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Abstract

Background

Particulate matter (PM) has been associated with increased pulmonary and cardiovascular

mortality and morbidity. Additionally, PM is known to exacerbate asthma. However, whether

ambient PM exposure contributes to the onset of asthma, especially in non-atopic children

and adults, is less conclusive. The current study aimed to evaluate the effects of size-frac-

tioned PM on lung immune responses in healthy BALB/c mice.

Methods and principal findings

We collected PM10, PM2.5, PM1 and PM0.1 samples from October 2012 to August 2013 in the

Taipei Basin. These PM samples were representative of urban traffic pollution. The samples

were extracted and sonicated in phosphate-buffered saline (PBS). Female BALB/c mice

were exposed to the samples via intratracheal instillation at three different doses: 1.75 mg/kg

(35 μg/per mouse), 5 mg/kg (100 μg/per mouse), and 12.5 mg/kg (250 μg/per mouse). The

mice were exposed on days 0 and 7, and PBS alone was used as a control. Following the

exposures, the expression profiles of inflammatory cells and cytokines in bronchoalveolar

lavage fluid (BALF) were assessed. Exposure to PM10 resulted in inflammatory responses,

including the recruitment of neutrophils and the induction of T helper 1 (Th1) cell-related cyto-

kine release, such as TNF-α and IFN-γ. Furthermore, an allergic immune response, including

the recruitment of eosinophils and the up-regulation of T helper 2 (Th2) cell-related cytokine

release, such as IL-5 and IL-13, was also observed in the BALF of mice exposed to PM10.

Conclusions

Our study showed that exposure to PM alone caused mixed Th1/Th2 inflammatory

responses in healthy mice. These findings support the hypothesis that PM may contribute to

the onset of asthma.

PLOS ONE | DOI:10.1371/journal.pone.0173158 February 28, 2017 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Huang K-L, Liu S-Y, Chou CCK, Lee Y-H,

Cheng T-J (2017) The effect of size-segregated

ambient particulate matter on Th1/Th2-like

immune responses in mice. PLoS ONE 12(2):

e0173158. doi:10.1371/journal.pone.0173158

Editor: Bernhard Ryffel, Centre National de la

Recherche Scientifique, FRANCE

Received: December 1, 2016

Accepted: February 15, 2017

Published: February 28, 2017

Copyright: © 2017 Huang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This study was supported by the National

Science Council of Taiwan (https://www.most.gov.

tw/) (grant number NSC 101-2314-B-002-005-

116-MY2). The funders had no role in the study

design, data collection, analysis and interpretation,

decision to publish or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173158&domain=pdf&date_stamp=2017-02-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173158&domain=pdf&date_stamp=2017-02-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173158&domain=pdf&date_stamp=2017-02-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173158&domain=pdf&date_stamp=2017-02-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173158&domain=pdf&date_stamp=2017-02-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0173158&domain=pdf&date_stamp=2017-02-28
http://creativecommons.org/licenses/by/4.0/
https://www.most.gov.tw/
https://www.most.gov.tw/


Introduction

Particulate matter (PM) is the major component of air pollution, which includes emissions

from both anthropogenic and natural sources. Based on its aerodynamic diameter, PM is

crudely categorized as coarse PM, which has an aerodynamic diameter of 2.5–10 μm; fine PM,

which has an aerodynamic diameter of<2.5 μm; and ultrafine PM, which has an aerodynamic

diameter of<0.1 μm. Fine PM is small enough to penetrate alveoli and terminal bronchioles,

while coarse PM is primarily deposited in large conducting airways [1]. PM10 (aerodynamic

diameter<10 μm) includes coarse, fine and ultrafine PM. The sizes and components of the

PM depend on its source. For example, ultrafine PM is predominantly derived from primary

combustion emissions or gas-to-particle conversion processes and consists of sulfates, nitrates,

organic carbon (OC) and elemental carbon (EC). Coarse PM contributes the major proportion

of total particle mass in smoke, soil from roads and construction sites. It can also contain sea

salts, molds, dust mites, pollen and spores [2]. As industrialization and urbanization have

increased, diesel exhaust particles (DEPs) have become a major source of ambient PM in mod-

ern cities. DEPs are composed of an elemental carbon core to which hundreds of chemicals

and transition metals are attached [3]. Evidence suggests that PM is associated with increased

pulmonary and cardiovascular morbidity and mortality [4–6].

Asthma is a chronic inflammatory disease of the airways and the most common chronic

disease among children [7]. The World Health Organization (WHO) estimates that 1–2% of

total health care expenditures in developed countries are associated with treating asthma [8].

The prevalence of asthma is also increasing in many countries, including Taiwan [9]. A study

conducted by the International Study of Asthma and Allergies in Childhood (ISAAC) reported

that the prevalence of asthma symptoms shows a high degree of global variation, even within

genetically similar groups [10]. This suggests that environmental factors, such as allergens,

viruses and PM, may be responsible for some of this variation.

