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Abstract: We experimentally study a piezoelectric energy harvester driven by broadband random
vibrations. We show that a linear model, consisting of an underdamped Langevin equation for
the dynamics of the tip mass, electromechanically coupled with a capacitor and a load resistor,
can accurately describe the experimental data. In particular, the theoretical model allows us to define
fluctuating currents and to study the stochastic thermodynamics of the system, with focus on the
distribution of the extracted work over different time intervals. Our analytical and numerical analysis
of the linear model is succesfully compared to the experiments.

Keywords: piezoelectric energy harvester; stochastic thermodynamics; work fluctuations

1. Introduction

From microscopic organisms in the biosphere, life in general and human activities in
particular critically depend on the conversion of different forms of energy into useful work.
Harvesting energy from the environment is therefore a central task in many applications,
where random fluctuations possibly arising from disparate sources at different scales,
from the microscopic thermal Brownian motion in a fluid, to the macroscopic vibrations in
means of transport, can be converted into work.

The well established rules of thermodynamics for macroscopic systems become
blurred when fluctuations are relevant and have to be taken into account [1]. From a
theoretical perspective, the study of fluctuations is addressed within the theory of stochas-
tic thermodynamics, where the standard concepts of energy, heat, work and entropy, are
extended to non-equilibrium systems, driven by external forces or coupled to different
reservoirs. In this framework, the interest is focused on the fluctuations of the above quan-
tities defined along a single trajectory in the stochastic motion of the system and on their
probability distributions. Indeed, general relations have pushed the range of validity of
standard thermodynamics into the realm of non-equilibrium regimes [2–4]: from the Fluc-
tuation Relations [5–9] and the generalized fluctuation-dissipation relations [10,11], to the
general results ruling work and heat exchanged in non-equilibrium transformations, such
as the Jarzinski relation [12], the Crooks fluctuation theorem [13], or the Hatano–Sasa rela-
tion [14]. Very recently, thermodynamic uncertainty relations bounding the signal to noise
ratio of a measured current have been also discovered [15]. In particular, the study of work
and heat fluctuations has been the object of focus in several systems, such as overdamped
linear Langevin Equation [16], particle diffusion in time-dependent potentials [17–22],
Brownian particles driven by correlated forces [23], general thermal systems [24], asym-
metric processes [25], underdamped Langevin Equation [26], or in transient relaxation
dynamics [27]. The interest in these quantities is motivated by the search for optimization
protocols in models of stochastic engines or, from a more theoretical perspective, by the
general symmetry properties or by singular behaviors that work and heat distributions can
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show [28]. Experimental studies confirming theoretical predictions have been reported for
instance in [29–32].

Energy harvesting model systems represent an interesting context where the concepts
of stochastic thermodynamics can be applied, due to the fundamental relevance of random
fluctuations. Very well studied examples are the Brownian (or molecular) motors [33],
also known as ratchet models, where a probe is in contact with a thermal bath and the
presence of a spatial asymmetry coupled to some non-equilibrium source allows to rectify
the motion of the probe, with extraction of useful work. These systems have been studied
theoretically and experimentally for instance in the context of granular media [34,35],
where the dissipative interactions among grains induce the non-equilibrium behavior, or in
biological motors [36], where active internal forces are at play.

More application studies have been carried on in different kinds of energy harvesters,
that are based on the piezoelectric properties of some materials. In this case, macro-
scopic vibrations of the system, as for instance in a car or in a train, can induce small
currents, from which an output power can be extracted to feed sensors or small electrical
devices [37]. Typically, piezoelectric harvesters are employed in resonant cantilever struc-
tures (see Figure 1). The mechanical to electrical energy conversion mechanism is based
on the piezoelectric effect that is the ability of some materials (notably crystals and certain
ceramics) to generate an electric voltage in response to an applied mechanical stress.

Figure 1. Schematic representation of a cantilever structure with piezoelectric harvester.

