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Identification of specific metabolites in culture
supernatant of Mycobacterium tuberculosis using
metabolomics: exploration of potential biomarkers

Susanna KP Lau1,2,3,4, Ching-Wan Lam5, Shirly OT Curreem4, Kim-Chung Lee4, Candy CY Lau4,
Wang-Ngai Chow4, Antonio HY Ngan4, Kelvin KW To1,2,3,4, Jasper FW Chan1,2,3,4, Ivan FN Hung1,2,3,4,

Wing-Cheong Yam4, Kwok-Yung Yuen1,2,3,4 and Patrick CY Woo1,2,3,4

Although previous studies have reported the use of metabolomics for Mycobacterium species differentiation, little is known about the

potential of extracellular metabolites of Mycobacterium tuberculosis (MTB) as specific biomarkers. Using an optimized ultrahigh

performance liquid chromatography–electrospray ionization–quadruple time of flight–mass spectrometry (UHPLC–ESI–Q–TOF–MS)

platform, we characterized the extracellular metabolomes of culture supernatant of nine MTB strains and nine non-tuberculous

Mycobacterium (NTM) strains (four M. avium complex, one M. bovis Bacillus Calmette–Guérin (BCG), one M. chelonae, one M.

fortuitum and two M. kansasii). Principal component analysis readily distinguished the metabolomes between MTB and NTM. Using

multivariate and univariate analysis, 24 metabolites with significantly higher levels in MTB were identified. While seven metabolites

were identified by tandem mass spectrometry (MS/MS), the other 17 metabolites were unidentified by MS/MS against database

matching, suggesting that they may be potentially novel compounds. One metabolite was identified as dexpanthenol, the alcohol

analog of pantothenic acid (vitamin B5), which was not known to be produced by bacteria previously. Four metabolites were identified

as 1-tuberculosinyladenosine (1-TbAd), a product of the virulence-associated enzyme Rv3378c, and three previously undescribed

derivatives of 1-TbAd. Two derivatives differ from 1-TbAd by the ribose group of the nucleoside while the other likely differs by the base.

The remaining two metabolites were identified as a tetrapeptide, Val-His-Glu-His, and a monoacylglycerophosphoglycerol,

phosphatidylglycerol (PG) (16 : 0/0 : 0), respectively. Further studies on the chemical structure and biosynthetic pathway of these

MTB-specific metabolites would help understand their biological functions. Studies on clinical samples from tuberculosis patients are

required to explore for their potential role as diagnostic biomarkers.

Emerging Microbes and Infections (2015) 4, e6; doi:10.1038/emi.2015.6; published online 28 January 2015

Keywords: biomarkers; diagnosis; metabolomics; Mycobacterium tuberculosis; specific

INTRODUCTION

Despite being an ancient disease, tuberculosis, caused by Mycobacterium

tuberculosis (MTB), is still causing 9.0 million new cases and 1.5 million

deaths worldwide in 2013, with one-third of the world’s population

thought to have been infected.1 The disease is more prevalent in the

developing world, especially in Asian and African countries. In Hong

Kong, despite being a developed city, more than 4000 new cases are

being reported per year. Since the 1980s, there has been re-emergence of

tuberculosis in developed countries that coincided with the acquired

immunodeficiency syndrome epidemic and later increasing use of

immunosuppressants. Disease patterns have also changed, with a higher

incidence of disseminated and extrapulmonary disease, coupled with

the emergence of multidrug-resistant strains.2–4 While MTB is the most

common Mycobacterium species associated with infections in im-

munocompetent hosts, immunocompromised patients such as those

with acquired immunodeficiency syndrome or type 1 cytokine pathway

defects and transplant recipients are also at risk of infections by non-

tuberculous Mycobacterium (NTM) species.5–7

The current gold standard for diagnosis of tuberculosis is smear and

culture to look for acid-fast bacilli in clinical specimens. Although culture

using solid or liquid medium is considered more sensitive and specific

than smear, it is associated with significant pitfalls. First, culture-negative

cases are often encountered when bacterial loads are low, especially in

patients with early, disseminated or extrapulmonary disease, young chil-

dren and immunocompromised patients.8,9 Second, it usually takes at

least 2–6 weeks before bacterial growth can be detected and even longer

for species identification by phenotypic tests, which may result in treat-

ment delay in smear-negative cases. As a result, novel diagnostic mod-

alities such as adenosine deaminase levels in pleural fluid and nucleic acid

amplification by polymerase chain reaction (PCR) have been developed

to aid diagnosis. However, these methods are still far from optimal. For

example, PCR has a reported sensitivity of only 60%–80% using culture
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as the gold standard, and is often limited by the presence of PCR inhi-