Epidemiological reports have shown that PM can exacerbate asthma [11–13]. However,

whether ambient PM exposure contributes to the onset of asthma, especially in non-atopic

children and adults, is less conclusive. An epidemiological study showed that exposure to PM

may adversely affect lung function development between the ages of 10 and 18 years [14].

Exposure to PM10 in utero and during the first year of life has also increased the risk of asthma

development [15]. A cross-sectional epidemiological study conducted in Germany suggested

that the composition of PM in the study area may have contributed to the high asthma preva-

lence there [16]. In a heavily industrialized province of China, investigators found that PM10

was related to asthma prevalence among children without an allergic predisposition [17]. In a

prospective study of the World Trade Center (WTC) disaster, those who were exposed to

WTC dust showed bronchial hyperactivity, persistent cough and increased risk of asthma [18].

A human challenge study found that inhaled coarse fraction PM may activate monocytic cells

and potentially result in an allergic response in airways [19]. These studies suggest that long-

term time-weighted averages of or short-term peak exposure to PM may be responsible for

new-onset asthma.

Murine asthma models exhibit important features of allergic asthma, including the develop-

ment of airway hyper-responsiveness, increased serum IgE levels, increased eosinophil counts

and augmented T helper 2 cell (Th2) cytokine expression (e.g., IL-4, IL-5, and IL-13). There-

fore, these models have been widely used to study the impact of environmental factors on

asthma development [20]. For example, an ovalbumin (OVA)-induced mouse model of aller-

gic airway disease was used to validate findings from an epidemiological study demonstrating

that PM2.5 composition may influence the severity of allergic airway inflammation both during

sensitization and the challenge phase [21]. Li et al. [22] found that the inhalation of ambient

PM and allergic airway inflammation
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ultrafine particles enhanced the secondary immune response to OVA in sensitized mice, sug-

gesting that exposure to vehicle exhaust can exacerbate allergic inflammation in asthmatic sub-

jects. Most previous in vivo studies have addressed the adjuvant effects of PM on allergic

airway inflammation [21–24], whereas few have investigated the pure PM effect. We hypothe-

sized that repeated exposure to ambient PM without additional OVA treatment would pro-

mote allergic airway inflammation.

In this study, we used a murine intratracheal sensitization model and different doses of

size-fractionated PM collected from air samplers in the Taipei Basin to determine how PM

contributes to the development of Th2 immune responses in healthy mice.

Materials and methods

PM collection and preparation

PM samples were collected at the Atmospheric Science Building of the National Taiwan Uni-

versity (NTU) (25.0˚N, 121.5˚E) in Taipei, Taiwan from October 2012 to August 2013. The

NTU is located in the downtown area of the Taipei Basin and therefore provides representative

data for the PM that exists in a subtropical urban area. PQ200 Air Samplers (Model PQ200,

BGI Inc., MA, USA) were used to collect PM10, PM2.5, and PM1 (aerodynamic diameter

<1.0 μm) samples at a flow rate of 16.67 L/min. MOUDIs (Model 110, MSP Corp., MN, USA)

were used to collect PM0.1 samples at a flow rate of 30.0 L/min in the sampling campaigns.

Two aerosol samples were collected for each condition on polytetrafluoroethylene (PTFE) and

quartz fiber filters. The sampling period for each condition was 22 h: from 13:00 LST to 11:00

LST the next day. The PTFE samples were used for animal studies, and the quartz filter sam-

ples were used for composition analysis.

Chemical characterization of PM samples. All quartz filters were pre-heated at 900˚C

for 3 h and then stored in aluminum foil before sampling. After sampling, the filters were

immediately placed in a cooler packed with ice and transported to the laboratory within 30

min. The samples were then stored in a freezer at -18˚C until OC/EC analysis, which occurred

within 3 days. All loaded filters for PM10, PM2.5, PM1 and PM0.1 were analyzed for OC and EC

content using a DRI Model 2001 Thermal/Optical Carbon Analyzer (Atmoslytic Inc., Calaba-

sas, CA, USA). Additionally, the following ion species were analyzed using an ion chromato-

graph (IC, Model DX-120, Dionex Corp, Sunnyvale, CA): Na+, K+, Mg2+, Ca2+-, Cl-, NH4
+,

NO3
-, PO4

3- and SO4
2-. Endotoxin levels in PBS-eluted PM samples collected on PTFE filters

were determined using a Limulus amebocyte lysate assay according to the manufacturer’s

instructions (QCL-1000, CAPE COD, USA).