Due to their resonant nature, piezoelectric harvesters are typically studied in steady
state sinusoidal conditions at frequencies belonging to their resonance band [38,39]. In par-
ticular, the main focus is on their energetic performance, that is on the mechanical and
power electronic architectures and on the control techniques leading to the maximization
of the extracted power [40,41]. Less attention has been devoted to the case of resonant
piezoelectric harvesters excited by non-sinusoidal vibrations or solicited by white noise
vibrations [42–45]. In particular, the theoretical analysis of [42] provided a stochastic
description of the output power from resonant energy harvesters driven by broadband
vibrations and output power dependence on signal bandwidth was considered. Instead,
Ref. [44] proposed a methodology for the probabilistic analysis of a cantilever piezoelec-
tric harvester under white Gaussian noise, without experimental validation. In [45], an
experimental analysis on piezoelectric harvesters is carried out in the presence of har-
monic, random and sine on random vibrations with particular reference to the electrical
power extraction. However, in all previous studies on these energy harvesters no attention
was devoted to the analysis of the fluctuations and distributions of relevant quantities
such as the extracted power, in the general framework of stochastic thermodynamics of
non-equilibrium systems.

Here we consider a typical piezoelectric harvester in a resonant cantilever structure
driven by random broadband vibrations. Despite the several nonlinearities present in
the experimental system, we show that a linear model with effective parameters can well
reproduce the observed dynamics. In particular, we consider a mass in the presence of a
harmonic potential, in contact with a source of white noise. The mass is also electromechan-
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ically coupled with a capacitor, which allow for power extraction through a load resistance.
First, we show that the characteristic response curve, output power vs. load resistance,
obtained from experiments is very well fitted by the analytical formula derived for the
theoretical model. Then, we define a fluctuating work along a system trajectory, according
to the standard approach of stochastic thermodynamics, and we focus on the study of the
work fluctuations. We find that also the distributions of the work measured experimentally
over different time intervals, are in very good agreement with those computed in numerical
simulations of the linear model, using effective parameters.

Our study presents an experimental characterization of the distributions of integrated
currents (output power) for a system that is used in applications as a valid energy harvester
device. Moreover, our analysis shows that a simplified linear model, which allows for
analytical computations, is able to accurately reproduce the experimental results, even at
the fine level of fluctuations.

2. Experimental Setup

The schematic representation of the experimental setup for the piezoelectric harvester
is shown in Figure 1. It consists of a cantilever structure with a tip mass, whose displace-
ment in time x(t) due to the vibrations provided by the shaker, induces a voltage vp(t)
across the electrical load.

In all the experimental tests that we have carried out, we have used the commercial
piezoelectric harvester MIDE PPA-4011 loaded by different electrical load resistances.
This product incorporates four piezoelectric wafers resulting in significant performance
improvements with respect to other models by MIDE. The harvester has been mounted
on a shaker by using a support providing the possibility of different clamping positions.
The addition of tip masses in order to define mechanical properties of the resonant structure
is also possible. A picture of the whole experimental setup is shown in Figure 2. The shaker
VT-500 by Sentek (500 N rated force and 450 m/s2 maximum acceleration) has been used
to get the desired input vibrations. The controller Spider 81 allowed application of the
desired voltage signal to the shaker amplifier and to carry out the recording, by means of
its built-in acquisition board, of the voltage across the load resistance. An accelerometer
3055D2 by Dytran (sensitivity 100 mV/g on the range 50 g) has been used to monitor the
applied acceleration in order to implement a closed-loop feedback vibration control.

Figure 2. Picture of the experimental setup.

In order to study the response of the system to broadband vibrations, we fed the shaker
with a Gaussian signal generated with standard software (MATLAB), with a sampling rate
f = 5 kHz. In Figure 3 typical waveforms of the input acceleration and of the voltage
across the load resistance (for R = 2200 Ω) recorded during experimental tests are shown.

The first quantity we analyzed is the extracted power Pharv that can be obtained from
the average dissipated heat on the load resistance for unit time, Pharv = 〈v2

p〉/R. We show
in Figure 4 the characteristic curves Pharv vs. R, for different values of the input acceleration.
From our analysis, we find an optimal resistance value R∗ ∼ 2000 Ω, which is independent
of the shaking amplitude.
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Figure 3. Top: Input white noise acceleration and voltage across a 2200 Ω load resistance. Bottom:
zoom on a time window of 0.3 s.
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Figure 4. Pharv (measured in Watt) as a function of the load resistance, for different values of the
input acceleration a, measured in unit of the gravity acceleration g. Symbols are experimental data,
while lines correspond to the formula (20).
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3. Theoretical Model

In order to describe the observed experimental results and to extend the study of the
system to fluctuating quantities relevant in the stochastic thermodynamics framework, we
consider the following linear model

ẋ = v (1)