bitors in clinical specimens.10,11 Therefore, the availability of alternative

techniques for improved diagnosis of tuberculosis is eagerly awaited, and

such techniques should be able to differentiate between MTB and NTM

infections which necessitate different treatment regimens.

Metabolomics is an uprising research platform for systematic stud-

ies of the small-molecular metabolite profiles of a cell, tissue or organ-

ism, which are the end products of cellular processes. Using statistical

analyses, the metabolic profiles from different cells or systems can be

compared, which can be used to differentiate between different bio-

logical systems and identify potential metabolite markers specific to

these systems. The technique has been applied to characterize various

diseases or pathogens including MTB.12–18 Using this approach, meta-

bolomic data obtained from urine samples have also been used to

distinguish healthy subjects from patients with infections such as

pneumococcal disease and urinary tract infections.19–21 However, pre-

vious metabolomics studies on MTB isolates were mainly focused on

detection from culture and species/strain identification by analyses of

intracellular metabolites.13,14,22 Little is known about the potential of

extracellular metabolites of MTB as specific biomarkers. For example,

metabolomics studies have been performed to identify various

Mycobacterium species, compare hyper- and hypo-virulent strains

and study carbon utilization of MTB strains.13,14,23 Although a few

studies using samples from infected patients or animals have revealed

potential signature metabolites, they are not yet confirmed to be useful

routine diagnostic purposes.24–26 Since MTB is able to produce vol-

atile organic compounds and stearic acid which can be detected in the

urine and sputum of infected patients respectively,24,27 we hypothesize

that there are potentially novel extracellular metabolites that are spe-

cifically produced by MTB that may be detected in body fluids for non-

invasive diagnosis of tuberculosis. To search for potential biomarkers

for diagnosis of tuberculosis, we attempted to characterize the meta-

bolomes of culture supernatants of MTB and NTM species, using

ultrahigh performance liquid chromatography–electrospray ioniza-

tion–quadruple time of flight–mass spectrometry (UHPLC–ESI–Q–

TOF–MS). Multi- and univariate statistical analyses of the metabo-

lome data were used to identify specific metabolites that are found

only in the culture supernatants of MTB but not NTM species.

MATERIAL AND METHODS

Mycobacterial strains and culture

Nine MTB and nine NTM (four M. avium complex strains, one M. bovis

Bacillus Calmette–Guérin (BCG) strain, one M. chelonae strain, one M.

fortuitum strain and two M. kansasii strains) strains were included in this

study (Supplementary Table S1). All clinical isolates were identified by

standard conventional methods.28 Each Mycobacterium strain was grown

on Lowenstein–Jensen solid medium for 3–4 weeks with continuous

aeration. Colonies were scraped from the Lowenstein–Jensen slants and

incubated in 30 mL Middlebrook 7H9 medium supplemented with 0.2%

(v/v) glycerol and 10% oleic acid-albumin-dextrose-catalase (Becton-

Dickinson, Sparks, MD, USA) without Tween-80 in filtered screw-cap

Erlenmeyer culture flasks with baffled bottom (Thermo Scientific,

Waltham, MA, USA) at 37 6C with shaking at 100 rpm for 2 days for

M. chelonae and M. fortuitum and 21 days for all strains of MTB, M.

avium complex, M. bovis and M. kansasii. The primary subcultures,

adjusted to OD600 0.1, were further subcultured in 30 mL of fresh

supplemented Middlebrook 7H9 liquid medium at 37 6C with shaking

at 100 rpm for 4 days for M. chelonae and M. fortuitum; and 14 days for

MTB, M. avium complex, M. bovis and M. kansasii until OD600 1.5 for

all strains to achieve comparable bacterial concentrations. OD600 1.5 was

chosen for harvest because it represents early stationary phase in MTB

strains as shown in previous studies.29 The secondary subcultures were

centrifuged at 3000 rpm for 30 min to obtain the supernatant which was

filtered twice using 0.22 mm filters (Millipore, Billerica, MA, USA).

