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Abstract

The mammalian intestine harbors a vast, complex and dynamic microbial population, which has profound effects on host
nutrition, intestinal function and immune response, as well as influence on physiology outside of the alimentary tract.
Imbalance in the composition of the dense colonizing bacterial population can increase susceptibility to various acute and
chronic diseases. Valuable insights on the association of the microbiota with disease critically depend on investigation of
mouse models. Like in humans, the microbial community in the mouse intestine is relatively stable and resilient, yet can be
influenced by environmental factors. An often-overlooked variable in research is basic animal husbandry, which can
potentially alter mouse physiology and experimental outcomes. This study examined the effects of common husbandry
practices, including food and bedding alterations, as well as facility and cage changes, on the gut microbiota over a short
time course of five days using three culture-independent techniques, quantitative PCR, terminal restriction fragment length
polymorphism (TRFLP) and next generation sequencing (NGS). This study detected a substantial transient alteration in
microbiota after the common practice of a short cross-campus facility transfer, but found no comparable alterations in
microbiota within 5 days of switches in common laboratory food or bedding, or following an isolated cage change in mice
acclimated to their housing facility. Our results highlight the importance of an acclimation period following even simple
transfer of mice between campus facilities, and highlights that occult changes in microbiota should be considered when
imposing husbandry variables on laboratory animals.
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Introduction

A complex non-random community of colonizing microbes,

termed microbiota, inhabits skin and mucosal surfaces [1].

Humans and other animals have coevolved with these microbes

so as to not only tolerate, but also to require their presence for

health and normal physiology [2–4]. In turn, the host provides the

microbes a beneficial environment, creating a mutualistic relation-

ship [2]. In the last decade, a combination of culture-independent

experimental approaches and rapid advances in DNA sequence

technologies have contributed to a wealth of knowledge on the

composition and function of the microbiota [5,6].

Microbial abundance and diversity are particularly striking in

the mammalian intestine. While four kingdoms are represented in

this community of colonizing microbes, the most abundant, and

chief focus of investigations to date, are the bacteria [7–11]. The

mammalian intestine harbors a complex bacterial community of at

least 1,000 species, comprised mostly of members of the phyla

Bacteroidetes and Firmicutes. The Bacteroidetes are Gram-negative

bacteria, including numerous Bacteroides, Cytophaga, and Flavobacter-

ium species, while the intestinal Firmicutes are Gram-positive

bacteria, such as members of the Enterococcaceae and Lactobacillaceae

families and the Clostridia class. Together, these taxa account for

ninety percent or more of the nearly hundred-trillion bacteria in

the gut. By harboring a vast, diverse, and dynamic bacterial

population in the gut, the host acquires access to an enormous

collection of microbial genes (a metagenome), encoding proteins

and enzymes that aid in digestion, produce essential vitamins and

nutrients, enhance intestinal development, and prime the intestinal

immune system [3,12]. The dynamic and intimate interactions

between the host and its intestinal microbiota can have effects

beyond the intestine [6,12–15]. The microbiota can even affect

neurobiological and behavioral phenotypes [16]. Some have used

the term ‘‘the forgotten organ’’ to describe the gut microbiome,

because it functions in such diverse physiological processes [15].
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Dysbiosis, the alteration or imbalance in the microbiota, can

create a niche for proliferation of virulent organisms to disrupt

homeostasis and cause disease. However, even in the absence of

overt pathogens, an imbalance can be detrimental to the host

[13,17]. A variety of environmental influences, as well as genetic

host factors can cause dysbiosis, dramatically increasing suscepti-

bility to acute infectious diseases [18] and to chronic inflammatory

diseases [19], including obesity, diabetes, gastrointestinal cancers,

atherosclerosis, inflammatory bowel disease, and asthma [20–30].

Mice are the most widely used species to model acute and

chronic disease [31]. Many valuable insights on the association of

the microbiota with disease stem from, and depend on, in-

vestigation of mouse models. As with humans, the gut microbial

community in mice is relatively stable and resilient. Nevertheless,

environment can influence the microbiota. Basic animal husband-

ry is an often-overlooked variable in research that can potentially

alter experimental outcomes [32,33]. Despite a wide appreciation

that husbandry practices influence the microbiota [34], the specific

contributions of routine practices are not well understood. This

study examined the effects of food and bedding alterations, as well

as the common husbandry practices of facility and cage changes,

on the microbiota over a short time course of five days. Above the

other variables, we report here that a simple intracampus facility

and cage change has a significant, but previously unappreciated

impact on the gut microbiota.

