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a b s t r a c t

In recent times, COVID-19, has a great impact on the healthcare sector and results in a wide range
of respiratory illnesses. It is a type of Ribonucleic acid (RNA) virus, which affects humans as well as
animals. Though several artificial intelligence-based COVID-19 diagnosis models have been presented
in the literature, most of the works have not focused on the hyperparameter tuning process. Therefore,
this paper proposes an intelligent COVID-19 diagnosis model using a barnacle mating optimization
(BMO) algorithm with a cascaded recurrent neural network (CRNN) model, named BMO-CRNN. The
proposed BMO-CRNN model aims to detect and classify the existence of COVID-19 from Chest X-ray
images. Initially, pre-processing is applied to enhance the quality of the image. Next, the CRNN model
is used for feature extraction, followed by hyperparameter tuning of CRNN via the BMO algorithm
to improve the classification performance. The BMO algorithm determines the optimal values of the
CRNN hyperparameters namely learning rate, batch size, activation function, and epoch count. The
application of CRNN and hyperparameter tuning using the BMO algorithm shows the novelty of this
work. A comprehensive simulation analysis is carried out to ensure the better performance of the
BMO-CRNN model, and the experimental outcome is investigated using several performance metrics.
The simulation results portrayed that the BMO-CRNN model has showcased optimal performance with
an average sensitivity of 97.01%, specificity of 98.15%, accuracy of 97.31%, and F-measure of 97.73%
compared to state-of-the-art methods.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

In recent times, Coronavirus Disease 2019 is referred to as
OVID-19, which is considered an epidemic disease from the end
f December 2019 in Wuhan, China. The name COVID-19 was
ictated by the World Health Organization (WHO) as a novel
nd dangerous infection which comes under the class of Coron-
viruses (CoV) and infectious viruses [1]. It results in severe cases
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in critical care respiratory conditions like severe acute respiratory
syndrome (SARS-CoV) intended for shortness of breathing and
finally death. Based on the survey reported by WHO, the risk eval-
uation of COVID-19 is higher all over the world [2]. Additionally,
the maximum number of people was positive for COVID-19, and
some people died due to COVID-19. Some other lung disorders
are Viral and Bacterial pneumonia, leading to high mortality.
Pneumonia diseases are caused due to the fungal infection of the
lungs that is formed by pus and additional fluids filled in air sacs.
However, bacterial pneumonia is critical; particularly, small kids
are affected easily due to low immunity [3–5].

Real-Time Polymerase Chain Reaction (RT-PCR) is an effec-
tive tool for examining pneumonia diseases and Coronaviruses.
But the RT-PCR samples accomplished maximum false-negative
levels for COVID-19 positive cases [6]. Then, the radiological
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nvestigations are performed by applying Chest X-ray (CXR) as
ell as Computed Tomography (CT) scans to examine the health
ondition of patients. But the exposure to radiation results in
igh side effects. The CT scan provides a proficient model in
creening, analysis, and progressive estimation of patients con-
irmed with COVID-19. The clinical studies have reported positive
XR models that pave the way for developing CT scans and
educe the medical overload of CT in COVID-19 [7]. The American
ollege of Radiology suggested applying portable chest radiogra-
hy to reduce the threats of Coronavirus disease [8]. Moreover,
hest CT screening demands higher dose exposure and costlier
reatments. Unlike other models, traditional X-ray machines are
ccessible and portable in clinics for robust scanning of lungs
s 2D images [9]. Thus, CXR is initialized to diagnose COVID-19
ases to confirm the patients with highly suspected COVID-19 or
neumonia diseases [10,11].
In computer-aided diagnosis (CAD), technologies are projected

n the real-time solution for resolving the difficulties in Chest
-rays, and to help the radiologists in predicting the diseases
rom low-contrast X-ray images [12]. The CAD models are inte-
rated units of computer models with currently developed image
rocessing approaches for performing interventional operations.
ecently, Artificial Intelligence is employed extensively for the
dvanced diagnostic function of CAD systems for different clin-
cal applications like brain tumor classification or segmentation,
educed invasive aortic valve incorporation, and predicting pul-
onary infections. Presently, Deep Learning (DL) models are part
f a broader family of machine learning (ML) methods based
n artificial neural network (ANN) with representation learning.
t is applied for learning patterns and features from annotated
ata which is applicable for automated performance of a certain
peration on earlier training like human sentiment classification
s well as computer vision domains in surgery [13–15].

