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Assessing the response of bladder cancer to neoadjuvant chemotherapy is crucial for reducing morbidity
and increasing quality of life of patients. Changes in tumor volume during treatment is generally used to pre-
dict treatment outcome. We are developing a method for bladder cancer segmentation in CT using a pilot
data set of 62 cases. 65 000 regions of interests were extracted from pre-treatment CT images to train a
deep-learning convolution neural network (DL-CNN) for tumor boundary detection using leave-one-case-out
cross-validation. The results were compared to our previous AI-CALS method. For all lesions in the data set,
the longest diameter and its perpendicular were measured by two radiologists, and 3D manual segmentation
was obtained from one radiologist. The World Health Organization (WHO) criteria and the Response Evalu-
ation Criteria In Solid Tumors (RECIST) were calculated, and the prediction accuracy of complete response to
chemotherapy was estimated by the area under the receiver operating characteristic curve (AUC). The AUCs
were 0.73 � 0.06, 0.70 � 0.07, and 0.70 � 0.06, respectively, for the volume change calculated using
DL-CNN segmentation, the AI-CALS and the manual contours. The differences did not achieve statistical sig-
nificance. The AUCs using the WHO criteria were 0.63 � 0.07 and 0.61 � 0.06, while the AUCs using
RECIST were 0.65 � 007 and 0.63 � 0.06 for the two radiologists, respectively. Our results indicate that
DL-CNN can produce accurate bladder cancer segmentation for calculation of tumor size change in re-
sponse to treatment. The volume change performed better than the estimations from the WHO criteria and
RECIST for the prediction of complete response.

INTRODUCTION
Bladder cancer accounts for 5% of all new cancers in the USA,
and it is the fourth most common cancer in men. The American
Cancer Society estimates that in 2016, 76 960 (men, 58 950;
women, 18 010) new cases of bladder cancer will be diagnosed
in the USA, with 16 390 (men, 11 820; women, 4570) deaths (1).
Early treatment of bladder cancer is important to reduce mor-
bidity and mortality, as well as reduce costs.

The standard treatment method for bladder cancer involves
radical cystectomy of the bladder; however, �50% of the pa-
tients who have under gone cystectomy and were considered to
have only locally invasive cancer at the time of the surgery

develop metastatic disease within 2 years and subsequently die
because of the disease (2). This may be because of the presence
of micrometastatic disease or the presence of neoplasms that
have spread to perivascular tissue that went undetected at the
time of treatment. Neoadjuvant chemotherapy improves resect-
ability of large tumors, and it is beneficial for the treatment of
micrometastases before radical cystectomy (3-5). The treatment
regimen with methotrexate, vinblastine, doxorubicin, and cis-
platin decreases the chance of finding residual cancer after
cystectomy compared with treatment with cystectomy alone,
and increases the survival of patients with locally advanced
bladder cancers (6, 7). However, the side effects of this treatment
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are severe, which include neutropenic fever, sepsis, mucositis,
nausea, vomiting, malaise, and alopecia (8). Because there are
no reliable methods at present to predict a patient’s response to
chemotherapy, it is possible that patients experience these side
effects while enduring treatment that may or may not achieve
the desirable benefits. Therefore, early assessment of the bladder
cancer treatment response is important, allowing clinicians to
put a timely stop to unbeneficial treatment. This will help reduce
patient morbidity and increase their quality of life. It may also
preserve a patient’s physical conditions and allow them to pur-
sue alternative treatment that may be more beneficial.

The response to treatment can be measured via pathological
information from the resected bladder after cystectomy or other
surgical procedures such as transurethral resection of bladder
tumor. However, because these patients are receiving chemo-
therapy, surgery may not be an ideal method for assessing
treatment response. The patients are weak because of chemo-
therapy, and therefore, surgery is not recommended during their
chemotherapy treatment; noninvasive evaluation is preferable.
Image-based evaluation, using either computed tomography
(CT) or magnetic resonance imaging images, can noninvasively
visualize the tumor during the chemotherapy treatment. Specific
features from these images, known as radiomic features, may be
extracted and analyzed to determine tumor properties.

