-7221 and SMMC-7221/
doxorubicin-resistant cells by inhibiting oxidative
phosphorylation. However, CsA cannot reverse the inhibition
of energy metabolism via rhein (Wu et al., 2019). Rhein can
increase caspase-3 activity when combined with doxorubicin,
which may be related to the increase in the concentration of
doxorubicin in cells (Wu et al., 2020). Upregulation of the BIM
gene (an ER stress-induced gene) is one of the key mechanisms of
rhein-induced apoptosis in HCC cells. Wang et al. treated HepG2
cells with 75–150 μM of rhein, and apoptosis was enhanced,
which was confirmed by the increase in the expression of the
BIM gene, the cleavage of caspase-3,7,8, and the level of t-Bid
(J. Wang et al., 2015). ROS can activate the JNK kinase, which
subsequently phosphorylates its substrate c-Jun, and
phosphorylated c-Jun further induces the activation of
caspase-3 (Y. Wang et al., 2018). A recent study found that
treatment with 50–200 μMof rhein significantly increased ROS in
HepG2 cells and Huh7 cells in a dose-dependent manner.
N-acetylcysteine, a ROS scavenger, significantly inhibited the
pro-apoptotic effect of rhein. These results demonstrated that
rhein-induced ROS activated the JNK/Jun/caspase-3 signaling
pathway apoptosis in vitro (A. Wang et al., 2020).

Koramagazi et al. demonstrated that rhein can also promote
apoptosis in normal hepatocytes. In HL-7702 cells, rhein induced
caspase-dependent apoptosis by targeting ER stress-related
pathways, including glucose-regulated protein 78 (GRP 78),
PKR-like ER kinase (PERK), JNK, and the CCAAT/enhancer-
binding protein homologous protein (CHOP) (Koramagazi et al.,
2016). Li et al. investigated the activation of the intrinsic and
extrinsic apoptosis pathways in L02 cells via rhein. Specifically,
rhein increased ROS, tumor necrosis factor-α (TNF-α), tumor
necrosis factor receptor (TNFR), and TRADD, cleaved caspase-3,
and reduced MMP and pro-caspase-9 and -3. Notably, the
decrease in the levels of the autophagy-related proteins LC3-II
and Beclin-1 and increase in the expression of P62 indicated that
rhein promoted apoptosis of L02 cells by inhibiting autophagy
and decreasing their self-scavenging ability (Li et al., 2019).

Physcion
Physcion (1,8-dihydroxy-3-methoxy-6-methyl-anthraquinone),
also known as parietin, is a natural anthraquinone derivative
that has proven antitumor, antibacterial, anti-inflammatory,
antioxidant, and lipid metabolism regulation effects (Xunli and
Chen., 2019). Physcion mainly interferes with proteases of the
intrinsic apoptosis pathway, ER stress, and miRNA.

Pan et al. revealed that physcion can induce ER stress by
activating the AMPK signaling pathway, thus resulting in
intrinsic apoptosis. In Huh-7 and Bel-7402 cells, physcion
promoted the phosphorylation of AMPK and activated ER
stress by increasing caspase-12 activation and protein levels of
p-PERK, as well as activating transcription factor 6 (ATF6),
heavy-chain binding protein (BIP), GRP78, GRP94,
p-eukaryotic translation initiation factor 2A (p-EIF2A), and
CHOP. The levels of caspase-12 and CHOP decreased
following a treatment with compound C (an AMPK inhibitor)
(X.P. Pan et al., 2018). Recombinant DNA methyltransferase 1
(DNMT1) is one of the major enzymes responsible for
establishing and maintaining DNA methylation patterns in
eukaryotic cells, and is involved in the regulation of miRNAs
in tumor cells, including miR-370; by comparison, Sp1 is an
upstream transcription factor that regulates the expression of
DNMT1 (Datta et al., 2008; Zeng et al., 2012; Yie et al., 2015; Zhao
et al., 2015). In another study, physcion increased the level of
miR-370, and HCC cell lines transfected with miR-370 mimics
showed higher miR-370 levels and apoptosis, whereas an miR-
370 inhibitor abolished the physcion-induced apoptosis.
Additionally, physcion upregulated pAMPK/tAMPK and
downregulated the levels of DNMT1 and Sp1. Accordingly,
physcion induced intrinsic apoptosis by upregulating miR-370
via the AMPK/Sp1/DNMT1 signaling pathway (X. Pan et al.,
2016).