.1. Previous works

Automatic investigations of COVID-19 and chest infections
ave been predicted under the application of clinical CT and X-
ay imaging sectors. In recent times, [16] depicted that chest CT
mages and DL methodologies are significant in effectively iden-
ifying and segmenting COVID-19 disease. Therefore, it is con-
entrated to use CXR images for COVID19 positive patients and
neumonia diseases. Automated classification of lung diseases in
-ray images has been projected for TB screening, prediction of
ung intensity as well as severe pneumonia infections. However,
xamining the COVID19 disease in Chest X-rays is still in the
rogressive stage and examined in peer-review published arti-
les. For instance, some of the DL classification models, like the
re-trained InceptionV3 method, were applied to detect COVID-
9 [17]. Moreover, the pneumonia diseases are examined using
onvolutional Neural Networks (CNNs) with better classification
ccuracy as projected in [18]. Drop-weight-related Bayesian CNNs
ave been employed for validating the maximum correlation of
ncertainty by accomplishing supreme prediction accuracy in
etecting the COVID-19 from X-ray images [19].
In [20], pneumonia X-ray images with the help of 3 diverse

L methods are employed for COVID-19 diagnosis. Under the
pplication of the ResNet model, the dataset is classified into
everal labels like Age, Gender, and so on. Moreover, Multi-Layer
erceptron (MLP) classifier is applied, which achieved maximum
ccuracy. Yadav and Jadhav [21] processed a classification ap-
roach under the application of pneumonia details where SVM
lassifier is used along with InceptionV3 and VGG-16 methodolo-
ies as DL modules. In this application, a dataset is classified into
types for enhancing the contrast as well as brightness zoom

etting along with the augmentation model for an image with a
2

dataset that has attained an optimal classification score. Abiyev
and Ma’aitah [22] applied the Backpropagation Neural Network
(BPNN), as well as Competitive Neural Network approaches for
classifying the pneumonia information. By using pneumonia as
well as healthy CXR images, some portions in the dataset are used
as test data, showing better classification results.

Stephen et al. [23] developed a DL technology for classifying
the pneumonia data from scratch for data training. The input
size is 200 x 200 pixels, which is employed to determine the
viabilities of classification with a sigmoid function. Consequently,
the optimal success rate is achieved in pneumonia. Chouhan
et al. [24] predicted the images of pneumonia by utilizing DL
methods and 3 classes of the dataset. Initially, pre-processing is
performed for noise elimination. Then, the augmentation mech-
anism is applied for all images and transfer learning is used
for model training, resulting in effective classification accuracy.
Islam et al. [25] developed a DL model using the integration of
CNN and long short-term memory (LSTM) for COVID-19 detection
and classification. Hussain et al. [26] employed DL with natural
language processing tools to estimate the average sentiment,
sentiment trend, and discussion topic related to COVID-19 vac-
cination. Melin et al. [27] proposed an ensemble neural network
firefly algorithm for COVID-19 diagnosis.

Sujath et al. [28] projected a COVID-19 diagnosis model us-
ing linear regression, Multilayer perceptron, and Vector autore-
gression methods. A novel hybrid model is designed in [29]
to predict COVID-19 using the integration of Statistical Neural
Network models and the Non-linear Autoregressive Neural Net-
work. Iwendi et al. [30] designed a fine-tuned Random Forest
with AdaBoost technique for predicting the health conditions
of COVID-19 patients. A CAD model for COVID-19 is presented
in [31] using the fusion of CNN with statistical and textural
features. Attallah et al. [32] presented an efficient CAD model to
detect COVID-19 using CNNs and SVM models. El-bana et al. [33]
presented a fine-tuned InceptionV3 deep model to detect COVID-
19 using multi-modal learning. Some other COVID-19 diagnosis
models are available in the literature [34–36]. Though several
methods are available in the literature, there is still a need to
improve the COVID-19 diagnostic performance. Besides, only a
few works have concentrated on the parameter optimization of
the DL based feature extraction techniques.