Metabolic activities in the filtrates were quenched immediately by incub-

ating the filtrates in liquid nitrogen for 10 min. The filtrates were lyo-

philized and stored at 280 6C until sample extraction and analysis.

Uninoculated culture medium was used as negative control. Three bio-

logical replicates of the cultures were used.

Chemicals and reagents

Liquid chromatography–mass spectrometry (LC–MS) grade water,

methanol and acetonitrile were purchased from J.T. Baker (Center

Valley, PA, USA). Analytical grade acetic acid, 5 M ammonium acet-

ate and standard chemical dexpanthenol were purchased from Sigma-

Aldrich, Inc. (St Louis, MO, USA),

Sample preparation

Lyophilized samples were reconstituted by dissolving in 1 mL solvent

mixture containing water/methanol/acetonitrile (1 : 2 : 2). The sam-

ples were vortexed for 1 min and subsequently sonicated for 10 min

at room temperature. After centrifugation at 15 000g for 15 min at

4 6C, supernatants were transferred to LC vial for LC–MS analysis.

UHPLC–ESI–Q–TOF–MS

For LC, the separation was performed by Agilent 1290 UHPLC (Agilent

Technologies, Santa Clara, CA, USA) and Agilent Eclipse Plus RRHD

C18 (2.13100 mm, 1.8 mm) column with Agilent Eclipse Plus RRHT

C18 (2.1330 mm, 1.8 mm) guard column. The injection volume was

3 mL. The column and autosampler temperature were maintained at

45 6C and 10 6C, respectively. The separation was performed at a flow

rate of 0.4 mL/min under a gradient program in which mobile phase A

was composed of 5 mM ammonium acetate in water containing 0.1%

acetic acid (v/v) and mobile phase B was composed of 0.05% acetic acid

(v/v) in acetonitrile. The gradient program was applied as follows:

t50 min, 5% B; t50.35 min, 5% B; t514.5 min, 66% B; t518 min,

99.5% B; t533.50 min, 99.5% B; t535.51 min, 99.5% B. The stop time

was 40 min. For MS, data were acquired by Agilent 6540 Q-TOF mass

spectrometer (Agilent Technologies) operating in the positive and nega-

tive ion mode using Agilent Jet Stream ESI source. The capillary voltage

was set at 13800 V (positive mode) and 23800 V (negative mode) with

nozzle voltages of 10 V and 20 V, respectively. Other source conditions

were kept constant in all the experiments as follows: gas temperature

was kept constant at 300 6C, drying gas (nitrogen) was set at the rate of

7 L/min, and the pressure of nebulizer gas (nitrogen) was 40 pounds per

square inch. The sheath gas was kept at a flow rate of 10 L/min and was

maintained at a temperature of 330 6C. The voltages of the Fragmentor,

Skimmer 1 and OctopoleRFPeak were 135 V, 65 V and 750 V, respec-

tively. The scan range was adjusted to 80–1700 m/z at the acquisition rate

of 2 spectra/s. MS/MS acquisition was operated in the same parameter as

in MS acquisition. Collision Energy was used at 10, 20 or 40 eV for

fragmentation of the targeted compounds.

Data processing and statistical data analysis

All mass spectral data were acquired using Agilent MassHunter Qualitative

Analysis software (version B.05.00; Agilent Technologies). To optimize

feature detection and discovery, two software packages: Mass Hunter

Qualitative Analysis and open-source software XCMS (version 1.38.0)

operating in R, which adopted different peak detection and alignment

algorithms, were used.30 For Mass Hunter Qualitative Analysis software,
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data preprocessing including baseline correction, noise calculations and