Preparation of PM samples for animal studies. Pre-weighed PTFE filters stored at

−18˚C were acclimated to room temperature (16–20˚C, 30–40% relative humidity) prior to the

elution of PM. The filters were placed into labeled 15 ml conical vials. A 1 ml aliquot of phos-

phate-buffered saline (PBS) was added to each conical vial. Elution was performed in water

with water bath sonication for 30 min. The filters were weighed before and after elution using

an analytical balance. The eluted contents were pooled into one vial and then diluted in PBS to

final concentrations of 35 μg/100 μL, 100 μg/100 μL, and 250 μg/100 μL. All eluted PM samples

were stored as aliquots at −80˚C until 30 min prior to experimentation.

Animals

Eight-week-old female BALB/c mice (~20 g each) were obtained from the National Laboratory

Animal Center (Taipei, Taiwan) and maintained under a 12 h light/dark cycle at a constant

temperature of 22 ± 2˚C and 55 ± 10% relative humidity throughout the study. The animals

were housed in plastic cages and had access to LabDiet 5001 food (PMI Nutrition International,

PM and allergic airway inflammation
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Brentwood, MO, USA) and water ad libitum. The animals were acclimated for one week prior

to the initiation of the study. The care and handling of the animals were in accordance with the

Guidelines for the Care and Use of Laboratory Animals at National Taiwan University. This

study was approved by the Institutional Animal Care and Use Committee of NTU (Permit

Number: 20110508).

Experimental design

The mice (10–15 animals per group) were divided into the following five groups: PBS,

PM0.1, PM1, PM2.5, and PM10. Each group was further divided based on treatment dose;

three different doses were evaluated: 1.75 mg/kg (low dose, 35 μg/per mouse), 5 mg/kg

(medium dose, 100 μg/per mouse) and 12.5 mg/kg (high dose, 250 μg/per mouse). We

referred to previous PM studies to determine the exposure doses [25,26]. Due to the limited

amount of PM collected, a high-dose group was not established for PM0.1. On days 0 and 7,

the mice were exposed to 100 μL of the appropriate solution by intratracheal instillation (IT)

under light anesthesia (Sevoflurane; Abbott Laboratories, UK). Briefly, each mouse was

placed in a supine position at an elevation of 45–60 degrees, and its mouth was opened by

hanging its incisors on a small wire. The solution was then instilled into the trachea via

gavage needle under a laryngoscope. After the instillation, the mouse was closely observed

until it fully recovered to ensure that suffocation was avoided. The animals were sacrificed 3

days after the second treatment. Blood, bronchoalveolar lavage fluid (BALF) and lung sam-

ples were collected (Fig 1). To achieve the minimum amount of experimental animals, we

measured eosinophils and Th2 cytokines in the lung lavage fluid at same time because they

play major roles in allergic airway inflammation. The protocol was modified from our previ-

ous study, which showed that the Th2 cytokine levels increased at 24 h, and eosinophilia

peaked at 7 days in the BALF after ZnO nanoparticle exposure [27]. We conducted these

independent experiments at intervals of 1 month apart (20–25 mice per independent

experiment).

Determination of total serum IgE and IL-6 levels. We obtained blood samples from the

facial veins of the mice. Total serum IgE was measured using a Mouse IgE ELISA Kit (BD Bio-

sciences, San Jose, CA, USA), and serum IL-6 concentrations were measured using mouse-spe-

cific IL-6 ELISAs (BD Biosciences, San Jose, CA, USA) according to the manufacturer’s

instructions.

Animal sacrifice, sample collection and analysis. The animals were sacrificed using an

overdose of sodium pentobarbital (0.1 ml at 200 mg/ml) administered via intraperitoneal

injection. Samples of BALF and left lung tissue were collected. Then, BALF was prepared for

the subsequent analysis. The total protein concentration was determined using a total protein

assay kit (Bio-Rad Hercules, CA, USA). Total cell counts were determined from fresh fluid

Fig 1. Overview of the experimental design used to expose mice to PM. Mice (10–15 animals per group)

were divided into the following five groups: PBS, PM0.1, PM1, PM2.5, and PM10. Each group was further

divided according to dose: either two or three doses of 1.75 mg/kg (35 μg/per mouse), 5 mg/kg (100 μg/per

mouse) or 12.5 mg/kg (250 μg/per mouse) were administered. On days 0 and 7, the mice were exposed to

100 μL of the appropriate solution by intratracheal instillation under light anesthesia. The animals were

sacrificed 3 days after the second treatment, and samples of blood, BALF and lung were collected.

doi:10.1371/journal.pone.0173158.g001

PM and allergic airway inflammation
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specimens using a hemocytometer after trypan blue staining. Differential cell counts were

measured on cytological slides with Liu’s stain (Tonyar Biotech, Taiwan). Inflammatory cyto-

kines in the BALF were measured using a Cytometric Bead Array Mouse Enhanced Sensitivity

Flex Set system (BD BioSciences, San Diego, CA, USA). The detailed procedures were previ-

ously described by us [27].