The clinical estimation of the tumor size and its response to
treatment is based on the World Health Organization (WHO)
criteria (9) and the Response Evaluation Criteria in Solid Tumors
(RECIST) (10). As per the WHO criteria, the longest diameter of a
tumor and its perpendicular diameter are measured. The re-
sponse to treatment is defined as the percentage reduction of the
products of the 2 diameters between the pre- and post-treatment
measurements. The RECIST criteria use the percentage reduction
of the longest diameter between the pre- and post-treatment
measurements. Both methods can be inaccurate and can have
large inter- and intraobserver variations, particularly for tumors
with irregular and complex shapes (11). As RECIST criteria and
WHO criteria involve only 1-dimensional (1D) and 2-dimen-
sional (2D) measurements, respectively, the volumetric (3-di-
mensional [3D]) information from a CT scan is not fully used,
and it is possible that the 3D information may provide better
response evaluation.

The gross tumor volume (GTV) can be effectively measured
in CT images, and it can predict outcomes of bladder cancers
(12). For an accurate GTV measure from the CT images, the
bladder tumor in the images needs to be delineated section by
section; however, this is a time- and labor-intensive procedure,
and thus, the burden of the additional workload on the radiol-
ogists cannot be ignored. Computerized segmentation tools that
can automatically or semiautomatically delineate the tumors
from its surroundings would greatly reduce the additional work-
load. In our previous preliminary study, we have shown that our
method for computerized segmentation of bladder tumors, auto-
initialized cascaded level sets (AI-CALS), can reliably produce
3D segmentation for various bladder tumors (13), and that the
volume estimates more accurately predict the complete response
to treatment compared with the WHO and the RECIST criteria on
small data sets (14).

Although the 3D volumetric measurement by AI-CALS pro-
vides better estimates than the 1D and 2D estimates in tumor size
changes, the segmentation method still needs improvement in
many cases given the various tumor shapes and characteristics
in the patient population. Here, we explored the application of
deep-learning convolution neural network (DL-CNN) to the seg-
mentation of bladder tumors. Convolution neural networks
(CNNs) have been used previously to classify patterns in medical
images for use with computer-aided detection, particularly for
microcalcification and mass detection in mammograms (15-23).
The training set used in these applications was typically small, in
general, �500 samples. With advances in computation power, it
has become practical to design CNNs with very large and com-
plex architectures that require a massive number of training
samples to solve more challenging pattern recognition prob-
lems. The DL-CNN using graphics processing units has been
successful in classifying natural scene images using a large
training set. Krizhevsky et al. (24, 25) showed that high classi-
fication accuracy can be achieved using DL-CNN on the Im-
ageNet ILSVRC-2010 and ILSVRC-2012 data sets (26) and the
CIFAR-10 data set (27). DL-CNN has also been successfully used
for computer-aided detection in medical imaging (28). We have
previously applied DL-CNN to the segmentation of whole blad-
ders in CT images (29); however, the segmentation of the tumors
is more difficult because contrast material is generally not used
in CT for patients undergoing chemotherapy, resulting in low
contrast between the tumor and the inside of the bladder.

In this pilot study, we applied DL-CNN to bladder lesion
segmentation. For this task, the DL-CNN was trained to recog-
nize the patterns in the regions that were inside and outside of
the bladder lesion and generate a lesion likelihood map. Minor
refinement on the likelihood map was performed by level sets to
obtain the segmented boundaries of the bladder cancer.

The bladder cancer segmentation performance of the DL-
CNN and the AI-CALS was quantitatively compared with the
radiologists’ manual outlines. The cancer volumes were calcu-
lated from the segmented tumor boundaries, and the GTV
change in response to neoadjuvant chemotherapy was calcu-
lated. The results obtained from the DL-CNN were compared
with the results obtained using our previous AI-CALS segmen-
tation method, radiologist’s manual outlines, and response esti-
mation using the WHO and the RECIST criteria.

METHODS
Data Set
A data set of 62 cases was collected retrospectively from the
Abdominal Imaging Division of the Department of Radiology at
the University of Michigan with Institutional Review Board
approval for this pilot study. All patients in the data set under-
went CT examination before and after chemotherapy, and sub-
sequently, underwent cystoscopy, biopsy, or radical cystectomy.
The CT scans used in this study were acquired in our clinic with
GE Healthcare LightSpeed MDCT scanners (GE Healthcare,
Waukesha, Wisconsin). The images were acquired using 120 kVp
and 120–280 mA and reconstructed at a section interval of
0.625, 1.25, 2.5, or 5 mm, with pixel sizes ranging from 0.586 to
0.977. The data set contained 64 tumors forming 74 temporal
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pairs, and 27% (17/62) of the patients showed stage pT0 after
surgery, indicating complete response to treatment.