molecular features extraction were performed with built-in small molecule

extraction algorithm. Data were subsequently processed using Mass

Profiler Professional (Agilent Technologies) for peak alignment, data filter-

ing and statistical analysis. For XCMS, raw data files were first converted to

mzDATA format and peak detection were performed with centWave alog-

rithm in XCMS.31 Data were subsequently processed using XCMS for peak

alignment and data filtering. MetaboAnalyst 2.0 (http://www.metaboa

nalyst.ca)32 was used for statistical analysis.24 Further data processing

including normalization, scaling and filtering were performed prior to

statistical analysis in both software. Only variables that are present in at

least 60% of any group and with intensity of at least 4.03103 were included

for analysis in order to reduce noise and low abundance metabolites. The

MS data were log2-transformed and mean-centered with unit variance

scaling for statistical analysis. Principle component analysis (PCA) and

hierarchical clustering were performed for unsupervised multivariate stat-

istical analysis. Partial-least squares discrimination analysis (PLS-DA) was

performed as supervised method to identify important variables with dis-

criminative power. PLS-DA models were validated based on multiple

correlation coefficient (R2) and cross-validated R2 (Q2) in cross-validation

and permutation test by applying 2000 iterations (P.0.001). The signifi-

cance of the biomarkers was ranked using the variable importance in

projection (VIP) score (.1) from the PLS-DA model. For univariate

analysis of candidate specific biomarkers in culture supernatant, statistical

significance was determined using one-way ANOVA with Tukey’s post-hoc

test between multiple groups of MTB and individual NTM species (M.

avium complex, M. bovis BCG, M. chelonae, M. fortuitum and M. kansasii),

and Student’s t-test for comparison between MTB and NTB. P,0.05 was

considered to be statistically significant. Volcano plot with fold change .5

and P,0.05 was performed where appropriate. Box-whisker plots were

produced using GraphPad Prism software (GraphPad Software Inc., San

Diego, CA, USA). Extracted ion chromatograms of potential specific meta-

bolites identified by statistical analysis were manually viewed to confirm the

differences in peak areas between MTB and NTB samples. Metabolites

were further filtered using CAMERA package in R, MassHunter and man-

ual inspection to exclude possible fragments, dimers, adducts and iso-

topes.33 Specific metabolites that were detected by both Mass Profiler

Professional and MetaboAnalyst to be statistically significant were consid-

ered to be potential biomarkers.

Metabolite identification

MS/MS fragmentation was performed on the identified potential speci-

fic biomarkers. Identification of potential biomarkers was carried out

by searching METLIN database (http://metlin.scripps.edu/), Human

Metabolome Database (http://www.hmdb.ca/), E. coli Metabolome

Database (http://www.ecmdb.ca/), MassBank (http://www.massbank.jp/),

LipidMaps (http://www.lipidmaps.org/) and KEGG database (http://

www.genome.jp/kegg) using exact molecular weights or MS/MS frag-

mentation pattern data and literature search. Mass accuracy tolerance

within 10 ppm was used as the mass window for database search. For

confirmation of metabolite identity using authentic chemical standard,

MS/MS fragmentation pattern of chemical standard was compared with

that of candidate metabolite under same LC–MS condition to reveal any

matching. In case of unknown metabolites, molecular formulae were gen-

erated using Mass Profiler Professional (Agilent Technologies).

RESULTS

Visual inspection of total ion chromatograms

We characterized and compared the metabolomes of culture supernatants

from nine MTB and nine NTM strains. The total ion chromatograms

from the nine MTB strains shared considerable similarity, whereas signifi-

cant differences were observed in the chromatograms obtained from dif-

ferent NTM species. Representative examples of chromatograms obtained

from each species are shown in Supplementary Figure S1.

PCA and PLS-DA modeling

To compare the metabolomes between MTB and NTM strains, both

multi- and univariate analyses were performed. For multivariate ana-

lysis, PCA showed that 50.1% of the total variance in the data was

represented by the first two principal components (Figure 1A). The

2D-PCA score plot revealed that the MTB strains were closely related

to each other and can be distinguished from the NTM strains based on

the first two principal components, with the MTB strains clearly sepa-

rated from NTM strains along principal component 1, which repre-

sented 40.3% of the variance. In view of the significant separation

achieved using PCA, supervised analysis PLS-DA (Figure 1B) was

subsequently performed to maximize the separation and identify addi-

tional metabolites to those identified using PCA. In the PLS-DA score

plot, the separation between different Mycobacterium species is more

prominent. Potential metabolites were selected based on the VIP score

(.1). Hierarchical clustering analysis was performed based on the

degree of similarity of metabolite abundance profiles to show the

global overview of all culture supernatant metabolites detected

(Figure 2). Metabolites with similar abundance patterns were posi-

tioned closer together. The heat map and dendrogram indicated the

close clustering of the MTB strains and their separation from the NTM

strains. To further confirm the specificity and significance of potential

metabolites identified from PCA and PLS-DA, univariate analysis of

each metabolite was performed using one-way ANOVA and Student’s

t-test. A total of 24 potential metabolites contributing most to the

variation between MTB and NTM with significantly higher level in

MTB strains were selected for further identification (Table 1).