Lung histology. The left lung lobes of the mice were excised, fixed with 10% neutral phos-

phate-buffered formalin, embedded in paraffin, sectioned at 5-μm thickness and stained with

hematoxylin and eosin (H&E). The histological samples were examined in a blinded manner

under a light microscope by an experienced histopathologist.

Statistical analysis

All animal study results are expressed as the mean ± SEM. Differences between groups were

evaluated by analysis of variance (ANOVA), and Turkey’s post hoc t-test for multiple compari-

sons was used to distinguish between pairs of groups. Relationships between PM constituents

and inflammatory variables of all tested doses were analyzed using Spearman’s rank correla-

tion test. All statistical analyses in this study were performed with SAS software (SAS Institute,

Cary. NC, USA), version 9.3. The level of statistical significance was set at p<0.05.

Results

Characterization of PM

The chemical mass constituents found in the size-segregated ambient PM samples collected

between the 2012 winter and 2013 summer seasons are shown in Table 1. Sulfate was identified

as the major constituent in the samples, accounting for 25.65% of the PM10 mass, followed by

OC, NH4
+ and NO3

-. The PM2.5 and PM1 samples showed similar mass proportions of major

constituents to those found in PM10. OC and EC contents were highly enriched in the PM0.1

sample. The characteristics and compositions of PM samples collected at a nearby central air

monitor station in Taipei Basin have been previously reported [28]. In general, soil dust was

the major source of PM10, followed by vehicle emissions, secondary aerosols, sea salts and

industrial emissions. For PM2.5, vehicle emissions were the major aerosols, followed by

Table 1. Chemical mass constituents in size-segregated ambient PM collected between the 2012 winter and 2013 summer seasons.

PM0.1 PM1 PM2.5 PM10

Collected mass (mg) 1.87 19.48 26.17 40.88

Ionic components (μg/mg)

Na+ 3.44 3.84 13.72 31.73

K+ 6.92 13.19 12.67 10.78

Mg2+ 1.33 0.59 2.08 4.92

Ca2+ 7.87 1.49 3.34 14.68

Cl- 5.12 2.78 9.77 18.90

NH4
+ 11.31 125.34 119.93 75.76

NO3
- 17.46 49.37 87.91 96.19

PO4
3- 7.47 1.37 1.68 1.45

SO4
2- 45.28 349.90 318.69 240.19

Carbon species

OC (μg/mg) 314.02 120.51 166.74 126.14

EC (μg/mg) 47.53 53.05 46.31 41.60

Endotoxin (EU/ml) 62.44 53.66 55.05 122.27

doi:10.1371/journal.pone.0173158.t001

PM and allergic airway inflammation
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industrial emissions and secondary aerosols. Secondary aerosols and vehicle emissions were

the major sources of PM0.1. The highest endotoxin levels were detected in the PM10 samples.

Serum total IgE, serum IL-6 and total protein in BALF

Total serum IgE and IL-6 levels did not significantly increase following the intratracheal instil-

lation of different doses or different sizes of PM. BALF total protein content did not signifi-

cantly differ between any of the treatment groups (Table 2).

Inflammatory cell profiles in BALF

BALF inflammatory cell profiles were analyzed three days after the second PM exposure. Neu-

trophils were significantly increased only in the group exposed to the medium dose of PM10.

Eosinophils were significantly increased in the medium and high dose PM10 exposure groups

(Table 3). However, the percentage of neutrophils was significantly increased in the mice

treated with a high dose of PM2.5 and medium and high doses of PM10. The percentage of lym-

phocytes was significantly increased in the mice treated with a medium dose of PM1 and high

doses of PM1, PM2.5, and PM10. The percentage of eosinophils was only significantly elevated

in the BALF samples of the mice exposed to medium and high doses of PM10 (Fig 2).

Cytokine expression profiles in BALF

We next determined the cytokine expression profiles in the BALF samples (Fig 3). We found

significantly increased levels of IL-5, IL-13, IL-17A, IL-6, TNF-α and IFN-γ in the high-dose

PM10 treatment group compared to the control and other treatment groups. TNF-α levels also

increased after exposure to a medium dose of PM10.

Table 2. Serum total IgE, serum IL-6 and total protein in BALF.