A reference standard for the computerized segmentation
was obtained via 3D hand-segmented contours of the bladder
tumors in the pre- and post-treatment CT of the 62 cases. A
radiologist with 27 years of experience in CT bladder cases
identified and marked focal tumor locations within the CT scans.
The radiologist also manually outlined the full 3D contour for all
cases (reference standard 1), and measured the longest diameter
and its perpendicular diameter using a graphical user interface
we have developed. The second radiologist with 17 years of
experience in CT bladder cases also manually outlined the blad-
der tumors in the pre- and post-treatment CT for a subset of 29
cases (reference standard 2), and measured the longest diameter
and its perpendicular diameter independently following the
WHO criteria and RECIST criteria for all 62 cases.

DL-CNN Training
Our research work on whole bladder segmentation using DL-
CNN was expanded further to bladder tumor segmentation. The
DL-CNN by Krizhevsky et al. called cuda-convnet (24, 25) was
used. The neural network was trained to classify regions of
interests (ROIs) on 2D sections as being either inside or outside
of the bladder cancer. Details on the DL-CNN can be found in the
literature (29). The DL-CNN was trained with the pretreatment
scans of the cases. For each axial section of the cases, a large
number of overlapping 16- � 16-pixel ROIs were extracted from
the region including the cancer marked by the radiologist. If
�80% of an ROI was within the hand-outlined bladder cancer,
the ROI was labeled as being inside of the cancer, whereas the
ROI had to be completely outside of the cancer for it to be
classified as being outside of the cancer. ROIs not labeled as
either inside or outside of the cancer were excluded. Figure 1
shows an example of ROIs obtained from a CT section. The
number of ROIs within the 2 classes was balanced, resulting in
�65 000 ROIs. Figure 2, A and B shows examples of ROIs inside
and outside of the bladder cancer, respectively, that were used to
train the DL-CNN.

The network architecture used in this study consists of the
following 5 main layers: 2 convolution layers, 2 locally con-
nected layers, and 1 fully connected layer. The first convolution
layer consists of 64 kernels with a size of 5 � 5 pixels. The
output of this layer is pooled, normalized, and input into the
second convolution layer that also consists of 64 kernels with a
size of 5 � 5 pixels. The output of this layer is also pooled,
normalized, and input to the first locally connected layer that
has 64 kernels with a size of 3 � 3 pixels. The second locally
connected layer has 32 kernels with a size of 3 � 3 pixels and
output to the fully connected layer. The fully connected layer
outputs 2 values to a softmax layer that converts the values to a
range from 0 to 1. The output of the DL-CNN can be interpreted
as the likelihood of an input ROI being classified into 1 of the 2
categories. The neural network was trained for 1500 iterations,
which was sufficient for the classification error rate to converge
to a minimum and remained stable. Leave-one-case-out cross-
validation was used for this study. In each of the leave-one-
case-out partitions, all ROIs associated with a case were re-
moved, and the DL-CNN was trained using the remaining ROIs.

The training of the DL-CNN for 1 partition took �1.5 hours on
average using an Nvidia Tesla K20 graphics processing unit.

Bladder Cancer Likelihood Map Generation Using
DL-CNN
For each leave-one-case-out partition, the trained DL-CNN net-
work was applied to the left out case to generate the bladder
cancer segmentation likelihood map. A bladder cancer likeli-
hood map was generated by applying the trained DL-CNN to a
volume of interest (VOI) of a CT scan that contained the bladder
tumor to be segmented. In this study, a VOI that approximately
enclosed the bladder cancer was manually marked in each CT
scan. For every voxel within the VOI, an ROI of 16 � 16 pixels
in size centered at the voxel was automatically extracted from
the corresponding axial section and input into the DL-CNN,
which estimated a likelihood score that the voxel was inside the
tumor. After the likelihood values were estimated for all voxels
in the VOI, the likelihood values on each section constituted a
2D likelihood map on the axial section, and the stack of 2D
likelihood maps provided the 3D map for the VOI. Figure 3
shows the bladder cancer likelihood map for the CT section
shown in Figure 1. The DL-CNN was applied to the CT scan for
both the pre- and post-treatment scans for each bladder cancer
case.