Identification of potential biomarkers specific to M. tuberculosis

The 24 metabolites were identified by MS/MS fragmentation and their

predicted molecular formulae are shown in Table 1. All metabolites

except m/z 206.1388 were only found in MTB but not NTM strains.

Seven (m/z 206.1388, m/z 483.2759, m/z 521.2498, m/z 524.3598, m/z

530.3698, m/z 540.3572 and m/z 582.3642) of the 24 metabolites were

identified by MS/MS, while the other 17 metabolites represent poten-

tially novel metabolites with no match against known compounds or

databases (Table 1 and Figure 3).

The metabolite m/z 206.1388 was identified as dexpanthenol (meta-

bolite NO 1 in Table 1) with molecular formula C9H19NO4 by data-

base searches in METLIN and Massbank, and confirmed by MS/MS

using commercially available authentic chemical standard of dex-

panthenol (Figure 4). Although it was found in MTB strains with

significantly higher level, low levels of m/z 206.1388 (at approximately

10- to 100-fold lower levels) were also detected in M. avium complex,

M. bovis BCG, M. chelonae, M. fortuitum and M. kansasii (Figure 3).

One metabolite m/z 521.2498 was identified as a tetrapeptide, Val-His-

Glu-His (metabolite NO 17 in Table 1) with molecular formula C22H32N8O7

in METLIN. Some bacteria may produce short peptides as pheromones,

which are involved in quorum-sensing. However, the significance of this

short peptide from MTB culture supernatants remains to be determined.

Four metabolites, m/z 524.3598, m/z 530.3698, m/z 540.3572 and

m/z 582.3642 (metabolite NOs 18, 19, 20 and 21 in Table 1), were

identified as 1-tuberculosinyladenosine (1-TbAd) or its derivatives

by MS/MS. The metabolite m/z 540.3572 was identified as 1-TbAd

with molecular formula C30H46N5O4. MS/MS fragmentation showed
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major peaks at m/z 136.0616, m/z 268.1041, m/z 273.2575 and m/z

408.3127, compatible with MS/MS profiles of 1-TbAb (Figure 5A).34

The metabolite m/z 524.3598 also possessed major peaks at m/z

136.0615, m/z 273.2571 and m/z 408.3128. However, instead of m/z

268.1041 (C10H14N5O4), a peak at m/z 252.1088 (C10H14N5O3) was

detected, suggesting that m/z 524.3598 is likely a metabolite of 1-

TbAd, 1-tuberculosinyl 29-deoxyadenosine, which is predicted to have

a hydrogen atom in place of the hydroxyl group in C29 of the ribose to

give 29-deoxyribose (Figure 5B). The metabolite m/z 582.3642 also

possessed major peaks at m/z 136.0609, m/z 273.2569 and m/z

408.3115. However, instead of m/z 268.1041 (C10H14N5O4), a peak

at m/z 310.1141 (C12H16N5O5) was detected, suggesting that m/z

582.3642 is also a metabolite of 1-TbAd, 1-tuberculosinyl-O-acetyla-

denosine, which is predicted to have an acetyl-group replacing the

hydrogen atom of a hydroxyl group in O-2 position of the ri-

bose (Figure 5C). Another tuberculosinyl-derivative was found to

have molecular cation at m/z 530.3698 with molecular formula

C29H48N5O4. Its corresponding MS/MS spectrum contains fragments

at m/z 273.2610 referring to the polyunsaturated C20 hydrocarbon

(C20H33
1), m/z 398.2908 representing to the peak (C24H40N5

1) after loss

of ribose from the derivative, m/z 258.1219 corresponding to the peak

(C9H16N5O4
1) after loss of the polyunsaturated C20 hydrocarbon and

m/z 126.0787 (C4H8N5
1) referring to the base replacing the adenine

(Figure 5D).