Aloe-Emodin
Aloe-emodin (1,8-dihydroxy-3-hydroxymethyl-anthraquinone),
a common anthraquinone component derived from Cassia
occidentalis, R. palmatum, Aloe vera, and P. multiflorum,
exerts a wide range of pharmacological impacts, including
antiviral, anti-inflammatory, antibacterial, anti-parasitic,
neuroprotective, and liver-protective effects (X. Dong et al.,
2020). The effect of aloe-emodin on apoptosis is closely
related to p53 and OS.

In p53 positive HepG2 cells, 1–20 μM of aloe-emodin led to
the accumulation of p53 as well as stimulated an increase in the
expression of p21 (a cyclin-dependent kinase inhibitor), which
was associated with cell cycle arrest in the G1 phase, cell surface
molecule lefas/APO1, and Bax. In contrast, aloe emodin did not
mediate the expression of Fas/APO1 or inhibited cell cycle
progression in P53-deficient Hep3B cells. However, it did
promote apoptosis by enhancing the expression of P21 and
Bax. (Kuo et al., 2002). Calpain 2 (CAPN2) is a growth
promoting protein, and ubiquitin protein ligase E3A (UBE3A)
is an oncogenic associated protein, and is a member of the ligase
family of E6AP. Both proteins participate in the degradation of
p53 (Y. Huang and Wang 2001; L. Liu et al., 2008; Baron et al.,
2006; Scheffner et al., 1993; Cooper et al., 2003). A study by Jeon
et al. indicated that aloe-emodin can promote intrinsic apoptosis
by improving DNA fragmentation and ROS accumulation, and
by reducing CAPN2 and UBE3A levels (Jeon et al., 2012). Lu et al.
focused on the potential mechanism underlying the pro-OS and
pro-apoptotic effects of aloe-emodin. They found that treatment
with 10–40 μM of aloe-emodin significantly increased the
oxidation of peroxiredoxin (PRDX), a marker of OS and
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antioxidant in liver tissue. It also increased intracellular ROS
levels and decreased glutathione (GSH)/oxidized glutathione
(GSSG) in HepG2 cells. Furthermore, a delayed and sustained
phosphorylation of JNK and its downstream substrate c-Jun and
a decreased phosphorylation of ERK occurred 3 h following aloe-
emodin treatment. In addition, HepG2 cells treated with
overexpressed antioxidant sod1 (pEGFP-c3/sod1) and aloe-
emodin at the same dose decreased OS, JNK activation, and
caspase-9. The same treatment was also performed on HCCM
cells and Hep3B cells; the results showed that these effects of aloe-
emodin were not cell line-specific (Lu et al., 2007).

Gallic Acid
Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a naturally
occurring phenolic acid. It is widely found in a wide range of
plants such as gallnuts, teas, grapes and RR (Ma et al., 2003). GA
induce apoptosis in a variety of malignant tumors. GA can
selectively induce apoptosis of HCC cell lines without affecting
normal hepatocytes. Its mechanism of promoting apoptosis is
most closely related to the mitochondrial pathway (Ma et al.,
2003).