Materials and Methods

Mouse Husbandry and Experimental Design
All procedures were performed under a protocol approved by

the UC Davis IACUC. Mice were housed according to the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. FVB

mice, 7–10 weeks of age, were reared in a specific pathogen free

(SPF) barrier facility and transferred to a conventional housing

facility on day zero. Mice were maintained on a 12 hr light/12 hr

dark cycle at 30–70% humidity and at 70–72uF ambient

temperature. All animals were given free access to food and

water, and were housed in same sex pairs in static micro-isolator

cages. Water was purified using the Edstrom water acidification

system (Edstrom Industries, Inc, Waterford, WI) with a pH in the

range of 2–3, checked at time of bottle filling with monthly quality

control testing for pH accuracy and bacterial growth. All cages

and bedding were autoclaved according to institutional guidelines

prior to animals being placed into them. Pathogen monitoring in

the conventional housing facility utilized a sentinel program with

quarterly screens to ensure the health of the animals. All testing of

rodent sentinels in the housing rooms were negative through out

the duration of the study. To assure strict consistency, one

investigator (BWM) assumed all care, handling and maintenance

of mice during the experimental protocol. Cage changes were

made as indicated in the specific experiments in adherence to

institutional guidelines and to mimic normal husbandry proce-

dures.

The experimental groups of mice used in this study were:

‘‘group 1’’) Bedding change: mice (n = 6, 2F/4M) were changed

from corncob bedding (Harlan Laboratories, Indianapolis, IN) to

Carefresh bedding (Carefresh, Canon City, CO); ‘‘group 2’’) Food

change: mice (n = 8, 4F/4M) were changed from Harlan Teklad

2918 (Harlan) to Purina Lab Diet 5058 (MI Nutrition In-

ternational LLC (LabDiet), St. Louis, MO); ‘‘group 3’’) Control:

mice (n = 8, 4F/4M) were housed on corncob bedding and

maintained on Harlan Teklad 2918 diet; ‘‘group 4’’) High fat diet

change: mice (n = 8, 4F/4M) were changed from Purina Lab Diet

5058 to a 20% high fat diet by Open Source Diets (Research

Diets, New Brunswick, NJ). Fresh fecal samples were collected just

prior to the facility/cage change (day 0), and then daily for 5 days

thereafter (Fig. 1A). After the facility/cage change on day 0, no

further change in bedding, food or cage was made for any of the

mice, and fecal material and waste was allowed to accumulate for

the remainder of the 5-day experiment. Thus, mice in Group 3

(controls) experienced a facility/cage change on day zero, placing

them in a new cage with fresh bedding and food, but were

maintained on otherwise identical corncob bedding and Harlan

Teklad 2918 diet.

A second independent cohort of mice (‘‘group 5’’, n = 7, 3F/

4M) were similarly transported from the same SPF facility as the

first group, but were placed in a different conventional housing

location. Like Group 3, this cohort of mice was also housed on

corncob bedding and maintained on Harlan Teklad 2918 diet.

They remained in the conventional housing facility for 37 days to

assess the effects of cage changes in acclimated mice (without

concomitant facility change). During this time, cages were changed

(by BMW) on days 0, 7, 14, 21, and 28, as part of normal

husbandry. Fresh fecal pellets were collected daily and TRFLP

analysis was performed on samples collected on day 0 (just prior to

the facility/cage change), day 1, day 5, days 7 and 21 (just before

routine cage changes), days 8 and 22 (one day after routine cage

changes), and on days 12 and 26 (five days after routine cage

changes).

Specimen Collection
Fecal pellets were freshly collected from each mouse daily in the

early morning after timed lighting was turned on. Fecal pellets

were promptly weighed and suspended in RNAlater (Ambion Life

Technologies, San Diego, CA). The fecal samples in RNAlater

were incubated overnight at room temperature and then stored at

280uC until processed for DNA extraction, as previously de-

scribed [35].

DNA Extraction
Fecal samples were thawed, and the pellets were washed once in

750 ml ice cold PBS, resuspended in 200 ml lysis buffer (20 mM

Tris HCl (pH 8), 2 mM EDTA, 1.2% Triton X-100, 40 mg/ml

lysozyme) and then transferred to lysis matrix tubes (MP

Biomedical: Solon, OH, Lysing Matrix B, 0.1 mm silica spheres).

The resulting suspension was incubated at 37uC for 30 min and

then disrupted using a Mini-beadbeater-16 vortex (BioSpec

Products, Bartlesville, OK) for 2 min according to the manufac-

turer’s protocol. After vortexing, DNA was extracted using the

Qiagen DNA stool kit (Qiagen, USA) according to manufacturer’s

protocol, including the modification for stool pathogen detection.

Quantitative PCR (qPCR)
Oligonucleotide primer pairs designed to detect the 16S

ribosomal DNA for bacterial groups within the Firmicutes and

Bacteroidetes phyla were used as described previously [35].