Mv̇ = −Ksx− γvs.− θvp + Mξ (2)

Cpv̇p = θvs.−
vp

R
, (3)

where ξ is white noise with zero mean and correlation 〈ξ(t)ξ(t′)〉 = 2D0δ(t− t′). In the
above equations, x represents the displacement of the tip mass M, v its velocity, γ the
viscous damping due to the air friction, Ks the stiffness of the cantilever in the harmonic
approximation, vp the voltage across the load resistance R, Cp the effective capacitance
in the circuit, and θ the effective electromechanical coupling factor of the transducer.
In Equation (2) we have neglected the thermal fluctuations on the tip mass, which are too
small to affect its motion.

In the system we can identify several characteristic times: τ1 = M/γ, τ2 =
√

M/Ks,
τ3 = Cpγ/θ2, τ4 = CpR. τ1 is the relaxation time of the tip mass due to the viscous damping,
τ2 is the relaxation time within the harmonic potential, τ3 represents the typical timescale
of the coupling between the proof mass and the capacitor, τ4 is the characteristic time of
the RC circuit. Among the various characteristic times, τ3 is the only one depending on
quantities belonging to both the electrical and the mechanical subdomain of the whole
harvesting system. Hence, its physical meaning is not as intuitive as in the case of the
other characteristic times. In any case, in order to better highlight its role, it is possible to
show [41] that there is a link between the amplitude of the speed of the tip mass and the
amplitude of the external acceleration, when the harvester operates in sinusoidal conditions
at the resonance frequency and in open circuit (no load, R→ ∞). In particular, one has the
relation [41]

vmax = amaxθ
M

γ
√

1 + 1
(Ks/M)τ2

3

= amaxθ
τ1√

1 + τ2
2 /τ2

3

. (4)

Therefore, the speed amplitude, in the above operating conditions, depends on all the three
characteristic times, τ1, τ2, and τ3, that assume finite values. It does not depend on τ4, since
it is unbounded in open circuit (R→ ∞).

The system of Equations (1)–(3) can be mapped onto a non-Markovian model, which
makes clear how the presence of the coupling between the tip mass and the capacitor
introduces a form of memory in the dynamics. In particular, one can rewrite the above
equations as a generalized Langevin equation

v̇ = −
∫ t

0

[
2

γ

M
δ(t′) + Γ(t− t′)

]
v(t′)dt′ − Ks

M
x + ξ, (5)

where the memory kernel Γ(t) has the simple exponential form

Γ(t) =
θ2

Cp M
e−t/RCP =

1
τ1τ3

e−t/τ4 . (6)

Let us note that here the friction memory kernel Γ(t) is not associated with any noise term.
This puts the system by construction in a non-equilibrium state, because the fluctuation-
dissipation relation of the second kind does not hold.
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3.1. Average Values

The static properties of the linear model can be obtained by standard methods [46].
We introduce the column vector X = (x, v, vp)T and the coupling matrix

A =

 0 −1 0
Ks
M

γ
M

θ
M

0 − θ
Cp

1
CpR

, (7)

so that the Equations (1)–(3) can be rewritten in vectorial form as

Ẋ = −AX + η, (8)

where η = (0, ξ, 0)T . Defining the covariance matrix σ = 〈XTX〉 as

σ =

 σxx σxv σxvp

σvx σvv σvvp

σvpx σvpv σvpvp

, (9)

at stationarity one has the constraint

D =
Aσ + σAT

2
, (10)

where D is the noise matrix

D =

 0 0 0
0 D0 0
0 0 0

. (11)

From Equation (10) one gets the following relations for the covariance matrix elements

0 = 〈xv〉 (12)

0 = 〈v2〉 − Ks

M
〈x2〉 − θ

M
〈xvp〉 (13)

0 = − γ

M
〈v2〉 − θ

M
〈vvp〉+ D0 (14)

0 =
θ

Cp
〈vvp〉 −

1
CpR
〈v2

p〉 (15)

0 = −
(

γ

M
+

1
CpR

)
〈vvp〉+

θ

Cp
〈v2〉 − Ks

M
〈xvp〉 −

θ

M
〈v2

p〉 (16)

0 = 〈vvp〉 −
1

CpR
〈xvp〉. (17)

The stationary distribution is a multivariate Gaussian

P(x, v, vp) ∼ exp
[
−1

2

(
σ−1

xx x2 + σ−1
vv v2 + σ−1

vpvp v2
p + 2σ−1

xv xv + 2σ−1
xvp xvp + 2σ−1

vvp vvp

)]
, (18)

where σ−1 denotes the inverse matrix of σ. The explicit expressions of the elements of σ
are reported in Appendix A.