Another metabolite m/z 483.2759 was identified as a monoacylgly-

cerophosphoglycerol, PG (16 : 0/0 : 0) or 1-hexadecanoyl-sn-glycero-3-

phospho-(19-sn-glycerol) (metabolite NO 24 in Table 1), with molecu-

lar formula C22H45O9P in METLIN (Figure 5E). PG (16 : 0/0 : 0) has

been reported in the lipidomic database, Mtb LipidDB, of MTB, being

found in the mycobacterial cell extracts.35 PG, a subclass of glyceropho-

spholipid, is found in bacterial membranes where PG is utilized as a

precursor for cardiolipin synthesis.36 It is possible that this metabolite,

PG (16 : 0/0 : 0), is a unique component in the cell membrane of MTB

not found in other mycobacteria. However, it remains to be deter-

mined whether PG (16 : 0/0 : 0) may be involved in virulence or other

functions in MTB.

DISCUSSION

Using metabolomics approach, we identified specific metabolites in

culture supernatant of MTB. As these extracellular metabolites are

either secreted or released from cell wall components of MTB, they

may be present in the circulating blood or other body fluids of in-

fected patients, and hence may represent potential biomarkers for

non-invasive diagnosis of tuberculosis. The exclusion of metabolites
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Figure 3 (A) Extracted ion chromatogram and (B) box-whisker plots of dexpanthenol, Val-His-Glu-His, 1-tuberculosinyl 29-deoxyadenosine, 1-tuberculosinyl-

derivative, 1-tuberculosinyl-adenosine, 1-tuberculosinyl-O-acetyladenosine and PG (16 : 0/0 : 0). MAC, M. avium complex; MBCG, M. bovis BCG; MCHE,

M. chelonae; MFOR, M. fortuitum; MKAN, M. kansasii.

Specific biomarkers in Mycobacterium tuberculosis

SKP Lau et al

6

Emerging Microbes and Infections



present in NTM species was important, since these NTM species can

also cause disseminated infections mimicking tuberculosis in immu-

nocompromised hosts, which are also difficult to diagnose.7 In this

study, 24 metabolites with significantly higher levels in MTB were

identified. Many of the metabolites were unidentified by MS/MS

against database matching, suggesting that these are potential novel

compounds. This is not unexpected, since metabolomics for the study

of microbes including mycobacteria is still an emerging field and the

number of known metabolites from MTB is very limited. Further

studies on the chemical structure and biosynthetic pathway of these

potential novel metabolites would help understand their biological

function in MTB. As the present results were based on in vitro data

obtained from cultures using Middlebrook 7H9 medium only, the

significance of these metabolites in different growth phases and in

vitro and in vivo environments should also be explored. More impor-

tantly, metabolomics studies on clinical samples from patients with

tuberculosis are warranted to explore for the presence of these MTB-

specific extracellular metabolites and their potential role as diagnostic

biomarkers.

The presence of high levels of dexpanthenol in the culture supernatant

of MTB strains is intriguing. Dexpanthenol is the alcohol analog of pan-

tothenic acid (also called vitamin B5) which is used for the synthesis of

Coenzyme A, an important cofactor in central metabolism. While the

biosynthetic pathway of pantothenic acid is present in MTB,37 production

of dexpanthenol in bacteria has not been reported previously.

Nevertheless, it has been demonstrated that dexpanthenol can act as a

substrate for pantothenate kinase in MTB to produce 49-phosphopan-

tothenol which can inhibit the activity of 49-phosphopantothenoylcysteine

synthase and 49-phosphopantothenoylcysteine decarboxylase and even-

tually affect the biosynthesis of Coenzyme A.38 Moreover, dexpanthenol

has been reported to exhibit antimicrobial activity against some bacteria

and protozoa, especially those that are auxotrophic for pantothenate.39,40

The much higher levels of dexpanthenol produced by MTB strains than

NTM strains may suggest a possible role in survival benefit through

inhibition of other bacteria. Further studies using 13C carbon source in

the media may help confirm dexapanthenol and other metabolites are

true metabolic product of MTB and to examine the function and biosyn-

thesis pathway.