Specifically, the assays for subphyla of Firmicutes included

Lactobacillus, Clostridium leptum and Eubacterium rectale; the subphyla

of Bacteroidetes were Bacteroides and Mouse Intestinal Bacteroides. The

qPCR used fecal DNA (,20–30 ng) in a 10 ml reaction containing

4 mM MgCl2, 0.5 mM of each primer and 1X LightCycler-Fast

Start DNA Master SYBR Green I mix (Fast Start SYBR kit,

Roche Diagnostics, Mannheim, Germany) and was performed

using the Roche LightCycler 2.0 (Roche Diagnostics). Previously

published primer pairs [35] were used with slight modification of

the annealing temperatures shown in Table S1. Values for each

assay were determined using standard curves constructed with

Environmental Influences on Mouse Microbiota
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reference bacterial DNA specific for each bacterial group as

described [35].

qPCR Data Analysis
Quantitative estimates for individual bacterial sample groups

were normalized to the total abundance of bacteria estimated

using the kingdom-specific Eubacteria assay. Data for each bacterial

group were analyzed either from individual mice at two time

points, or between experimental cohorts at a specific time point.

For assessment of changes in individual mice over time, the

normalized values were analyzed using a paired t-test. For

comparison between groups, the averaged values were compared

using a two-tailed Student’s t-test.

Eubacterial Terminal Restriction Fragment Length
Polymorphism (TRFLP)
Eubacterial-TRFLP analysis was performed following protocols

previously described [36]. Briefly, a PCR reaction was performed

using the purified fecal DNA (,5–40 ng) and the Fast Start Taq

PCR system (Roche) on a Veriti 96 well thermocycler (Applied

Biosystems, Foster City, CA). The oligonucleotide primers, 1492R

(59-GGTTACCTTGTTACGACTT-39) and Uni331F (59-

[FAM]-TCCTACGGGAGGCAGCAGT-39) were used at a final

concentration of 0.2 mM. The PCR conditions were: initial

denaturation at 94uC for 5 min, followed by 35 cycles of 94uC
for 30 sec, 50uC for 30 sec (annealing) and 72uC for 90 sec

(extension). The appropriate size of the PCR product was verified

using agarose gel electrophoresis (1% w/v in TAE buffer) using

a 100 BP DNA ladder (Roche). The PCR product was purified

using a Qiagen PCR purification kit according to the manufac-

turer’s protocol. Approximately 500 ng of the purified PCR DNA

product was then used for each restriction enzyme digestion with

either Alu I, Hae III, Hha I, or Msp I restriction enzymes

(Promega, Madison, WI), according to the supplier’s recom-

mended buffers and protocols. The reactions were terminated by

incubation at 65uC for 20 minutes to inactivate the restriction

enzymes. Each restriction digestion sample was analyzed for DNA

fragment length and quantity using an ABI 3100 Capillary

Electrophoresis Genetic Analyzer (Applied Biosystems, Carlsbad,

CA) at the University of California, Davis Sequencing Core

Facility.

Lactic Acid Bacteria (LAB)-TRFLP
LAB-TRFLP was performed as previously described [37]. PCR

was performed similarly to the Eubacterial-TRFLP. Oligonucle-

otide primers were 59-[HEX] GGCGGCGTGCCTAATA-

CATGCAAGT-39 and 59-TCGCTTTACGCCCAA-

TAAATCCGGA-39 with a final concentration of 0.2 mM. The

PCR conditions were: initial denaturation at 94uC for 5 min,

Figure 1. Analysis of stool microbiota changes following husbandry changes. A) Timeline of experimental approach. Fresh fecal samples
were collected daily at each time point from individual mice (downward arrows). Day 0 denotes baseline samples obtained just prior to transfer from
an SPF facility to a conventional housing facility (upward block arrow). Upon transfer, either bedding (group 1) or food (group 2) was changed (from
corncob to Carefresh bedding, and Teklad 2918 to LabDiet 5058, respectively). Control mice (group 3) were also transferred and placed in a fresh
cage, but maintained on the same type of food and bedding (corncob and Teklad 2918). Day 1 is 24 hours after the combined facility transfer/cage
change for all mice. B) Principal coordinate analysis of Eubacterial-TRFLP data. Each data point represents a single mouse specimen at days 0 (yellow
squares), 1 (black circles) and 5 (blue triangles) from mice in three experimental groups: bedding change (n = 6), food change (n = 8) and control
(n = 8). A PCoA was performed using all data, and then graphed for each of the three experimental groups separately.
doi:10.1371/journal.pone.0047416.g001
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followed by 30 cycles of 94uC for 45 sec, 66uC for 30 sec

(annealing) and 72uC for 45 sec (extension). Appropriate product

size was verified using the same conditions as the above TRFLP

protocol. Approximately, 150–500 ng of DNA was used for

restriction digest with either Mse I or Hpy118 I. Fragment analysis

was performed as previously stated at the University of California,

Davis Sequencing Core Facility.