N Serum IgE (ng/ml) Serum IL-6 (pg/ml) Total Protein (mg/ml)

PBS 5 676.4 (±220.8) 5.41 (±0.64) 0.28 (±0.02)

Low dose PM

PM0.1 35 μg 5 968.0 (±311.9) 6.68 (±1.16) 0.30 (±0.03)

PM1.0 35 μg 5 575.1 (±165.7) 6.43 (±0.65) 0.31 (±0.04)

PM2.5 35 μg 5 424.7 (±113.1) 6.41 (±0.91) 0.27 (±0.03)

PM10 35 μg 5 513.9 (±164.5) 6.09 (±0.43) 0.23 (±0.02)

Medium dose PM

PM0.1 100 μg 5 630.6 (±98.7) 6.58 (±1.04) 0.31 (±0.03)

PM1.0 100 μg 5 419.0 (±64.5) 6.64 (±1.29) 0.35 (±0.05)

PM2.5 100 μg 5 445.9 (±60.2) 5.97 (±0.95) 0.33 (±0.04)

PM10 100 μg 5 547.4 (±118.5) 5.42 (±1.23) 0.29 (±0.05)

High dose PM

PM1.0 250 μg 5 440.7 (±95.5) 8.27 (±1.46) 0.22 (±0.01)

PM2.5 250 μg 5 465.9 (±87.5) 6.83 (±0.98) 0.34 (±0.03)

PM10 250 μg 5 406.9 (±64.1) 5.64 (±0.94) 0.34 (±0.02)

The mice were exposed to 100 μL solutions by intratracheal instillation on days 0 and 7 as described in the

Materials and Methods section.

The data are presented as the mean ± SEM.

doi:10.1371/journal.pone.0173158.t002

PM and allergic airway inflammation
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Histological analysis

Representative images of H&E-stained lung tissues are shown in Fig 4. Exposure to a high dose

of PM10 resulted in focal infiltration of neutrophils, lymphoplasma cells and foamy histiocytes.

Exposure to a medium dose of PM10 resulted in focal infiltration of lymphocytes and foamy

histiocytes into the alveolar space. Exposure to a high dose of PM2.5 also resulted in focal aggre-

gation of lymphocytes and foamy histiocytes in the alveolar space. The histological changes

were minimal in the other exposure groups.

Associations between PM constituents and inflammatory responses

The coefficients for the correlations between the constituents of the PM samples and the mea-

sured inflammatory responses are shown in Table 4. Several ions (Mg2+, Ca2+, and Cl-) had

statistically significant positive correlations with elevated percentages of neutrophils, eosino-

phils and inflammatory cytokines (TNF-α, IFN-γ, and IL-5). Endotoxin levels were also

positively associated with elevated percentages of neutrophils and eosinophils as well as aug-

mented TNF-α expression in BALF.

Discussion

In this study, we evaluated the effects of PM on the sensitization phase of a murine asthma

model. For these experiments, on day 0 and day 7, mice were administered either PBS or differ-

ent doses of PM0.1, PM1, PM2.5 and PM10 samples for allergic sensitization. We found that the

percentages of neutrophils in BALF were significantly increased in the mice that were treated

with a high dose of PM2.5 and medium and high doses of PM10. Furthermore, increased levels

of TNF-α, IFN-γ, IL-5, IL-13, IL-17A, and IL-6 were found in the BALF samples of the mice

that underwent high-dose PM10 exposure compared to those of the control and other treatment

groups. BALF analysis also showed that exposure to high doses of PM10 alone led to elevated

Table 3. Inflammatory cell profiles in BALF following the 2nd exposure to PM.

Treatment Total cell Neutrophil Macrophage Lymphocyte Eosinophil

Control 29.6 (±9.2) 0.59 (±0.38) 28.0 (±8.6) 0.95 (±0.33) 0 (±0)

Low dose PM

PM0.1 35 μg 36.8 (±6.4) 0.32 (±0.06) 34.5 (±6.1) 1.8 (±0.3) 0.14 (±0.09)

PM1.0 35 μg 35.8 (±15.4) 0.23 (±0.09) 34.5 (±14.7) 1.1 (±0.6) 0 (±0)

PM2.5 35 μg 24.9 (±7.4) 0.48 (±0.11) 23.6 (±7.1) 0.9 (±0.2) 0 (±0)

PM10 35 μg 49.8 (±6.1) 4.61 (±1.63) 43.5 (±5.7) 3.5 (±1.4) 0 (±0)

Medium dose PM

PM0.1 100 μg 62.0 (±12.9) 5.11 (±1.60) 53.0 (±10.8) 3.6 (±0.9) 0.32 (±0.08)

PM1.0 100 μg 26.5 (±2.1) 1.43 (±0.41) 22.6 (±2.0) 2.5 (±0.4) 0.08 (±0.03)

PM2.5 100 μg 43.7 (±10.2) 4.66 (±1.06) 35.6 (±8.5) 2.9 (±0.7) 0.30 (±0.10)

PM10 100 μg 65.9 (±9.0) 13.08 (±1.25)* # 45.2 (±6.8) 4.6 (±1.1)* 3.01 (±0.46)* #

High dose PM

PM1.0 250 μg 16.6 (±4.4) 1.28 (±0.73) 13.7 (±3.7) 1.5 (±0.4) 0 (±0.0)

PM2.5 250 μg 25.5 (±6.7) 6.83 (±4.28) 16.3 (±2.5) 2.1 (±0.4) 0.19 (±0.06)

PM10 250 μg 28.3 (±6.1) 6.43 (±0.92) 18.2 (±4.3) 2.5 (±0.7) 1.03 (±0.31)* #

The mice were exposed to 100 μL aliquots of solutions by intratracheal instillation on days 0 and 7 as described in the Materials and Methods section. The

data are presented as the mean ± SEM (104/ml).