Apart from 1-TbAd, we also identified three previously undescribed

derivatives of 1-TbAd in the culture supernatant of MTB. 1-TbAd is a

recently identified amphiphilic diterpene-linked adenosine found in

the lipid extracts of culture supernatant of MTB but absent in those of

M. bovis BCG.34 The production of 1-TbAd requires the virulence-

associated enzyme Rv3378c.34 Since Rv3377c–Rv3378c locus has also

been shown to be essential for optimal phagosome maturation arrest,

it may suggest a role of 1-TbAd in phagosome survival.41 Our data

confirmed the specificity of 1-TbAd which can be found only in the

culture supernatant of MTB but not in those of NTM strains, thus
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supporting 1-TbAd as a potential virulence factor in MTB. Three deri-

vatives of 1-TbAd, 1-tuberculosinyldeoxyadenosine, 1-tuberculosinyl-

O-acetyladenosine and another novel derivative with undetermined

base, with approximately 10- to 100-fold lower levels than 1-TbAd,

were also identified in the culture supernatant of MTB. 1-tuberculosi-

nyldeoxyadenosine and 1-tuberculosinyl-O-acetyladenosine likely differ

from 1-TbAd in the ribose group of the nucleoside. The remaining 1-

tuberculosinyl derivative likely differs from 1-TbAd in the base, but the

base structure remains to be ascertained. The two derivatives, 1-tuber-

culosinyldeoxyadenosine and 1-tuberculosinyl-O-acetyladenosine, are

either degradation products of 1-TdAd (Figure 6A) or synthesized by

Rv3378c similar to the previously proposed biosynthetic pathway for of

1-TdAd (Figures 6B and 6C).34 Rv3378c is believed to have combined

phosphatase and tuberculosinyl transferase activity, catalyzing the con-

version of tuberculosinyl pyrophosphate and adenosine to 1-TbAd,

using adenosine as the nucleophilic substrate.34 Therefore, it may also

potentially catalyze the conversion of tuberculosinyl pyrophosphate and

deoxyadenosine to 1-tuberculosinyl 29-deoxyadenosine (Figure 6B),

and similarly, the conversion of tuberculosinyl pyrophosphate and 29-

O-acetyl adenosine to 1-tuberculosinyl-O-acetyladenosine (Figure 6C).

While it is unclear if 29-O-acetyl adenosine exists as a metabolite in

MTB, deoxyadenosine, a derivative of adenosoine, presents in all living

organisms. As the present results were obtained from MS/MS analysis

only, further studies using nuclear magnetic resonance may help elu-

cidate the exact structures and biosynthetic pathways of these metabo-

lites and the molecular mechanisms of virulence of 1-TbAd and/or its

deriviatives in MTB.

Metabolomics is an uprising tool in microbiology and infectious disease

research, providing a revolutionary method to study both the pathogen

itself and the host response to the infection. For tuberculosis, the tech-

nique has been used to identify various Mycobacterium species and carbon

utilization of MTB, and characterize metabolites of hyper-virulent

strains.13,14,23 These findings may help better understand the biology

and virulence factors of MTB. On the other hand, metabolomics applied

on direct patient samples may reveal metabolites generated during infec-

tion of the host, which can provide insights on the diagnosis, pathogenesis
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and host–pathogen interactions. For mycobacteria, it has been shown that

volatile organic compounds in the urine samples from tuberculosis

patients can be distinguished from those from healthy subjects.24

Moreover, a study using nuclear magnetic resonance spectroscopy-based

metabolomics showed that sera of tuberculosis patients can be distin-

guished from those of healthy controls.25 Therefore, metabolomics

approach may help identify potential biomarkers for diagnosis of tuber-

culosis. In another study using serum metabolomics approach on leprosy

patients, higher levels of polyunsaturated fatty acids were found among

patients having higher bacterial indices, which may provide clues on the

biological pathways involved in the immunomodulation of leprosy.42

With the increasing applications of metabolomics technology on both

microbial and clinical samples from patients with appropriate controls,

we expect to witness a gross expansion of our knowledge on microbial

metabolites, including the discovery of novel metabolites and potential

biomarkers for diagnosis of infections such as tuberculosis.
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