1.2. Paper contributions

This paper proposes an intelligent COVID-19 diagnosis model
using a BMO algorithm with a CRNN model called BMO-CRNN.
The proposed BMO-CRNN model intends to identify and catego-
rize the existence of COVID-19 from Chest X-ray images. Firstly,
image pre-processing is applied to eliminate the noise. Next, the
CRNN technique is applied as feature extraction, and the BMO
algorithm is used for the hyperparameter tuning of CRNN. The
CRNN explores the redundant and complementary information
and involves two recurrent neural network (RNN) layers. The
former eliminates the redundant data, and the latter aims to
learn the complementary data. Lastly, the SoftMax (SM) layer is
utilized for classification purposes to categorize COVID-19 or non-
COVID-19. A comprehensive simulation analysis is done to ensure
the goodness of the BMO-CRNN technique using the Chest X-ray
(CXR) dataset. The key contributions of the paper are summarized
as follows.

• An intelligent COVID-19 diagnostic method involving pre-
processing, CRNN based feature extraction, and BMO based
parameter optimization is proposed. To the best of our
knowledge, the BMO-CRNN model has not been presented
in the literature for this problem.
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• The design of CRNN based feature extraction involves a
series of RNNs, which necessitate a minimal number of
highly applicable parameters for classification, and a limited
number of training samples is needed.

• The parameter optimization of the CRNN model using the
BMO algorithm using cross-validation helps improve the
BMO-CRNNmodel’s diagnostic performance for unseen data.
In addition, the use of the BMO algorithm for the parameter
tuning of the CRNN model shows the novelty of this work.

• Detailed experiments are conducted to validate the perfor-
mance of the BMO-CRNN on the benchmark CXR dataset
under various settings compared to SOTA methods.

The remaining portions of the paper are arranged as follows.
Section 2 discusses the proposed BMO-CRNN model. Section 3
performs the simulation process, experiments, and discussion. At
last, Section 4 concludes the paper.

2. Materials and methods

2.1. Overall architecture

The working principle involved in the BMO-CRNN model is
depicted in Fig. 1, which comprises pre-processing, parameter
tuning, feature extraction, and classification. Once the input im-
age is pre-processed, the BMO algorithm determines the parame-
ters of CRNN namely learning rate, batch size, activation function,
and epoch count. When the parameters are identified, the feature
extraction process is carried out. The major steps involved in the
proposed model are given in Algorithm 1.

Algorithm 1: Major Steps of the Proposed Model
Input: Training CXR dataset
1. Consider n hyperparameters in CRNN as barnacles and

assume the original impact of data prediction using
CRNN.

2. Identify the number of barnacles and the
hyperparameters of CRNN to be optimized. Compute the
upper and lower boundary points of the optimization
area. Then, create the barnacle population and identify
the number of search iterations.

3. Substitute the hyperparameters of the CRNN respective
to the points of barnacles. Partition the dataset into the
training and testing part, afterward identify the
subsequent series of training data by analysing the
trend line. By comparing the predicted and actual data,
the error can be determined.

4. Reiterate the above process until the termination
criteria are fulfilled.

Output: Classified images (COVID-19 or Normal)

2.2. Gaussian Filtering (GF)

The input images from CXR dataset are pre-processed using
he GF technique, which is a linear smoothing filter used for
eight selection depending upon the structure of the Gaussian

unction. The GF technique is applied on the spatial or frequency
omain as an effective low pass filtering technique, particularly
or noise removal. The 1-D Gaussian function of zero means can
e denoted as follows.