*p<0.05 compared to the PBS group
#p<0.05 compared to the other groups at the same dose (n = 5 for each treatment group)

doi:10.1371/journal.pone.0173158.t003

PM and allergic airway inflammation

PLOS ONE | DOI:10.1371/journal.pone.0173158 February 28, 2017 7 / 16



numbers and percentages of eosinophils and increased inflammatory cytokine expression (IL-5

and IL-13). Extensive testing of individual PM2.5, PM1 and PM0.1 samples did not reveal an

effect on eosinophilic inflammation.

Our results showed that neutrophils and expression levels of inflammatory cytokines (TNF-

α, IFN-γ, and IL-6) in BALF were significantly increased in mice treated with high doses of

PM10 compared with those of the control and other treatment groups. Several epidemiological

studies have suggested that coarse PM has a similar or stronger short-term effect on respiratory

diseases compared to that of fine PM [29]. A previous study investigating healthy mice submit-

ted to oropharyngeal exposure to PM of different sizes collected from six US cities at doses of

25 μg and 100 μg also showed that coarse PM more potently induced pulmonary inflammation

than that of fine or ultrafine PM [30]. Happo et al. [31] also found that coarse PM and PM2.5–1

had substantially higher inflammatory potency than PM1. Another similar study that com-

pared size-fractioned PM toxicity in samples collected near and far from urban highways

showed that coarse PM produced more significant pulmonary inflammation than that of fine

and ultrafine PM on a comparative mass basis [25]. Our results (e.g., increased neutrophilia

and elevation of IL-6 and TNF-α in BALF) were similar to those reported in the above-cited

Fig 2. Inflammatory cell profiles in BALF following the 2nd exposure to PM. A: Total cells. B: Neutrophils. C: Lymphocytes. D: Eosinophils.

The mice were exposed to 100 μL aliquots of solutions by intratracheal instillation on days 0 and 7 as described in the Materials and Methods

section. The data are presented as the mean ± SEM (n = 5 per treatment group). Neutrophil, lymphocyte and eosinophil counts are expressed as

percentages of total cell counts. *p<0.05 compared to the PBS group; #p<0.05 compared to the other groups at the same dose.

doi:10.1371/journal.pone.0173158.g002

PM and allergic airway inflammation
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studies and suggest that PM10 exerts a greater inflammatory effect than that of PM2.5 on a mass

basis. The findings that PM10 induced the greatest degree of airway inflammation may be

attributed to enriched metal constituents in PM10 [32], more biogenic materials with the high-

est endotoxin contents [31], or chemical contents adhered to PM10 [33]. However, many types

of combined effects may take place due to complex urban PM.

Our results demonstrated that an allergic immune response, including the recruitment of

eosinophils (approximately 4% of total inflammatory cells) and the up-regulation of Th2 cell-

related cytokine release, such as IL-5 and IL-13, was observed in the BALF of the mice that

Fig 3. Cytokine levels in BALF following the 2nd exposure to PM. A: IFN-γ. B: IL-5. C: IL-6. D: IL-13. E: IL-17A. F:

TNF-α. The mice were exposed to 100 μL aliquots of solutions by intratracheal instillation on days 0 and 7 as described in

the Materials and Methods section. PBS served as a vehicle control. The data are presented as the mean ± SEM (n = 5 per

treatment group). *p<0.05 compared to the PBS control group; #p<0.05 compared to the other groups at the same dose.

doi:10.1371/journal.pone.0173158.g003
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were exposed to PM10. Although typical models of allergic airway inflammation generally

demonstrate much higher percentages of airway eosinophilia, the mice were exposed to PM

only in the sensitization phase without further allergen challenge. Additionally, typical aller-

gens (OVA) or adjuvants (aluminum hydroxide) were not used in our experiment. It has previ-

ously been shown that a single oropharyngeal exposure to ambient PM (mean hydrodynamic

diameter: 0.4 μm) collected from Baltimore city air induced eosinophilic infiltration (<2% of

inflammatory cell) in the BALF of mice. In the same study, ambient PM was also shown to acti-

vate myeloid dendritic cells (mDCs) and further drive Th2 cytokine responses in naïve T cells

[34]. The repeated intratracheal instillation of healthy mice with PM samples from urban Balti-

more (aerodynamic diameter <0.85 μm, 0.5 mg in 50 μL PBS) induced airway hyper-respon-

siveness, small but significant elevations in eosinophil counts in BALF, and increased Th2

expression of IL-17A, IL-5, and IL-13 cytokines in lung cells but no increase in total serum IgE

levels [26]. Immature dendritic cells (DCs) are highly effective at taking up foreign bodies and

directing the primary immune response [35]. An in vitro study showed that exposure to ambi-

ent PM enhanced DC activation and that co-cultures of ambient PM-stimulated DCs with

Fig 4. Representative histology of lung tissue (200X) 3 days after the second intratracheal instillation of PM. Lungs were

excised and fixed with formaldehyde, sectioned in 5-μm-thick slices, and the slides were stained with H&E. (A) Vehicle (VEH) control

tissue. (B) Tissue exposed to high-dose PM2.5 showing focal aggregation of lymphocytes and foamy histiocytes in the alveolar space.