Sun treated SMMC-7721 cells and hepatocytes with 0, 6.25,
12.5 and 25.0 µg/mL GA and found GA increased the activity of
caspase-3, caspase-9 and ROS, decreased MOMP, and induced
apoptosis of SMMC-7721 cells. However, GA had no effect on
apoptosis of hepatocytes HL-7702. These results indicate that GA
has a selective anticancer agent that induces apoptosis in SMMC-
7721 cells (Sun et al., 2016). Lima et al. demonstrated a dose-
dependent decrease of vitality in GA-treated HepG2 cells and a
significant increase of the percentage of cells in early apoptosis.
Furthermore, the levels of IL-10 and IL-12 were significantly
increased and the levels of IL-8 were decreased after GA
treatment. These results suggest that GA has anti-proliferation,
pro-apoptotic and anti-inflammatory effects on HepG2 cells
(Lima et al., 2016). Shi et al. found GA promoted apoptosis of
HepG2 cells and BEL-7402 cells in a dose-dependent manner by
up-regulating Bax and down-regulating Bcl-2 and Bcl-XL. Long
non-coding RNA (LncRNA) is considered to be a key regulator of
tumorigenesis. Overexpression of metastatic lung
adenocarcinoma transcript 1 (MALAT1) promotes the
proliferation and metastasis of HCC through the MALAT1/
Wnt signaling axis. MALAT1 was down-regulated in both
GA-treated HCC cells, and overexpression of MALAT1
partially reversed GA-induced inhibitory proliferation and
metastasis, and successfully eliminated the inhibition of Wnt/
β-catenin signaling. These results suggest that the potential
mechanism of GA promoting HCC apoptosis may be related
to the inhibition of lncRNAMalat1-Wnt/β-catenin signaling axis
(Shi et al., 2021). Methyl gallate (MG), a metabolite of GA, can
also induce apoptosis of HCC cell lines, which is associated with
activation of caspase-3 and regulation of Bcl2, Bax and Bad ligand
levels (C.Y. Huang et al., 2021). Like many natural compounds,
the clinical application of GA is limited by factors such as low
bioavailability, poor oral absorption, and rapid metabolic
elimination. Therefore, Ahmed encapsulated GA in PLGA-CS-
PEG nanocomposite to form Gallic acid nanocomposite (GANC)
and demonstrated that GANC could reduce AFP, ENG, HSP-90,

Bcl-2, pro-caspase3 and LCN-2 levels of adult female Wistar rats
afflicted with HCC. Pharmacokinetic analysis revealed that
GANC displayed a characteristic sustained release profile with
4-fold increase in bioavailability in normal and HCC-induced rats
(Ahmed et al., 2018).

Resveratrol
As a polyhumic compound, resveratrol (3,5,4
′-trihydroxystilbene) exists naturally in more than 70 plant
species (Gecibesler et al., 2021). It can inhibit the proliferation
of a variety of human tumor cells, and the potential mechanism of
its inhibition on HCC cells is related to the activation of
mitochondria-dependent pathway.

Ou et al. found that resveratrol at a concentration of more than
10 μM could significantly inhibit the activity of HepG2 cells and
induce apoptosis in a dose-dependent manner via activation of
caspase-3 and caspase-9, up-regulation of the ratio of Bax/Bcl-2
and induction of p53 expression. In addition, cell cycle
progresssion was arrested in the G1 and S phase. Moreover,
the apoptosis-inducing effect of resveratrol can be potentiated by
matrine, which is attributed to the cleavage of PARP-1, the
activation of caspase-3 and caspase-9, production of ROS and
disruption of MOMP (Ou et al., 2014). Karabekir treated HCC
male Albino Wistar rats with 50, 75 and 100 mg/kg resveratrol,
respectively, and found 50 and 100 mg/kg RSV can significantly
decrease enzyme activity (ALT,AST, GGT and ALP). RSV at
75 mg/kg and 100 mg/kg could significantly enhance p53
expression. 100 mg/kg RSV significantly up-regulated Bax,
down-regulated Bcl-2, and induced apoptosis of HCC cells
(Karabekir and Özgörgülü 2020). Using the same model,
Zhang proved that 50 mg/kg RSV can inhibit liver
tumorigenesis by inducing cell apoptosis and down-regulating
the expression of Myosin Light Chain kinase (MLCK) (X.L.
Zhang et al., 2013). Olugbami et al. studied the effects of
different doses of resveratrol on HepG2 and their outcomes
revealed that resveratrol inhibited the proliferation of HepG2
in a dose-dependent and time-dependent manner. In addition, at
lower concentrations (0.39–3.13 μg/ml), resveratrol has higher
tendency to activate caspase-3 and caspase-7 (Olugbami et al.,
2017).