(x) = e−
x2

2σ2 (1)

The parameter involved in the Gaussian distribution computes
the width of the Gaussian functions. In the case of processing im-
ages, 2D discrete Gaussian function of zero mean namely smooth
filter [37], and the respective function is expressed as follows.

g [i, j] = e−
i2+j2

2σ2 (2)
3

2.3. BMO algorithm

The BMO method is a new bio-inspired optimization mecha-
nism used for resolving the optimization issues. The BMO method
is chosen over the other optimization algorithms due to the
following reasons:

• BMO algorithm balances the trade-off between exploitation
and exploration for producing a new offspring toward a
globally optimum solution.

• BMO algorithm offers enhanced outcome over the other
compared methods and attains global optimum, high explo-
ration ability, and avoids local optima problem.

• It is highly flexible and efficient over other algorithms.

This model is evolved based on the barnacle’s mating nature
and related functions. Even though barnacles are hermaphrodites
that carry male and female genitalia, the mating process is per-
formed rarely, which applies extraordinarily long penises and
finds a mate inside the striking distance [38]. The Barnacles
ovaries are placed in a stalk and expand into the mantle, often
expand into the thorax. Also, self-mating is carried out rarely in
barnacles which do not leave the shells for mating. Barnacles can
reproduce by sperm casting where male barnacles discharge the
sperm to the water, and the female consumes and fertilizes the
eggs is named sperm casting or self-mating. The lifecycle of BMO
is shown in Fig. 2 [39].

The different steps involved in the BMO algorithm are listed
below, and the flowchart is shown in Fig. 3 [39]. The algorithm
begins with the parameter initialization process. Then, the control
variables are mapped to the individuals that exist in the popula-
tion. Next, the population value is fixed, followed by selection and
reproduction processes. Finally, the processes get iterated till the
maximum number of iterations is reached.

Initialization: The estimation of control parameters and count
of the population of barnacles are performed, and the sorting
process is done to place the optimum solutions.

Selection process: This process is carried out randomly, but
it is restricted to the barnacle’s penis length. Every barnacle
has sperm and receives the sperm from another barnacle which
is fertilized simultaneously where the female is fertilized using
massive male barnacles.

Reproduction: The reproduction process is evolved from BMO
that is varied then in evolutionary models. The BMO is an empha-
sizing one from the inheritance features of barnacles’ parents in
developing an offspring related to the Hardy–Weinberg principle.

2.4. Cascaded Recurrent Neural Network (CRNN)

RNN [40] is a division of Artificial Neural Network (ANN),
which is an extended version of the traditional feedforward neu-
ral network (FFNN) with loops and connections. In contrast with
FFNN, the RNN is capable to compute the sequential input using
a recurrent hidden state with the activation of the former step.
Thus, the system represents the dynamic temporal behavior. Con-
sider the sequence data (x1, x2, . . . , xT ), where xi implies the data
in ith time step, the RNN updates the recurrent hidden state ht
using Eq. (3):

ht =

{
0, if t = 0
φ(ht−1, xt ), otherwise

(3)

where φ denotes a non-linear function. Thus, RNN is composed
of output (y1, y2, . . . , yT ). Ultimately, the data classification is
erformed by an output yT . In the classical RNN method, the
pdate rule of the recurrent hidden state in (1) is executed as
iven below:

= φ(Wx + Uh ) (4)
t t t−1
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here W and U refer to the coefficient matrices for input and
ctivation of recurrent hidden units. Assume p(x1, x2, . . . , xT ) is a
equence probability that is degraded as:

(x1, x2, . . . , xT ) = p(x1) · · · p(xT |x1, . . . , xT−1). (5)

Followed by, the conditional probability distribution is developed
using a recurrent network

p(xt |x1, . . . , xt−1) = φ(ht ) (6)

where ht is gained from (3) and (6). The hyperspectral pixel is
treated as sequential data and a recurrent network is applied for
modeling spectral sequence.

As the DL family is significant, RNNs show the best outcome
in ML as well as computer vision operations. To overcome these
problems, a model is developed with a sophisticated recurrent
unit. LSTM is defined as the class of recurrent hidden units which
is suitable for learning long-term series [41].