(C) Tissue exposed to medium-dose PM10 showing focal infiltration of lymphocytes and foamy histiocytes into the alveolar space. (D)

Tissue exposed to high-dose PM10 showing focal infiltration of neutrophils, lymphoplasma cells and foamy histiocytes.

doi:10.1371/journal.pone.0173158.g004
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alloreactive naïve CD4+ T cells produced Th2-like patterns of cytokine production [36]. A

recent in vitro study reported that a co-culture of human myeloid DCs with PM can stimulate

autologous human memory CD4 T cells (Tms) to secrete IFN-γ and IL-13 and drive the expan-

sion and differentiation of a mixed population of Th1, Th2 and Th17 effector memory cells

[37]. Although the exposure doses, sizes and compositions of the PM samples were different,

our observations together with previous studies indicate that exposure to ambient PM can

induce allergic airway inflammation.

The inflammatory pathways involved in the development of asthma are complex, and

eosinophils play a central role in the pathogenesis of asthma. Eosinophils increase vascular per-

meability, epithelial damage, mucus hypersecretion, and smooth muscle constriction through

their release of granule-associated basic proteins, lipid mediators and reactive oxygen species

(ROS) [38]. IL-5 is an important mediator of eosinophil proliferation, differentiation, matura-

tion, migration, and survival in response to environmental stimuli [39]. IL-13 activates macro-

phages and eosinophils to accelerate inflammation and stimulates B-cells to produce IgE

antibodies. IL-13 also contributes to airway hyper-responsiveness and airway remodeling

through epithelial cell hypersecretion, subepithelial fibroblast proliferation and smooth muscle

hypertrophy in the airway [40]. IL-17A may induce epithelial structural changes and smooth

muscle contraction; the presence of IL-17A in BALF has been associated with asthma severity

in clinical studies. An association between IL-17A and neutrophilic airway inflammation has

also been established in murine asthma models. Collectively, these results suggest that IL-17A

plays a central role in the pathophysiologies of certain asthma phenotypes [41].

PMs are composed of carbon cores and a number of soluble and insoluble components,

including acids, organic chemicals, metals, endotoxin, pollen or fungi debris on their surface.

Thus, the underlying mechanisms by which PM exerts biological effects are complex. Various

allergens, such as fungal spores and pollen, are more efficiently carried to the airways when

they are constituents of PM [42,43]. PM exposure may impact many cell types at different lev-

els of immune regulation. A Th2-dominant immune response plays a central role in allergic

airway inflammation; however, innate immunity, such as that via dendritic cell and epithelial

Table 4. Coefficients for the correlations between the constituents in the PM samples and the measured inflammatory responses.

Inflammatory biomarker

Neutro Eosino IFN-γ TNF-α IL-5 IL-6 IL-17A

Na+ 0.663** 0.809** 0.398** 0.544** 0.309* 0.217 0.331**

NH4
+ 0.348** 0.276* 0.143 -0.035 0.026 -0.172 0.099

K+ 0.163 0.218 0.181 -0.153 0.198 -0.119 0.178

Mg2+ 0.562** 0.73** 0.424** 0.429** 0.427** 0.264* 0.366**

Ca2+ 0.54** 0.672** 0.404** 0.467** 0.423** 0.244 0.335**

Cl- 0.569** 0.743** 0.417** 0.448** 0.433** 0.269* 0.372**

NO3
- 0.446** 0.666** 0.314** 0.342** 0.285* 0.224 0.291*

SO4
2- 0.394** 0.309* 0.145 -0.042 0.037 -0.176 0.104

OC 0.144 0.313* 0.094 -0.154 0.191 -0.081 0.142

EC 0.102 0.259* 0.225 -0.113 0.25 -0.04 0.218

Endo 0.796** 0.6** 0.211 0.426** -0.001 -0.057 0.109

The values are represented as Spearman’s correlation coefficients.