The average output power is the heat dissipated into the resistance per unit time

Pharv = 〈Q̇diss〉 =
1
R
〈v2

p〉 (19)

and its explicit expression as a function of the parameters is

Pharv =
D0M2Rθ2

M(γ + Rθ2) + CpRγ(CpKsR + γ + Rθ2)
. (20)
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3.2. Fitting the Model to Experimental Data

The linear model described by the Equations (1)–(3) contains several physical parame-
ters that are directly controlled in the experiments and others that can be fitted to match the
measured data. In particular, the parameter D0 that quantifies the amplitude of the white
noise is related to the acceleration a provided by the shaker and to the sampling rate 1/∆t
of the input signal, D0 = a2∆t/2, where ∆t = 1/ f = 0.0002 s. Furthermore, the parameters
Ks and M are related to the characteristic frequency of the system, which for the experimen-
tal apparatus is

√
Ks/M = 2π× 140 Hz. Finally, the capacitor Cp is estimated as Cp∼490 nF.

The other parameters can be fitted to the experimental data through the analytical expres-
sion (20) as a function of the load resistance R. For the case a = 9.81 m/s2 , we obtain the fol-
lowing values for the model parameters: M = 0.0083± 0.0002 Kg, θ = 0.0195± 0.002 N/V,
γ = 0.359± 0.05 Kg/s. This set of parameters is used also for other values of the shaker
accelerations used in the experiments, a = 0.8 × 9.81 m/s2 and a = 1.2 × 9.81 m/s2,
providing a very good agreement between analytical predictions and experimental data,
as shown in Figure 4.

3.3. Stochastic Energetics

The theoretical model allows us to study fluctuations and distributions of thermody-
namic quantities defined at the level of the single trajectory. In particular, according to
Sekimoto [47], we define the heat exchanged along a trajectory in a time interval τ with the
surrounding medium as

Qex(τ) = −
∫ τ

0
γv(t)2dt, (21)

and the energy fed into the system from the external driving as the integral of the injected
power Pinj = Mξ(t)v(t)

Einj(τ) = M
∫ τ

0
ξ(t)v(t)dt. (22)

The product in the above equation is meant according to the Stratonovich prescription.
Note that the heat in Equation (21) is released toward the medium. Using the Langevin
Equation (2), we can rewrite these two terms as follows

Qex(τ) + Einj(τ) =
∫ τ

0

[
−γv(t)2 + Mv(t)ξ(t)

]
dt

=
∫ τ

0

[
−γv(t)2 + v(t)

(
Mv̇ + Ksx + γvs. + θvp

)]
dt

= 1
2 M[v(τ)2 − v(0)2] + 1

2 Ks[x(τ)2 − x(0)2] + θ
∫ τ

0 v(t)vp(t)dt

= ∆E + W,

(23)

where
∆E =

1
2

M[v(τ)2 − v(0)2] +
1
2

Ks[x(τ)2 − x(0)2] (24)

is the mechanical energy variation and

W(τ) = θ
∫ τ

0
v(t)vp(t)dt (25)

can be interpreted as the work performed by the harvester. Equation (23) represents the
first principle for stochastic thermodynamic quantities. The average output power in the
stationary state is then

Pharv = 〈Ẇ〉 = θ〈vvp〉 = −γ〈v2〉+ M〈vξ〉, (26)

where 〈vξ〉 = D0 and the last equality follows from Equation (23) using the stationary
result 〈∆E〉 = 0.
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The output power can be also expressed as the dissipated heat in the load resistance
in the time interval τ

Qdiss(τ) =
1
R

∫ τ

0
vp(t)2dt, (27)

which, exploiting Equation (3), can be related to the fluctuating work W by

W(τ) = Qdiss(τ) +
Cp

2
[vp(τ)

2 − vp(0)2]. (28)

This shows that the difference between the fluctuations of W and Qdiss is a term
non-extensive in time. In our system, we have numerically checked that, for the studied
time intervals, these border terms can be neglected. However, more generally, there are
systems where such terms can be relevant for fluctuations, see for instance [17,48].