When compared with the LSTM unit, the gated recurrent unit
(GRU) requires a smaller count of parameters that is highly appli-
cable for classification, and a limited number of training samples
is required [42]. Thus, GRU is selected as an essential component
of RNN. The major components of GRU are 2 gating units which
are employed for controlling the data flow within the unit. Rather
than using the activation of hidden layer for band t is expressed
4

as,

ht = (1 − ut) ht−1 + ut h̃t (7)

where ut denotes the update gate which has been retrieved by

ut = σ (wuxt + vuht−1) (8)

here σ means a sigmoid function, wu refers to a weight value,
nd vu depicts the weight vector. Likewise, h̃t is determined by,

˜ t = tanh (wxt + V (rt ⊙ ht−1)) (9)

here ⊙ refers to an element-wise multiplication, and rt signifies
he reset gate that is obtained from

t = σ (wrxt + Vrht−1) (10)

n particular, the data sequence x is classified into l sub-sequences
= (z1, z2, . . . , zl), where it is composed of different class labels.
ollowed by final sub-sequence zl, the length of alternate sub-
equences is d = floor(k/l), which refers to the closer integers
ess than or equal to k/l. Therefore, the ith sub-sequence zi, i ∈

1, 2, . . . , l}, it is composed of given bands,

i =

{
(x(i−1)×d+1, . . . , xi×d), if i ̸= l,

(11)

(x(i−1)×d+1, . . . , xk), otherwise.
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Fig. 4. Structure of cascaded RNN model.
dditionally, each sub-sequence is fed into the first layer of
NNs, which has a similar architecture and distributes parame-
ers for reducing their count. In the case of sub-sequence zi, every
ample is composed of output from the GRU. The final feature
epresentation for zi, is referred to be F (1)

i ∈ RH1 , where H1
implies the size of the hidden layer in first layer RNN. Afterward,
the F (1)

, i ∈ {1, 2, . . . , l} are combined for generating sequence
i

5

F = (F (1)
1 , F (1)

2 , . . . , F (1)
l ) where length is l. These sequences

are induced into second layer RNN for learning complementary
details. Likewise, the first layer RNNs applies the result of GRU
finally as the learned feature F (2). The classification result of x
can be attained by inducing the input F (2) into the resultant layer
with equally sized candidate classes C . Hence, 2-layer RNNs have
massive weight parameters. Finally, selected as a loss function
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Fig. 6. Convergence Curve of Different Optimization Algorithms.

able 1
esult analysis of the proposed BMO-CRNN model under varying epochs.
No. of Epochs Accuracy Sensitivity Specificity F-measure

Epoch 100 97.98 99.09 88.89 98.87
Epoch 200 99.19 99.55 96.30 99.55
Epoch 300 98.79 99.09 96.30 99.32
Epoch 400 98.79 99.09 96.30 99.32
Epoch 500 99.19 99.55 96.30 99.55
Epoch 600 98.79 99.09 96.30 99.32
Epoch 700 99.19 99.55 96.30 99.55
Epoch 800 96.76 97.27 92.59 98.17
Epoch 900 97.17 97.73 92.59 98.40
Epoch 1000 97.98 98.18 96.30 98.86

Average 98.38 98.82 94.82 99.09
6

Table 2
Result analysis of the proposed BMO-CRNN model under 5-Fold Cross Validation
No. of Folds Accuracy Sensitivity Specificity F-measure

Fold 1 97.14 98.24 96.19 98.25
Fold 2 97.99 98.67 98.75 98.55
Fold 3 98.18 98.21 96.63 98.09
Fold 4 98.94 98.80 98.93 99.58
Fold 5 98.97 97.89 96.00 98.57

Average 98.24 98.36 97.30 98.61

Table 3
Comparative analysis of existing techniques [43,44] with the BMO-CRNN method
Methods Sens. Spec. Accuracy F-measure

BMO-CRNN (Ours) 98.38 98.82 94.82 99.09
CoroNet 90.00 92.14 90.21 91.00
CNN 87.73 86.97 87.36 89.65
DTL 89.61 92.03 90.75 90.43
ANN 93.78 91.76 86.00 91.34
CNNLSTM 92.14 91.98 84.16 90.01
CNNRNN 94.23 92.67 85.66 91.20
LSTM 93.42 92.64 86.66 91.89
RNN 92.04 90.87 84.16 90.61
ANFIS 88.48 87.74 88.11 89.04
MLP 93.00 87.23 93.13 93.00
LR 93.00 90.34 92.12 92.00
XGBoost 92.00 90.44 91.57 92.00
K-NN 89.00 90.65 88.91 89.00
DT 87.00 88.93 86.71 87.00

and apply the BPTT model for optimization. Fig. 4 shows the
structure of the cascaded RNN model [42].