Next Generation Sequencing (NGS) Library Construction
Library preparation and data analysis were performed as

described previously [38]. Briefly, the V4 domain of bacterial 16S

rDNA was amplified using primers F515 (59-

CACGGTCGKCGGCGCCATT-39) and R806 (59-GGAC-

TACHVGGGTWTCTAAT-39) [39], both modified to contain

an Illumina adapter region, and, on the forward primer, an 8 bp

barcode to enable sample multiplexing. The sequence of V4

primers and barcodes is presented in Table S2. The PCR

reactions contained 5–100 ng DNA template, 1X GoTaq Green

Master Mix (Promega, Madison, WI), 1 mM MgCl2, and 5 pmol

of each primer. The reaction conditions consisted of an initial

94uC for 3 min followed by 35 cycles of 94uC for 45 sec, 50uC for

60 sec, and 72uC for 90 sec, and a final extension of 72uC for

10 min. All samples were amplified in triplicate and combined

prior to purification. The PCR products were purified using the

Qiaquick PCR purification kit (Qiagen, Valencia, CA), quantified

using PicoGreen dsDNA reagent (Invitrogen, Grand Island, NY),

mixed at equimolar concentrations, and gel purified using the

Qiaquick gel extraction kit (Qiagen). The purified libraries were

submitted to the UC Davis Genome Center DNA Technologies

Core for cluster generation and 150 bp paired-end sequencing on

the Illumina GAIIx. Image analysis, base calling, and error

estimation were performed using CASAVA 1.8.

TRFLP Data Analysis
Electropherogram traces were visualized using the program

Peak Scanner v1.0 (Applied Biosystems, Carlsbad, CA) with

a baseline detection value of 10 fluorescence units. True peaks

were identified from noise by filtration and clustering using the

scripts and analysis protocols designed by Abdo and colleagues

[40] in R software. Operational taxonomic units were assigned

based on an in silico digest database generated by the virtual digest

tool from MiCA [41] of good-quality 16S rDNA gene sequences

compiled by the Ribosomal Database Project Release 10 [42,43],

allowing up to 3 nucleotide mismatches within 15 BP of the 59

terminus of the forward primer. Principal coordinates were

computed and visualized from Euclidean distance of raw Msp I

digest TRFLP data (prior to taxonomic classification/grouping)

using QIIME [44]. For assessment of the abundance of

Lactobacillales over time, the data were analyzed using repeated

measures ANOVA.

NGS Data Analysis
Raw Illumina fastq files were demultiplexed, quality-filtered,

and analyzed using QIIME v1.5.0 [44]. The 150-bp reads were

truncated at any site of more than three sequential bases receiving

a quality score ,1e25, and any read containing ambiguous base

calls or barcode/primer errors were discarded, as were truncated

reads containing ,75 consecutive high-quality base calls. Oper-

ational Taxonomic Units (OTUs) were assigned using UCLUST

[45] with 97% pairwise identity. OTUs were classified taxonom-

ically using a QIIME-based wrapper of the Ribosomal Database

Project classifier [46] against the Greengenes 16S rDNA sequence

database [47], using a 0.80 confidence threshold. OTUs compris-

ing less than 0.001% of total sequences for each run were removed

prior to further analysis.

Results

To investigate how husbandry variables might influence

microbiota, mice reared in a SPF barrier facility were transferred

across campus to a conventional housing facility and assigned to

group 1 (bedding change), group 2 (food change) or group 3

(control). At day 0, all mice were placed in a new cage to

commence the experiment (Fig. 1A, see Materials and Methods for

precise details). Fresh fecal samples were collected just prior to the

facility/cage change (day 0), and then daily for 5 days thereafter

(Fig. 1A). Bacterial DNA was extracted from the stool samples for

Eubacterial-TRFLP and qPCR analysis. A principal coordinate

analysis (PCoA) plot of the TRFLP data was generated to analyze

changes in composition of the microbiota in mice from each

experimental group at three time points, days 0, 1, and 5 (Fig. 1B).

Each data point represents analysis of the microbiota of an

individual mouse at a specific time point and provides an unbiased

measure of variation of one sample compared to all others in this

experiment. The PCoA plots show a striking alteration in the

composition of microbiota at day 1, following the initial facility

transfer and cage change. This alteration of the microbiota is

evident as a shift from a diffuse scatter of data points at day 0 to

a tightly clustered pattern at day 1 in all three groups. At day 5, the

PCoA plots for all animals in each group showed a return to

approximate the original diffuse pattern seen at day 0 (Fig. 1B).