Figure 1. An axial section of a pre-treatment
computed tomography (CT) scan from a training
case. Cropped CT section centered at the bladder (A).
Radiologist’s hand-outline of the cancer overlaid
on the CT section (B). Regions of interest (ROIs)
extracted from this section (C). The yellow ROI
shows the size of a 16- � 16-pixel ROI. The ROIs
are partially overlapping. The blue ROIs are la-
beled as being inside the bladder cancer. The
pink ROIs are labeled as being outside the blad-
der cancer for training the deep-learning convolu-
tion neural network (DL-CNN).

DL-CNN Bladder Cancer Segmentation for Treatment Response Assessment

TOMOGRAPHY.ORG | VOLUME 2 NUMBER 4 | DECEMBER 2016 423



Bladder Cancer Segmentation from Likelihood Map
As seen in the example of Figure 3, the likelihood map identifies
the bladder tumor region very well, but the tumor boundary is
not sharply demarcated. The level sets, therefore, are used to
perform minor refinements to the contour. First, a binary cancer
mask, DLMask, is generated by applying the following equation
to every pixel of every section of the likelihood map:

DLMask(x, y) � �1, DLScore(x, y) � �
0, DLScore(x, y) � �

(1)

where DLMask(x, y) is the pixel value on the cancer mask at the
coordinates (x, y) of a section, DLScore(x, y) is the bladder cancer
likelihood score at the coordinates (x, y), and � is the likelihood
score threshold. The value of � was experimentally determined

to be 0.60 to generate reasonable binary masks in comparison to
the radiologist’s manual segmentation. A morphological dila-
tion filter with a spherical structuring element of 2 voxels in
radius, a 3D flood fill algorithm, and a morphological erosion
filter with a spherical structuring element of 2 voxels in radius
were used to smooth the cancer mask and connect neighboring
components to extract an initial segmentation surface, �0(x).

The initial segmentation surface was refined using level
sets. For this study, the level set uses the following equation:

�
�

� t
�(x) � 	
A(x) � �(x) 	 �P(x)��(x)

� ��(x)��(x)
�(x, n � 0) � �0(x)

(2)

where 
, � and � are the coefficients for the advection, propa-
gation, and curvature terms, respectively; A(x) is a vector field
image that drives the contour toward regions of high gradient;
P(x) is a scalar speed term between 0 and 1, causing the contour

to expand at the local rate; and ��x� � div� ���x�

|���x�|� is the mean

curvature of the level set at point x. The symbol � denotes the
gradient operator and div is the divergence operator (30); n is the
number of iterations.

A 3D level set with a predefined set of parameters is applied
to the initial segmentation surface, and the segmentation on
each section is further refined by a 2D level set. The parameters
of the 3D and 2D level sets are presented in Table 1.

The 3D level set brings the contour toward the sharp edges,
and also expands it slightly in regions of low gradient. The
parameter “q” in Table 1 is defined as a linear function �M � �

Figure 2. Composite images of the 47 000 ROIs
from the training set used to train the DL-CNN.
Each ROI is 16 � 16 pixels. ROIs labeled as be-
ing inside bladder cancers (A). ROIs labeled as
being outside bladder cancers (B). A portion of
each composite image is enlarged to show the
typical ROIs in each class.

Figure 3. Bladder cancer likelihood map of the
CT section shown in Figure 1. Regions that are
highly likely to be bladder cancer have higher
intensity values. The volume of interest (VOI) that
was used for this lesion is shown in blue. For dem-
onstration purposes, the bladder cancer likelihood
map was generated in the region around the en-
tire bladder.
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of the 2D diagonal distance M of the VOI box in millimeters,
where � 	 0.06, � 	 
0.11 as shown previously (30). After the
3D level set refinement, a 2D level set is applied to every section
of the 3D contours to further refine the contours. Details on the
level sets used can be found in the literature (30). Figure 4 shows
the final contour of the bladder cancer on the CT section from
Figure 1 using the likelihood map shown in Figure 3.

Evaluation Methods
Segmentation performance was evaluated by comparing the
automatic segmentation results to the 3D hand-segmented con-
tours. The average minimum distance and the Jaccard index (31)
between the hand- and computer-segmented contours were
calculated.

The average distance, AVDIST, is the average of the dis-
tances between the closest points of 2 contours and is calculated
using the following equation:

AVDIST(G, U) �
1

2
��x�G min{d(x, y) : y � U}

NG

�
�y�U min{d(x, y) : x � G}

NU
�, (3)

where G and U are the 2 contours being compared. NG and NU

denote the number of voxels on G and U, respectively. The
function d is the Euclidean distance. For a given voxel along the
contour G, the minimum distance to a point along the contour U

is determined. The minimum distances obtained for all points
along G are averaged. This process is repeated by switching the
roles of G and U. AVDIST is then calculated as the average of the
2 average minimum distances.