DISCUSSION

With advancements of pharmacological technology such as high-
throughput screening, an increasing number of natural products
with certain chemical structures have exerted a variety of
pharmacological effects on patients. As a result, these products
have the potential to become new drugs that can be used to treat
many diseases. Anthraquinones and their derivatives are widely
found in nature and can be divided into three categories.
Anthraquinone compounds are the main active metabolites of
RR and have a variety of pharmacological activities, including
antiviral, anti-inflammatory, antioxidant, and antibacterial
effects. Among them, emodin, rhein, physcion, aloe-emodin,
gallic acid, resveratrol demonstrate oral bioavailability (OB)
values of 24.40, 83.38, 22.29, 47.07, 31.69, and 19.07 as well as
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drug-likeness (DL) values of 0.24, 0.28, 0.27, 0.24, 0.04 and 0.11
respectively. Moreover, they have superior safety, and other
advantages from the perspective of new drug development. The
ADME parameters of rhein and aloe-emodin have certain
advantages, whereas low bioavailability limits the clinical
applications of emodin, resveratrol, and resveratrol; new
formulations or structural modifications are needed to improve
their pharmacokinetic parameters and promote their clinical
applicability. According to current research, emodin, rhein,
physcion, aloe-emodin, gallic acid, and resveratrol have
considerable therapeutic effects on HCC, with apoptosis playing a
critical role in their action mechanisms. Emodin has the most
complex action mechanism, as it is related to both intrinsic and
extrinsic apoptotic pathways and involves multiple upstream
pathways that also interact with each other. Both rhein and
physcion are related to the intrinsic apoptotic pathway and
interfere with ER stress. The difference is that rhein can also
downregulate MMP, whereas physcion can regulate miRNA
expression. Aloe-emodin upregulates p53 and promotes OS,
indirectly promoting cell apoptosis. Studies on other ways of
treating HCC with these constituents, such as anti-angiogenic and
anti-metastatic action, cell cycle arrest, and antioxidant and anti-
inflammatory activities, are also being performed. These different
action mechanisms share some common targets and synergistically
provide antitumor benefits (He et al., 2009; Hsu et al., 2010; Zhang K
et al., 2015; Xing et al., 2018; Cui et al., 2020).

RR is more commonly used as a laxative in TCM, and
anthraquinones also have strong laxative effects (Srinivas et al.,
2007). Therefore, it is necessary to watch for gastrointestinal side
effects when using anthraquinones. Moreover, problems
regarding how to more precisely target the liver, improve
efficacy, and reduce side effects remain. There have been
attempts to combine with other drugs or nanoparticles, but
additional evidence is required (Akkol et al., 2021).
Additionally, the current research still focuses on in vitro tests,
with few animal and clinical tests. The anti-cancer effects of these
ingredients in vivo still need to be verified. Although many
experiments have proven that the active ingredients of RR can

regulate various signals in the apoptosis of HCC cells, the specific
link between its action mechanism, binding molecules, and
binding sites are still unclear. Studies have used rhein and
aloe-emodin as ligands and JUN proteins as protein receptors
for molecular docking, and found that their affinity values were
−6.3 and −6.1 kcal/mol, respectively, indicating strong binding
activity between the two and JUN (Jiang L, et al., 2021). A
molecular docking of BAX and aloe-emodin showed an
affinity value of −15.72, implying a high binding affinity
between them (Mulakayala C, et al., 2013). These studies are
based on bioinformatic analyses and thus provide predictions for
proteins or molecules that may interact with the metabolites of
RR, but further experiments are needed to explore specific
binding methods and sites.

As the main quality control indicators of RR, emodin, rhein,
physcion, aloe-emodin, gallic acid, and resveratrol can inhibit the
development of HCC through inducing apoptosis. RR may
constitute a potential drug for treating HCC, and its clinical
value is worth exploring in future studies.
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