2.5. Classification using SoftMax layer

After the completion of the feature extraction process using
BMO-CRNN, SM based classification is performed to identify the
existence of COVID-19. It will map the input vectors c from the
N-dimensional space into K classes, as given in Eq. (12): labels, as
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Fig. 7. Confusion matrix of the BMO-CRNN model under varying epochs.
efined below.

q =
exp(θ Z

q c)∑ ( ) (q = 1, 2, . . .K) (12)
K
k=1 exp θ Z

k c
7

where θk = [θk1θk2 . . . θkN]
Z represents the weight factors and K

denotes the number of classes.
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Fig. 8. Result analysis of the BMO-CRNN model under varying epochs.
3. Experimental results analysis

This section validates the efficiency of the BMO-CRNN model
on COVID-19 diagnostic process. The proposed model is simu-
lated utilizing Python 3.6.5 tool along with few packages. The
details related to the dataset, evaluation metrics, and comparative
results analysis are made in the succeeding sections.
8

3.1. Dataset description

The CXR dataset is used for the classification of COVID-19 [45].
It contains two classes namely Normal and COVID-19, where a
total of 27 images belong to the Normal class and 220 images are
related to the COVID-19 class. Fig. 5 shows some test images from
the CXR dataset.
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Fig. 9. ROC analysis of the BMO-CRNN model under varying epochs.
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Fig. 10. Result analysis of the BMO-CRNN technique under different folds.
Fig. 11. Comparative results analysis of the BMO-CRNN technique.
.2. Evaluation parameters

The classification results of the BMO-CRNN technique are ex-
mined using different evaluation parameters such as sensitivity,
pecificity, accuracy, and F-measure [46].
Sensitivity determines the proportion of positive samples which

re properly identified, as defined in Eq. (13):

ensitivity =
TP

TP + FN
(13)

here TP, TN, FP, and FN represent true positive, true negative,
alse positive, and false negative, respectively.

Specificity determines the proportion of negative samples
hich are properly identified, as given in Eq. (14).

pecificity =
TN

TN + FP
(14)

-measure defines the harmonic mean of precision and sensitiv-
ty, which can be equated using Eq. (15):

− score =
2TP

(15)

2TP + FN + FP

10
Finally, accuracy determines the closeness of the measurements
to a particular value, as defined in Eq. (16):

Accuracy =
TP + TN

TP + TN + FN + FP
(16)

3.3. Results analysis

The convergence rate analysis of the BMO algorithms in terms
of best cost attained under several iteration counts in Fig. 6.
The figure displayed that the PSO algorithm has failed to show-
case better convergence over the other methods. In addition, the
GWO, ABC, and BFO algorithms have exhibited certainly increased
convergence over PSO. However, the BMO algorithm has sur-
passed all the compared optimization algorithms and reached a
minimum best score under varying iteration counts.