We have studied numerically and experimentally the work W(τ) for different values
of τ. The experimental evaluation of this quantity has been obtained integrating the time
series of the output signal for the voltage vp(t) (the whole recorded time series were 600 s
long). The results are reported in Figure 5. First, we stress the good agreement between
the work distributions obtained from experiments and numerical simulations. This shows
that the linear model with white noise is able to accurately describe the experimental
system, even at the level of fluctuations, in the range of explored parameters. The work
distributions present a pronounced asymmetry for small time intervals τ, characterized by
an exponential tail for large values of W/τ, as also observed for the functional form of the
injected power distribution in the overdamped Langevin equation, obtained analytically
in [16]. At large times, the distributions seem to converge towards a Gaussian form,
symmetric around the mean.
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Figure 5. Distributions of W/τ (measured in Watt) for different values of the load resistance R and
of the time τ. Dots represent experimental data and lines numerical results. Numerical simulations
were obtained integrating the Langevin equation with a time step dt = 10−6, and averaging over
∼105 realizations.

In order to analyze the behavior of the work distributions measured in experiments
as a function of the load resistance we have fitted the tail of the curves at short times
(τ = 0.01 s) with an exponential function f (x) ∼ exp(−x/α), extracting the parameter α.
For the curves at large times (τ = 1 s) we have fitted the data with a Gaussian function
g(x) ∼ exp(−(x − µ)2/2σ2) to obtain the variance σ2 as a function of R. The results
are shown in Figure 6. We observe that both α and σ2 have a non-monotonic behavior,
with a maximum appearing around the value which maximizes the mean extracted power,
showing that fluctuations are larger in proximity of the optimal working point.
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Figure 6. Parameters α and σ2 obtained from the fit of the functions f (x) and g(x) to the experimental
data, for different values of R.
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4. Conclusions

We have studied experimentally a piezoelectric energy harvester driven by random
broadband vibrations, focusing on the behavior of the extracted power as a function of
the load resistance and of the vibration amplitude. We have shown that a linear model,
consisting of an underdamped Langevin equation for the tip mass coupled with voltage
dynamics reproduces very well the experimental data.

Moreover, the theoretical model allowed us to address the issue related to the behavior
of the fluctuations of non-equilibrium currents, such as the extracted work in a time inter-
val. This analysis plays a central role in the context of stochastic thermodynamics, where
the properties of the system are scrutinized at the level of single trajectories. The com-
parison between the results of numerical simulations of the model and the experimental
data showed that the linear system of equations provides a good approximation of the
real system, reproducing the same behavior of the work distributions as a function of
the parameters.

Our findings represent the first experimental study of the work fluctuations in a
piezoelectric energy harvester and show that the observed behaviors can be consistently
rationalized within a simple model, paving the way to future analyses. In particular,
from the theoretical perspective, due to the linear nature of the model, the analytical
computation of the work distribution and its large deviations function could be obtained
with a path integral approach, as for instance described in [16]. Moreover, it could be
interesting to modify the model by adding a noise source also in the equation for the
voltage, obtaining a system of two coupled Langevin equations, or considering a bistable
potential for the tip mass, as proposed in [49,50]. Analyses of other quantities such as heat
or entropy production could be also carried out along the same lines. On the experimental
side, it could be interesting to perform a similar study of current fluctuations in a system
driven by realistic vibration sources, like cars or trains, taken from available databases,
or where the simple linear resistance load is replaced by a diode bridge, as often considered
in applications.
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Appendix A

Here we report the explicit expressions for the covariance matrix elements

σxx =
D0M2(CpR(γ + CpKsR) + M)

Ks

(
γC2

pKsR2 + (γ + θ2R)(γCpR + M)
) (A1)

σxv = 0 (A2)

σxvp =
CpD0θM2R2

γCpR
(
γ + CpKsR + θ2R

)
+ M(γ + θ2R)

(A3)
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σvv =
D0M

(
CpR

(
γ + CpKsR + θ2R

)
+ M

)
γCpR

(
γ + CpKsR + θ2R

)
+ M(γ + θ2R)

(A4)

σvvp =
D0θM2R

γCpR
(
γ + CpKsR + θ2R

)
+ M(γ + θ2R)

(A5)

σvpvp =
D0θ2M2R2

γCpR
(
γ + CpKsR + θ2R

)
+ M(γ + θ2R)

. (A6)
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