The Jaccard index is defined as the ratio of the intersection
between the reference volume and the segmented volume to the
union of the reference volume and the segmented volume, and
calculated using the following equation:

JACCARD3D �
VG � VU

VG � VU
, (4)

A value of 1 indicates that VU completely overlaps VG,
whereas a value of 0 implies VU and VG are disjoint.

Receiver operating characteristics (ROC) analysis and area
under the receiver operating characteristic curve (AUC) were
used to estimate the accuracy for predicting T0 disease (com-
plete response) after surgery based on the calculated change in
GTV between pre- and post-treatment CT scans using the DL-
CNN, the AI-CALS, and the manual segmentation methods. The
AUCs from the radiologists’ WHO criteria and RECIST estimates
were also calculated.

RESULTS
Examples of DL-CNN-segmented bladder cancer on pre- and
post-treatment CT scans, as well as the AI-CALS segmentation,
are shown in Figure 5. The segmentation performance measures
of both the DL-CNN and AI-CALS methods compared with
reference standard 1 averaged over the pretreatment lesions,
post-treatment lesions, and all lesions, as well as the P values
from Student 2-tailed paired t test for the differences between
the methods, are presented in Table 2. For all lesions, the differ-
ence in the average minimum distance was statistically signifi-
cant with a P value of .001, whereas the difference in the Jaccard
index approached significance with a P value of .058. The
differences in the pretreatment lesion segmentation perfor-
mances were statistically significant, with P � .001 and P �
.015 for the average minimum distance and the average Jaccard
index, respectively. The differences in the post-treatment lesion
segmentation performances did not reach statistical signifi-
cance.

The segmentation performance measures of the DL-CNN
and AI-CALS methods compared with the 2 reference standards
averaged over the pretreatment lesions, post-treatment lesions,
and both pre- and post-treatment lesions for a subset of 29 cases
are presented in Table 3. None of the differences reached statis-
tical significance for this subset of cases.

Table 4 shows the AUC values for the different methods. The
AUC for predicting complete response using GTV calculated
using the DL-CNN segmentation achieved 0.73 � 0.06, whereas
that for the AI-CALS segmentation achieved 0.70 � 0.07 com-
pared with 0.70 � 0.06 for the radiologist’s hand-outline-based
GTV. The differences between the 3 methods did not reach
statistical significance. For the WHO criteria, the AUCs were
0.63 � 0.07 and 0.61 � 0.06 for the 2 radiologists. For the
RECIST estimates, the AUCs were 0.65 � 0.07 and 0.63 � 0.06

Table 1. Parameters for the Level Sets

Level Set � � � n

3D 1 0.4 q 20

2D 4.0 0.2 0.5 10

Figure 4. Bladder cancer segmentation on the
CT section shown in Figure 1 using the bladder
likelihood map shown in Figure 3.
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Figure 5. Examples of segmentations of bladder tumors in pre-treatment (A, C, E) and post-treatment (B, D, F) CT scans.
The DL-CNN segmentation is shown in light blue. The auto-initialized cascaded level sets (AI-CALS) segmentation is
shown in pink. The hand-outline is shown in dark blue. DL-CNN segmentation with AI-CALS segmentation and hand-out-
line for the cancer are shown in Figure 1 (A). Both computer methods segmented the lesion reasonably. The cancer le-
sion shrunk in size because of treatment, and became a part of the bladder wall (B). The DL-CNN undersegmented the
cancer, not extending enough into the bladder wall. AI-CALS oversegmented the lesion, leaking into the bladder. The
DL-CNN segmentation outlined the cancer relatively accurately, whereas the AI-CALS segmentation leaked (C). In this
post-treatment scan, the cancer along the bladder wall was reasonably segmented by DL-CNN, whereas the AI-CALS
was unable to follow the shape and leaked into the bladder (D). Both DL-CNN and AI-CALS segmented the bladder can-
cer reasonably well, but the AI-CALS slightly undersegmented the cancer (E). The bladder cancer responded to treat-
ment, and thus, had shrunk considerably, making the segmentation difficult (F). Both the DL-CNN and the AI-CALS under-
segmented the lesion.
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for the 2 radiologists. Figure 6 compares the ROC curves for the
different methods.