Contrary to our expectations, the PCoA indicated that the

bedding and diet changes had a negligible effect on the

microbiota. Rather, the analysis showed that mice in all three

groups manifested a similar reshaping of their microbiota

composition at day 1, indicating a significant influence of the

habitat change on the microbiota.

A taxonomic plot of the TRFLP data assesses operational

taxonomic units and proportions of these bacteria present in each

sample. Analysis of individual taxonomic groups at day 1 shows an

apparent disappearance of Lactobacillales in 21 of 22 mice with

a concomitant expansion of the family Flavobacteraceae and class

Clostridia (Fig. 2). By day 5 the microbial population diversifies to

resemble the day 0 pattern, including a return of the Lactobacillales

taxon in all three experimental groups (Fig. 2).

A similar pattern of change was also observed in an independent

experiment with a separate cohort of seven mice, and while

Lactobacillales decreased in abundance at day 1 in this experiment,

their reduced numbers remained detectable (Fig. S1). The

abundance of Lactobacilli in stool at days 0, 1 and 5 was

compared using repeated measures ANOVA. For the 8 mice in

group 3 (Fig. 2, mice A–H) the mean relative proportions of

Lactobacilli at these time points were 28%, 0% and 29%,

respectively (p,0.001), and for the 7 mice in the supplementary

group (Fig. S1) these mean proportions were 15%, 7.4% and 17%,

respectively (p,0.05). Thus, in both of these independent

experiments we observed a significant transient decrease in

Lactobacilli following the facility/cage cage.

To quantify select bacterial populations in each sample from

groups 1–3, real-time qPCR of the microbiota was analyzed.

Quantification of select bacterial populations, normalized to

a universal bacterial assay, Eubacterium, substantiated that signif-

icant differences existed for individual mice between day 0 and day

1 (Fig. S2A). A comparison of the mice in groups 1–3 at day 5 did

not detect any significant differences in bacterial populations

attributable to either the food or bedding changes (Fig. S2B). The

profile proportions were indistinguishable as compared to the

Environmental Influences on Mouse Microbiota
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control group (Fig. S2C), consistent with the PCoA and taxonomic

analysis of TRFLP data (Figs. 1B, 2 and S1).

It was somewhat unexpected that we did not detect a statistically

significant difference in microbiota when the mouse diet was

changed from Harlan Teklad 2918 to Purina Lab Diet 5058

(group 2). Therefore, to address whether our approach could

detect an altered microbiota at day 5 following a dietary change

previously reported by other laboratories to alter microbiota [48–

50], animals were switched from a standard maintenance rodent

chow to a specially formulated high-fat diet, consisting of ,20%

crude fat (group 4). After 5 days, stool microbiota was analyzed by

PCoA of TRFLP data. Control animals maintained on the

standard diet (n = 7), displayed a similar diffuse pattern at both day

0 and 5 (Fig. S3A). In contrast, microbiota of mice switched to

a high fat diet showed a dramatic shift along PC1 from the diffuse

pattern at day 0 to a cluster at day 5 (Fig. S3B). This pattern is seen

in mice whether they were on corncob or Carefresh bedding (Fig.

S3B). Consistent with previously published reports [48–50],

quantitative PCR analysis demonstrated a decrease in Bacteroidetes

and an increase in Firmicutes in the mice on a high fat diet (Fig. S4).

To further interrogate the significant microbiota changes

following the facility/cage change in Fig. 1A, we performed

TRFLP analysis of stool samples from the control group (group 3)

at days 2, 3 and 4. The dramatic loss of microbial diversity

detected at day 1 was followed by a gradual return to resemble

baseline by day 4, with Lactobacillus detected in most individuals at

this time point (Fig. 3A). By day 5, the microbiota returned to the

pattern observed at day 0 (Fig. 3B). This pattern is also apparent

when these data were re-plotted with grouping by mouse over time

(Fig. S5).