**p<0.01

*p<0.05

Neutro, percentage of neutrophil; Eosino, percentage of eosinophil; Endo, endotoxin.

doi:10.1371/journal.pone.0173158.t004
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cell responses, was also important in disease expression [44]. PM has been shown to stimulate

innate immune responses through airway epithelial cells and dendritic cells [45]. The aryl

hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is expressed in a

variety of tissues. The activation of the AhR may regulate gene expressions involving detoxica-

tion enzymes (CYP1A1 and CYP1B1), as well as inflammatory (TNF-α and IL-6) and T-cell

differentiation (Foxp3, IL-17 and GATA3) genes [46]. Polycyclic aromatic hydrocarbons

(PAHs) contained in the PMs, common AhR agonists, have been shown to enhance Th17 cell

differentiation and IL-17 secretion through the aryl hydrocarbon receptor, indicating that PM

can directly modulate T cell function [47]. An in vitro study also showed that exposure to

ambient PM enhanced DC activation and that co-cultures of ambient PM-stimulated DCs

with alloreactive naïve CD4+ T cells produced Th2-like patterns of cytokine production

[25,31]. The innate immune cells contain pattern recognition receptors (PRRs), including toll-

like receptors (TLRs), nucleotide binding and oligomerization domain (NOD)-like receptors

(NLRs), among others [48]. These receptors detect exogenous or endogenous toxic substances

by priming and activating the inflammasome, a cytosolic protein complex that can trigger the

maturation of pro-inflammatory chemokines and cytokines and assist the host in regulating

the balance between tissue repair and inflammation [49]. PM10 has been shown to activate an

NLRP3 inflammasome/IL-1 receptor axis involving IL-1β, CCL-20 and GM-CSF production,

which causes dendritic cell activation and neutrophilia [50]. Additionally, the production of

oxidative stress (either the direct induction of reactive oxygen species attributed to organic

and metal components of the PM or the secondary induction of local cellular responses after

PM exposure) induced the activation of the mitogen-activated protein (MAP) kinase cascade

and NF-κB transcription factors, which control the activity of genes involved in cellular activa-

tion and inflammation and appear to be fundamental to the PM-induced immunoregulatory

effect [51].

As the size of particles decreases, the total surface area increases. Thus, the eosinophilic

inflammatory effect of ultrafine particles was reported to be greater than that of fine particles

[24]. In our study, PM10 induced a more prominent eosinophilic inflammatory response than

that of PM2.5 or PM0.1. Our findings suggest that the compositions of PM may also result in

differences. We found that PM10 had a higher endotoxin level than that of fine and ultrafine

PM and that the endotoxin level was associated with neutrophilic inflammation. Our findings

were consistent with those of previous PM studies [25,31]. The underlying mechanism of

endotoxin-induced inflammation involves the detection of endotoxin by a complex of CD14,

Toll-like receptor 4 (TLR4) and MD-2. The recognition of endotoxin leads to the activation of

NF-κB family transcription factors and mitogen-activated protein kinases pathways of innate

immune cells, which directs the expression of proinflammatory cytokines, chemokines and

adhesion molecules [52,53]. However, the causal relationship between endotoxin and eosino-

philic airway inflammation and Th2 immune response are more complex. According to the

‘hygiene hypothesis’, the decreasing incidence of infections is associated with an increasing

incidence of allergic disease [54]. However, epidemiological evidence has indicated that endo-

toxin exposure is a risk factor for increased asthma prevalence [55,56], and animal studies of

the immunomodulatory effects of endotoxin have yielded different and sometimes conflicting

results, as reviewed by Zhu et al [57]. Several investigators demonstrated that low-dose endo-

toxin with OVA induced Th2 immune responses, whereas high-dose endotoxin with OVA

induced Th1 inflammation [58]. Our current results showed that endotoxin level was posi-

tively associated with elevated percentages of neutrophils and eosinophils as well as increased

expression of TNF-α in BALF. It is possible that the dose, route and timing of endotoxin expo-

sure may determine subsequent inflammatory responses.
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In the current study, we found that select PM constituents showed statistical correlations

with inflammatory responses. However, PM constituents from the same sources are also com-

plex, and they may interact with each other. Therefore, it is difficult to determine the causal

relationship between any single component that is significantly associated with inflammation;

as such, investigations into the relationships that exist between particle sources and health

effects should be carried out [59].

Taken together, our results indicate that ambient PM can induce Th1/Th2/Th17 inflamma-

tory responses through different additive or synergistic mechanisms driven both by individual

compounds and combinations of compounds.

Conclusions

Due to wide variations in the sources and compositions of PM as well as the different PM

exposure protocols used in the previous animal studies, there is a lack of consistent findings

regarding the physiological effects of PM in the airway. In the current study, we found that

exposure to PM increased inflammatory responses, including augmented neutrophil infiltra-

tion and increased TNF-α and IFN-γ production, as well as allergic immune responses, includ-

ing augmented eosinophil infiltration and increased production of Th2-related cytokines (IL-5

and IL-13), in the BALF of mice that were repeatedly exposed to PM10 in the absence of an

additional OVA. Our results further indicate that ambient PM exposure may increase asthma

morbidity.
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