DISCUSSION
The results of this pilot study show that DL-CNN can be trained
to segment bladder cancers in CT. The trained DL-CNN generates
a likelihood map that identifies regions in the CT scans that are
likely to be bladder cancers. By thresholding this map and
performing minor refinement with level sets, we can obtain
reasonable bladder cancer segmentations.

In our previous work on bladder segmentation with DL-CNN,
level sets were also used to refine the output of the DL-CNN; as the
contrast between the bladder and its surroundings is relatively
high, cascaded level sets can refine the bladder boundary with high
accuracy. On the other hand, with bladder cancer segmentation, the
contrast between the tumor and the inside of the bladder can be
much lower because the contrast material is often not used for the
pre- and post-treatment CT. The level sets did not perform as well
under these conditions, causing the segmentation to either leak or
shrink incorrectly. Therefore, only a few iterations of the level sets

were applied to the bladder cancer likelihood map to fill holes and
smooth the segmentation.

The segmentation performance of the DL-CNN was better than
that of AI-CALS in comparison with a radiologist’s reference stan-
dard using the entire data set. The differences in the average
minimum distance were statistically significant, whereas the dif-
ference in the Jaccard index approached significance (Table 2).
When the data set is divided into pre- and post-treatment lesions,
the DL-CNN performed significantly better than the AI-CALS for
the pretreatment lesions, whereas the 2 methods performed com-
parably on the post-treatment lesions. The pre-treatment lesions
are generally better defined than the post-treatment lesions. As the
lesions change because of the treatment, the lesion generally
shrinks and the boundaries become less distinct, making the post-
treatment lesions more difficult to segment. Nevertheless, the
changes in GTV estimated by the 2 computer methods were com-
parable to the estimates using radiologist’s hand-outlines at pre-
diction of complete response to treatment (Table 4).

The segmentation performances for the DL-CNN and the
AI-CALS were compared with 2 reference standards in the

Table 2. Segmentation Evaluation Using Reference Standard 1 (RS1)

DL-CNN vs RS1 AI-CALS vs RS1 P Value

Average minimum distance AVDIST

Pre-treatment 4.8 � 2.3mm 6.1 � 3.6mm .001a

Post-treatment 4.6 � 1.8mm 4.9 � 2.6mm .389

Both 4.7 � 2.1mm 5.5 � 3.2mm .001a

Jaccard index JACCARD3D

Pre-treatment 39.5 � 17.1% 34.7 � 15.8% .015a

Post-treatment 32.6 � 17.8% 32.7 � 14.4% .936

Both 36.3 � 17.7% 33.8 � 15.1% .058

Abbreviations: DL-CNN, deep-learning convolution neural network; AI-CALS, autoinitialized cascaded level sets.
The results are shown in groups of pre-treatment, post-treatment, and both pre- and post-treatment lesions (126 lesions). The P values from Student 2-tailed
paired t test for the differences between the DL-CNN and the AI-CALS segmentation methods are also shown. Some post-treatment lesions were determined
to have shrunk completely by the radiologist; thus, no segmentation was performed. aStatistically significant at P � .05.

Table 3. Segmentation Evaluation Between Hand-segmented Reference Standards (RS1, RS2) by 2 Different
Readers for DL-CNN and AI-CALS Segmentation Methods for a Subset of 29 Cases

DL-CNN vs RS1 AI-CALS vs RS1 DL-CNN vs RS2 AI-CALS vs RS2

Average minimum distance AVDIST

Pre-treatment 4.8 � 1.8mm 5.3 � 2.7mm 4.9 � 3.4mm 4.5 � 1.9mm

Post-treatment 4.3 � 1.7mm 4.4 � 1.8mm 4.7 � 3.1mm 4.9 � 3.7mm

Both 4.6 � 1.8mm 4.8 � 2.3mm 4.8 � 3.2mm 4.7 � 2.9mm

Jaccard index JACCARD3D

Pre-treatment 45.3 � 8.5% 42.5 � 14.1% 46.8 � 9.3% 42.8 � 12.5%

Post-treatment 29.8 � 17.7% 32.9 � 14.8% 28.8 � 19.7% 28.6 � 18.2%

Both 37.5 � 15.8% 37.7 � 15.2% 37.8 � 17.8% 35.7 � 17.1%

Abbreviations: DL-CNN, deep-learning convolution neural network; AI-CALS, autoinitialized cascaded level sets.
The segmentation evaluation results are for a subset of 29 cases divided into pre-treatment, post-treatment, and both pre- and post-treatment lesions (58 lesions).
None of the paired differences between DL-CNN and AI-CALS reached statistical significance for this subset, probably because of the small sample size.
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subset that had both radiologists’ manual outlines (Table 3). The
results indicate that the performances of the 2 methods were
consistent regardless of which reference standard was used.