To determine the classification performance of the BMO-CRNN
model, a set of confusion matrices generated at the time of
execution is demonstrated in Fig. 7. The confusion matrices are
arranged under varying numbers of epochs ranging between 100–
1000.
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Fig. 12. Accuracy and F-measure analysis of the BMO-CRNN technique.
Table 1 and Fig. 8 inspect the efficiency of the BMO-CRNN
echnique against other methods. The proposed BMO-CRNN
odel has exhibited optimal classification results under varying
poch counts. For instance, on the epoch count of 100, the
MO-CRNN model has gained a maximum sensitivity of 96.78%,
pecificity of 97.54%, an accuracy of 96.92%, and an F-measure of
7.21%. Along with that, on the epoch count of 200, the BMO-
RNN model has got a maximum sensitivity of 96.82%, specificity
f 97.89%, an accuracy of 96.98%, and an F-measure of 97.53%.
t the same time, on the epoch count of 300, the BMO-CRNN
odel has attained a maximum sensitivity of 96.91%, specificity
f 98.12%, an accuracy of 97.33%, and an F-measure of 97.87%.
urthermore, on the epoch count of 400, the BMO-CRNN model
as resulted in a maximum sensitivity of 97.10%, specificity of
8.56%, accuracy of 97.54%, and an F-measure of 97.92%. More-
ver, on the epoch count of 1000, the BMO-CRNN model has
esulted in a maximum sensitivity of 98.38%, specificity of 98.82%,
ccuracy of 94.82%, and an F-measure of 99.09%. These values
how that the BMO-CRNN technique has ensured the betterment
nder varying epoch counts.
Fig. 9 investigates the ROC analysis of the proposed BMO-

RNN model under varying epoch counts. The figure demon-
trated that the BMO-CRNN model has resulted in a maximum
OC of 99.9370, 99.9899, 99.9684, 99.8822, 99.9892, 99.9389,
9.9846, 99.1193, 99.4028, and 99.7811 under epoch count of
00–1000 with intervals of 100.
Table 2 and Fig. 10 investigate the performance of the BMO-

RNN model under five different folds, and the results demon-
trated the enhanced classification results under each fold. For
nstance, with fold-1, the BMO-CRNN model has obtained an
ccuracy of 97.14%, sensitivity of 98.24%, specificity of 96.19%, and
-measure of 98.25%. Likewise, with fold-2, the BMO-CRNNmodel
as attained the accuracy of 97.99%, sensitivity of 98.67%, speci-
icity of 98.75%, and F-measure of 98.55%. Similarly, with fold-3,
he BMO-CRNN model has accomplished accuracy of 98.18%, sen-
itivity of 98.21%, specificity of 96.63%, and F-measure of 98.09%.
oreover, with fold-4, the BMO-CRNN model has offered an
ccuracy of 98.94%, sensitivity of 98.80%, specificity of 98.93%, and
-measure of 99.58%. Furthermore, with fold-5, the BMO-CRNN
odel has resulted in an accuracy of 98.97%, sensitivity of 97.89%,
pecificity of 96.00%, and F-measure of 98.57%.

. Discussion

A detailed comparative study of the BMO-CRNN with other
xisting methods is performed in Table 3. Fig. 11 demonstrates
11
the analysis of the BMO-CRNN with existing models in terms
of sensitivity and specificity. The figure shows that the DT and
CNN approaches have shown insignificant performance with the
minimum sensitivity of 87% and 87.3%, respectively. Moreover,
the ANFIS and K-NN models have exhibited somewhat enhanced
outcomes with a nearer sensitivity of 88.48% and 89% correspond-
ingly. In the same way, the DT and CoroNet models have exhibited
moderate results with a sensitivity of 89.61% and 90% correspond-
ingly. Likewise, the XGBoost, RNN, and CNNLSTM techniques
exhibited near identical outcomes with the sensitivity of 92%,
92.04%, and 92.14%, respectively.

Similarly, the MLP and LR models have obtained exactly equiv-
alent classifier results with a sensitivity of 93%. Concurrently,
the LSTM, ANN, and CNNRNN models have obtained competi-
tive results with the sensitivity of 93.42%, 93.78%, and 94.23%,
respectively. At last, the proposed BMO-CRNN model has shown
superior performance with a maximum sensitivity of 98.38%.