Figure 2. Taxonomic plot of bacterial populations derived from Eubacterial-TRFLP analysis for each mouse in groups 1–3. DNA
isolated from stool of each mouse shown in Fig. 1 was analyzed by Eubacterial-TRFLP as described in the methods. Using these data, operational
taxonomic units were assigned based on an in silico digest-database to estimate relative proportions of each major bacterial group present in the
samples. Note that at day 1, there appears to be a loss of the Lactobacillus bacterial group (black) in 21/22 specimens. By day 5, there is a return to
a profile of bacterial composition similar to that observed at day 0 (baseline) for all three groups.
doi:10.1371/journal.pone.0047416.g002

Environmental Influences on Mouse Microbiota
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Figure 3. Eubacterial-TRFLP analysis of fecal microbiota in mice following a combined facility/cage change. A) Taxonomic plot of
bacterial profiles daily from day 0 to day 5. A facility/cage change occurred on day 0 after stool was sampled (see Fig. 1A for timeline). DNA isolated
from the feces of each mouse in the control group (group 3, n = 8) was analyzed by TRFLP as described in the methods. Mice A, B, G, H were males; C,
D, E, F were females. Note that over time, the group of Lactobacillus initially lost at day 1, returns to the population profile in 5 of 8 mice by day 4, and
7 of 8 mice by day 5. B) Principal coordinate analysis of TRFLP data for control mice over time. Each data point represents a single mouse specimen at
days 0 (pink circles), 1 (black squares), 2 (blue inverted triangles), 3 (green inverted triangles), 4 (orange triangles) and 5 (yellow triangles) from mice in
the control group analyzed in A. Note, the shift and clustering of data at day 1, gradually returns to resemble the original pattern by days 4 and 5.
doi:10.1371/journal.pone.0047416.g003

Environmental Influences on Mouse Microbiota
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To further elucidate the dramatic quantitative changes in

Lactobacillales, we examined the composition of this order using

focused LAB-TRFLP [37]. We sought to determine if the lactic

acid bacterial communities were resilient following the dramati-

cally decreased abundance observed at day 1. Indeed, a PCoA of

the LAB-TRFLP data (Fig. 4A) showed variation in the

Lactobacillales population at day 1, with a return to a diffuse

pattern at day 5. The taxonomic plots showed subtle differences in

the relative proportion of the most common species - Lactobacillus

reuteri, Lactobacillus salivarius and Lactobacillus sakei, and increases in

species that had previously not been detectable (Fig. 4B). This

suggests that the population of lactic acid bacteria was initially

sensitive to the influences imposed by the facility/cage change, but

were quite resilient - recovering to relative proportions approx-

imating baseline by day 5.

To more completely elucidate the microbiota composition in

these mice over the course of the 5 days, NGS was performed on 2

individual mice (A and E) in the control group (group 3).

Taxonomic plots (Fig. 5) of the sequence data (Table S3) are

presented for each mouse. Similar to our previous assessments,

a diverse bacterial population was observed for each mouse at day

0 and 5 (Fig. 5). In addition a virtual disappearance of the

Lactobacillales group was apparent at day 1, with its abundance

returning during days 2–4. These results support the interpreta-

tions from the TRFLP and qPCR data. (Figs. 3 and S1A).

Finally, the composition of the microbiota in a group of mice

that experienced a cage change, but without a change of housing

facility was assessed by Eubacterial-TRFLP analysis of stool

microbiota. A cohort of mice (group 5, n= 7), like before were

transferred from a SPF barrier facility to a conventional housing

facility and maintained on corncob bedding and Harlan Teklad

2918 diet for 37 days. Fresh stool was sampled daily and routine

cage change was performed every seven days, per institutional

policy. In this experiment, mice were allowed to acclimate after

the day 0 facility change prior to assessing the effects of the cage

change at day 7 and 22. Eubacterial-TRFLP analysis of individual

taxonomic groups in stool sampled just prior to, and then 1- and 5-

days following the routine changes showed no statistically

significant differences in microbiota (Fig. 6). PCoA of this cohort

of mice showed a diffuse scatter pattern at each time-point, and

the taxonomic plot indicates a similar profile of each individual on

all days. While our data cannot rule-out a significant (but subtle)

difference in the days immediately following a cage change, the

profound changes that accompanied the combined facility trans-

fer/cage change (Figs. 1, 2, 3, S1, and S2) were not observed in the

acclimated mice.

Discussion

A healthy microbiota is essential for fitness of the host [2–4];

conversely, dysbiosis can promote illness by increasing the

susceptibility to and/or persistence of disease [13,17]. Mouse

models have been at the forefront of research to elucidate the

mechanisms that link the composition of the microbiota with

normal physiology or disease [18,20–30]. Husbandry practices can

potentially impact the composition of microbiota, and hence

introduce variables into research studies and affect experimental

outcomes [34]. Although often mentioned in the description of

research methodology as an accepted assumption, surprisingly

little has been published to systematically test the importance of

these environmental variables on microbiota [51]. In this study,

our data provide a glimpse into the significant changes of the

intestinal microbiota that result from a simple ‘‘routine’’

intracampus facility change to a conventional animal facility.