The change in GTV estimated by the new DL-CNN segmen-
tation method performed better than that by our previous AI-
CALS system at prediction of complete response to treatment.
Although the difference in the AUC for prediction of complete
response to treatment did not reach statistical significance,
probably because of the small data set, the segmentation per-
formance results show that the segmentation by DL-CNN is
better than that by AI-CALS.

Comparisons of the volume measurements with the WHO
criteria and the RECIST show that the 3D measure of the bladder
cancer (GTV) performs better than the 2D (WHO criteria) and the
1D (RECIST) measurements. The WHO criteria and the RECIST
measurements performed worse compared with the GTV mea-
sures. This indicates that the 3D information (GTV) may be more
reliable for assessment of bladder cancer treatment response.

There are limitations in this study. Although the data set
was expanded compared with our previous study, the number of
cases remained relatively small. Testing the method on a larger
data set with wider ranges of sizes and types of bladder cancers
will allow us to further validate the generalizability of the
method. We will continue to enlarge the data set. Another
limitation is that we used only 1 set of the radiologist’s hand
segmentations as the reference standard for the entire data set.
To study the inter- and intraobserver variability in the hand
segmentations of the bladder cancer, additional independent
hand segmentations by different radiologists would be required.

Bladder cancer segmentation is important, as it defines the
regions to be analyzed for the characterization of the lesion. We
plan to expand our work to investigate if radiomic features
extracted from the segmented bladder cancers, in conjunction
with the GTV change, can improve the assessment of response to

chemotherapy or other treatments. Although the DL-CNN
method shows more promising results than the AI-CALS method
at present, there remains more room for improvement on the
segmentation performance of both methods, particularly for the
post-treatment tumors. Further development and validation
with a larger data set are also required to confirm the relative
performance of the 2 approaches.

In conclusion, our results show that DL-CNN is useful for 3D
segmentation of bladder cancers for a variety of bladder cancer
shapes and sizes. The DL-CNN and the AI-CALS methods were
able to automatically segment the cancers, with results similar
to those of the radiologists’ results. The 3D information from CT
provides more accurate information on the changes in the tumor
size in response to treatment compared with the 2D (WHO
criteria) and 1D (RECIST) estimations used in current clinical
practice. This study suggests that computerized segmentation of
bladder cancers using DL-CNN has the potential to assist in the
assessment of tumor volume and treatment response of bladder
cancer by providing a more accurate 3D information without the
extensive effort of manual segmentation.

Table 4. AUC Values for Prediction of
Cancer Stage pT0 After Surgery

Method AUC

Volume

DL-CNN 0.73 � 0.06

AI-CALS 0.70 � 0.07

Hand-outline 0.70 � 0.06

WHO criteria

Radiologist 1 0.63 � 0.07

Radiologist 2 0.61 � 0.06

RECIST

Radiologist 1 0.65 � 0.07

Radiologist 2 0.63 � 0.06

Abbreviations: AUC, area under the receiver operating characteristic
curve; DL-CNN, deep-learning convolution neural network; AI-CALS,
autoinitialized cascaded level sets; WHO, World Health Organization;
RECIST, Response EvaluationCriteria In Solid Tumors. False Positive Fraction
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Figure 6. ROC curves for the prediction of com-
plete response to chemotherapy. The area under
the curves (AUCs) for GTV-based estimates were
0.73 � 0.06 for DL-CNN, 0.70 � 0.07 for AI-
CALS, and 0.70 � 0.06 for the radiologist’s
hand-outlines. The AUCs for the World Health
Organization (WHO) criteria-based estimates
were 0.63 � 0.07 for radiologist 1 (Rad 1) and
0.61 � 0.06 for radiologist 2 (Rad 2); the AUCs
for the Response Evaluation Criteria In Solid Tu-
mors (RECIST)-based estimates were 0.65 � 0.07
for Rad 1 and 0.63 � 0.06 for Rad 2.
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