On examining the outcome in terms of specificity, the CNN
and MLP techniques achieved ineffective performance with speci-
ficity of 86% and 87.23%. Simultaneously, the ANFIS and DT tech-
niques have presented moderate results with identical specificity
of 87.74% and 88.93%. On continuing with, the LR and XGBoost
technologies have presented substantial outcomes with the speci-
ficity of 90.34% and 90.44%. Similarly, the LSTM, KNN, and ANN
models have showcased closer outcomes with the specificity of
90.65%, 90.87%, and 91.76%, correspondingly. In the same way, the
CNNLSTM and DTL methods have attained slightly better results
with the specificity of 91.98% and 92.03%. Simultaneously, the
CoroNet, LSTM, and CNNRNN techniques have secured competing
outcomes with the specificity of 92.14%, 92.64%, and 92.67%, cor-
respondingly. Finally, our BMO-CRNN framework has showcased
supreme function with higher specificity of 98.82%.

Fig. 12 illustrates the results analysis of the BMO-CRNN with
previous methods with respect to accuracy and F-measure. The
figure depicted that the RNN and CNNLSTM methodologies have
depicted inferior functions with lower accuracy of 84.16%. Con-
currently, the CNNRNN and ANN technologies have presented
moderate outcomes with identical accuracy of 85.66% and 86%
correspondingly. Along with that, the LSTM and DT frameworks
have depicted slight effects with the accuracy of 86.66% and
86.71%, respectively. Similarly, the CNN, ANFIS, and KNN tech-
niques have been referred to as closer identical results with the
accuracy of 87.36%, 88.11%, and 88.91%, correspondingly. Like-
wise, the CoroNet and DTL techniques have gained manageable
classifier results with 90.21% and 90.75% accuracy. Meantime,
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he XGBoost, LR, and MLP methods have attained competing
utcomes with the accuracy of 91.57%, 92.12%, and 93.13%, cor-
espondingly. Consequently, the BMO-CRNN technique has show-
ased supreme function with optimal accuracy of 94.82%.
Finally, on examining the F-measure analysis, it is prominent

hat the DT and KNN schemes have depicted worse performance
ith lower F-measure of 87% and 89%. Meantime, the ANFIS and
NN methods have presented moderate results with the nearby
-measure of 89.04% and 89.65%, correspondingly. In the same
ay, the CNNLSTM and DTL technologies have showcased slightly
etter results with the F-measure of 90.01% and 90.43%, corre-
pondingly. Then, the RNN, CoroNet, and CNNRNN models have
epicted closer identical results by offering F-measure of 90.61%,
1%, and 91.2%, correspondingly. In the same way, the ANN and
STM approaches have reached substantial classifier outcomes
ith the F-measure of 91.34% and 91.89%. Meantime, the LR,
GBoost, and MLP approaches have gained competing outcomes
ith the F-measure of 92%, 92%, and 93%, correspondingly. Lastly,
he BMO-CRNN method has showcased supreme outcomes with
he best F-measure of 99.09%.

The detailed investigation of the results analysis of the BMO-
RNN model has demonstrated superior results with the max-
mum average sensitivity of 98.38%, specificity of 98.82%, the
ccuracy of 94.82%, and F-measure of 99.09%. Therefore, it can be
mployed as an appropriate tool to assist doctors in the COVID-19
iagnostic procedures.

. Conclusion and future work

This paper has developed an intelligent COVID-19 detection
odel using the BMO-CRNN algorithm. The BMO-CRNN model
omprises pre-processing, parameter tuning, feature extraction,
nd classification. Initially, image pre-processing techniques are
sed to remove the noise from the image. Besides, the CRNN
odel is used as feature extraction, and the hyperparameter

uning of CRNN is performed via the BMO algorithm for boosting
he classification outcomes. The BMO algorithm determined the
arameters of CRNN namely, learning rate, batch size, activation
unction, and epoch count. After the parameter’s identification
rocess, the feature extraction was carried out using the CRNN
odel. Next, SM based classification was used to identify the
xistence of COVID-19. Finally, extensive experimentation was
onducted to confirm the superior outcomes of the BMO-CRNN
odel using the CXR dataset. The obtained scores portrayed

hat the BMO-CRNN model has showcased optimal performance
ith an average accuracy of 94.82%. In the future, the diagnostic
esults of the BMO-CRNN model can be improved by the inclusion
f the class attention layer in the CRNN model to capture the
iscriminative class-specific features.
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