We observed a rather profound difference in the composition of

the colonizing microbial community one day after the short facility

transfer with its attendant cage change that gradually returned to

approximate baseline composition by day 5. These data identify

a previously unrecognized transient alteration in intestinal

microbiota following the routine relocation and change of

a mouse’s cage. The findings suggest that without an acclimation

period, a ‘‘routine’’ facility change has potential importance in

numerous scenarios, e.g. sampling of microbiota following in-

troduction of experimental variables, timing of pathogen chal-

lenges, time-course of investigations probing metabolic dynamics,

and perhaps analysis of behavioral phenotypes.

The two variables that we tested at the outset - bedding and

standard chow - showed no detectable effect on microbiota over

the relatively short five-day time course in this study. It remains

possible that these husbandry changes could have a significant

Figure 4. LAB-TRFLP analysis of fecal microbiota in mice following a combined facility/cage change. A) Principal coordinate analysis of
LAB-TRFLP data at days 0, 1 and 5 in the control group (group 3, n = 8). Each data point represents a single mouse specimen at days 0 (pink circles), 1
(black squares), and 5 (yellow triangles). B) Taxonomic plot of lactic acid bacterial profiles on days 0, 1 and 5. Operational taxonomic units were
assigned based on an in silico digest-database to estimate relative proportions of the Lactobacillales present in the samples. Each bar represents
a single mouse specimen. Mice A, B, G, H were males; C, D, E, F were females.
doi:10.1371/journal.pone.0047416.g004
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effect on composition profiles over a longer time span. Likewise, it

is possible that changes in abundance of members of the

microbiota could have escaped our detection. Nevertheless, we

did observe microbiota composition changes by day 5 upon

switching mice to a high fat diet, consistent with previous reports

[20,48,49,52]. Rather than further pursuing the possible nuances

of these hypotheses, we focused attention to the striking aftereffects

of a facility and cage change.

From behavioral observations, mouse biologists have long

recognized that change in environment is a stressful event for

laboratory rodents. Because mice rely heavily on odors for

communication, territorial marking, and control of sexual and

aggressive behaviors [53], disrupting their environment has

consequence on olfactory cues. In addition, coprophagy is

necessary to provide many essential nutrients, including B

vitamins, synthesized by bacteria in the distal intestine [54].

Together, the importance of olfaction and coprophagy in normal

mouse biology suggests why the environmental upheaval imposed

by facility change might have physiological repercussions. Cage

changes, inter-facility transport, and even simple handling of mice

resulted in transient elevations of corticosterone levels [55,56],

consistent with these activities as being stressful. On the other

hand, changing cages helps avoid toxic in-cage accumulation of

ammonia and carbon dioxide, as well as minimizing noxious odors

[57]. Thus, guidelines governing the frequency of changing cages

include consideration of hygiene, health of the animals, health of

facility personnel and costs [58]. Fortunately for ongoing

experimental protocols in many laboratories, our data did not

discern a microbiota change upon simple cage change after mice

were acclimated to their new facility, although the possibility of

a subtle, but significant, change in colonizing microbes should not

disregarded in all situations.

Looking at the taxonomic data, the evidence indicates

a significant decrease in Lactobacillales from the microbiota within

the first 24 hours of a combined facility/cage change. Several

other changes in the microbiota composition were also evident.

After the initial shift in microbiota, there was a return to

a composition that resembled baseline by day 5. This resilience

supports that a rest period of approximately five days may be

adequate for laboratory mice to acclimate following intracampus

facility change. In addition, the results reported here suggest that

the composition of the microbiota could be a useful non-invasive

parameter to refine husbandry practices to minimize impact,

optimizing both experimental protocols and evidence-based

guidelines for animal care.

Figure 5. Genomic sequence analysis of fecal microbiota in mice following a combined facility/cage change. Fecal samples from two
mice in the control (group 3) cohort were collected daily prior (D0) to and 5 days (D1–D5) following cage change and analyzed by NGS. Taxonomic
plots derived from the NGS data from V4 rDNA are plotted with y-axis representing relative OTU abundance (left, mouse A; right, mouse E, both as
labeled in Fig. 2 and 3).
doi:10.1371/journal.pone.0047416.g005
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Supporting Information

Figure S1 Analysis of stool microbiota following facility
and cage change in an independent cohort of mice
(group 5). Fresh fecal samples were collected on d0, d1, and d5

from individual mice. Day 0 denotes baseline samples obtained

just prior to transfer from an SPF facility to a conventional housing

facility. Upon transfer, mice were placed in a fresh cage, but

maintained on the same type of food and bedding (corncob and

Teklad 2918). Day 1 is 24 hours after the combined facility

transfer/cage change. A) Taxonomic profile of TRFLP data.

Operational taxonomic units were assigned based on an in silico

digest-database to estimate relative proportions of each major

bacterial group present in the samples. Each bar represents a single

mouse specimen. B) Principal coordinate analysis of Eubacterial-

TRFLP data. Each PCoA data point represents these individual

specimens prior to cage change (yellow square), 1 day after cage

change (black circles), and 5 days after cage change (blue triangles).

Mice X, Y, Bb, and Cc were males; W, Z, and Aa were females.

(TIF)

Figure S2 Quantitative PCR analysis of stool micro-
biota of individual mice in bedding, food and control
cohorts (groups 1–3). A) qPCR analysis of stool microbiota of

individual mice in control cohort (group 3) before and one day

after cage change. DNA isolated from stool of each mouse in

group 3 (shown in Fig. 1) at day 0 and day 1 was analyzed by

quantitative PCR as described in the methods. The y-axis

represents the quantitative estimates for each bacterial group

normalized to the total abundance of bacteria from the kingdom-

specific Eubacteria assay. For each mouse at each time point, the

normalized value for each bacterial group was compared by

paired t-test. P-values are indicated for each analysis. B, C)

Quantitative PCR analysis of stool microbiota of mice in bedding,

food and control cohorts (groups 1–3) at day 5. DNA isolated from

stool on day 5 of each mouse shown in Fig. 1 was analyzed by

quantitative PCR as described in the methods. B) Quantitative

comparison of five bacterial groups. For each cohort of mice, the

average normalized values (+/2 SD) for each bacterial group were

compared to the control group by Student’s t-test. No significant

differences were noted between cohorts for any bacterial group. C)

Graphical representation of microbiota composition for each

cohort of mice.

(TIF)

Figure S3 Principal coordinate analysis of Eubacterial-
TRFLP data for mice switched to a high fat diet. A.

Control mice (group 5) were maintained without change of food or

bedding (Teklad 2918 and corncob, respectively). Each data point

represents a single mouse specimen at day 0 (gray) and day 5

(black). B. Experimental mice (group 4) were switched to a high fat

diet after stool specimen collection on day 0. Each data point

represents a single mouse specimen of mice were housed on

corncob (closed circle and squares) or Carefresh (open circle and

squares), at day 0 (gray) and day 5 (black).

(TIF)

Figure S4 Effect of high fat diet on microbiota compo-
sition determined by quantitative PCR analysis. Mice

were maintained for 5 days on either high fat diet (group 4, n= 8)

Figure 6. Eubacterial-TRFLP analysis of fecal microbiota in mice following two routine cage changes. Taxonomic profile (left) and
principal coordinate analysis (right) of TRFLP data. Operational taxonomic units were assigned based on an in silico digest-database to estimate
relative proportions of each major bacterial group present in the samples. Each bar represents a single mouse specimen prior to cage change (d7,
d21), 1 day after cage change (d8, d22), and 5 days after cage change (d12, d26). Each PCoA data point represents these individual specimens prior to
cage change (yellow squares, d7, d21), 1 day after cage change (black circles, d8, d22), and 5 days after cage change (blue triangles, d12, d26). Mice X,
Y, Bb, and Cc were males; W, Z, and Aa were females.
doi:10.1371/journal.pone.0047416.g006

Environmental Influences on Mouse Microbiota

PLOS ONE | www.plosone.org 9 October 2012 | Volume 7 | Issue 10 | e47416



or regular diet (group 5, n= 7) and DNA isolated from stool of

each mouse was analyzed by quantitative PCR as described in the

methods. The y-axis represents the quantitative estimates for each

bacterial group normalized to the total abundance of bacteria

from the kingdom-specific Eubacteria assay (+/2 SD). P-values are

indicated for each analysis (Student’s t-test).

(TIF)

Figure S5 Taxonomic plot of eubacterial-TRFLP data of
fecal microbiota in mice following a combined facility/
cage change (alternative display of data organized by
individual mice). A reorganization of data shown in Fig. 3 to

better view changes in individual mice daily from day 0 to day 5.

The facility/cage change occurred on day 0 after stool was

sampled (see Fig. 1A for timeline). DNA isolated from the feces of

each mouse in the control group (group 3, n = 8) was analyzed by

TRFLP as described in the methods. Mice A, B, G, H were males;

C, D, E, F were females. Note that over time, the group of

Lactobacillus initially lost at day 1, returns to the population profile

in 5 of 8 mice by day 4, and 6 of 8 mice by day 5.

(TIF)

Table S1 Oligonucleotide primer sequences and an-
nealing temperatures for qPCR assays.

(PDF)

Table S2 NGS primer and barcode sequences.

(PDF)

Table S3 NGS taxonomic data of fecal microbiota in
mice following a combined facility/cage change.

(PDF)
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