
Citation: Mofokeng, M.M.;

Prinsloo, G.; Araya, H.T.;

Amoo, S.O.; du Plooy, C.P.;

Mashela, P.W. NADES Compounds

Identified in Hypoxis hemerocallidea

Corms during Dormancy. Plants 2022,

11, 2387. https://doi.org/10.3390/

plants11182387

Academic Editor: Ki Hyun Kim

Received: 6 August 2022

Accepted: 6 September 2022

Published: 13 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Article

NADES Compounds Identified in Hypoxis hemerocallidea
Corms during Dormancy
Motiki M. Mofokeng 1,2,* , Gerhard Prinsloo 3 , Hintsa T. Araya 1,* , Stephen O. Amoo 1,4,* ,
Christian P. du Plooy 1 and Phatu W. Mashela 2

1 Agricultural Research Council—Vegetable, Industrial and Medicinal Plants (ARC-VIMP), Private Bag X293,
Pretoria 0001, South Africa

2 Green Technologies Research Centre, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
3 Department of Agriculture and Animal Health, University of South Africa, Private Bag X6,

Johannesburg 1710, South Africa
4 Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park,

Johannesburg 2006, South Africa
* Correspondence: mofokengm@arc.agric.za (M.M.M.); arayah@arc.agric.za (H.T.A.);

amoos@arc.agric.za (S.O.A.); Tel.: +27-12-808-8000 (M.M.M. & H.T.A. & S.O.A)

Abstract: Soaking Hypoxis hemerocallidea corms in distilled water improved the propagation and
development of cormlets, suggesting the potential leaching-out of inhibitory chemical compounds.
To investigate the presence of inhibitory compounds, nuclear magnetic resonance (NMR) spectral
data of the leachate from dormant H. hemerocallidea corms were obtained using a 600 MHz 1H-NMR
spectrometer. The 1H-NMR analysis led to the identification of choline, succinate, propylene glycol,
and lactose, as inhibitory compounds. These four chemical compounds are part of the “Natural
Deep Eutectic Solvents” (NADES) that protect plant cells during stress periods, each of which has the
potential to inhibit bud growth and development. These compounds are supposedly leached out of
the corms during the first rain under natural conditions, possibly accompanied by changes in the
ratios of dormancy-breaking phytohormones and inhibitory compounds, to release bud dormancy.
The identified chemical compounds heralded a novel frontier in the vegetative propagation of
H. hemerocallidea as a medicinal plant, and for its enhanced sustainable uses.

Keywords: propagation; choline; lactose; organic acids; succinate; propylene glycol; sugars; NADES

1. Introduction

Plant growth regulators (PGRs) play critical roles in plant growth and development;
however, certain endogenous chemicals interfere with the synthesis, transport, or action
of PGRs, and they are technically referred to as growth inhibitors or retardants [1]. Plant
growth regulators such as abscisic acid (ABA) induce and maintain dormancy in buds and
seeds of various plant species, whereas ethylene has antagonistic effects on the growth-
promoting gibberellic acid (GA3) [2]. Similarly, certain sugars have the ability to prevent
the perception of GA3, in what had since been referred to as sugar-PGR ‘cross-talking’,
thus serving as growth inhibitors [2]. Lactose, for example, had inhibitory effects on the
micropropagation of turmeric [3]. During dormancy, underground organs of most plants
undergo metabolic changes such as altered sugar concentrations, and the accumulation
of free amino acids, compatible solutes, and other chemical compounds [4]. Compatible
solutes, which are also called osmoprotectants, are synthesised during dehydration to
enhance plant stress tolerance [5]. For example, chlorocholine chloride (CCC) inhibits
growth [6], whereas choline induces stress tolerance in most plants [7]. Chlorocholine
chloride was also reported to have a protective effect on stevia plants grown under drought
stress, by inhibiting gibberellin biosynthesis [8]. Succinate, which accumulates in various
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organs when plants are exposed to water stress [9], could play a role in dormancy suste-
nance. Drought tolerance in plant species, as induced in plants starting to experience winter
dormancy, correlates with the induction of sugars and is generally believed to be involved
in the formation of “Natural Deep Eutectic Solvents” (NADES) such as cholines, prolines,
and other organic acids [10]. The NADES are special mixtures of solids that remain in a liq-
uid state at and below ambient temperatures, with physiological significance in plants due
to their unique properties of solubilising other metabolites and bioactive constituents [11].
Natural compounds synthesised in plants can have inhibitory or stimulatory effects on
various plant species. Aqueous extracts of peppermint limited seed germination of select
vegetable and cereal seeds, except for Phaseolus vulgaris and Zea mays seeds, in which the
extracts had a stimulatory effect [12]. Palacios et al. [13], screened 71 plant extracts for their
inhibitory effects on common oats and wild radish, with some of the extracts exhibiting
from 80 to 100% inhibition on germination.

Hypoxis hemerocallidea Fisch. & C.A. Mey. (Hypoxidaceae) is one of the indigenous
South African medicinal plants that has generated interest for product development, both
locally and internationally and, therefore, is one of the heritage plant species [14]. The corm
of H. hemerocallidea enables the plant to survive cold conditions and drought. Under such
conditions, leaf senescence and plant dormancy are observed [15]. Some phytochemicals
from H. hemerocallidea corms including daucosterols, beta-sitosterol, and hypoxide have
been associated with the therapeutic activities of this plant [16]. Hypoxis hemerocallidea
is a common ingredient of popular herbal remedies consumed by people living with
HIV/AIDS in South Africa as an immune booster [17–19]. The plant is also used for the
potential treatment of bronchial asthma [20], cancer [21,22], and certain sexually transmitted
diseases [23,24]. In the light of its current high demand coupled with its unsustainable
methods of harvesting from the wild, the conservation of this plant has become very
important for ensuring its survival and sustainable use. Affordable propagation methods,
such as chipping and scooping to remove the correlative inhibition from the apical buds [25],
were developed and found to be successful for the development of cormlets [26].

Soaking H. hemerocallidea “mother corms” in distilled water for 120 min improved
the development of cormlets [27], suggesting the potential leaching of inhibitory chemical
compounds. The endogenous PGR content and their balance in plants are essential for
achieving desired morphological responses, such as root and shoot regeneration, along with
subsequent growth and development [25]. Generally, H. hemerocallidea corms are dormant in
winter and sprout as soon as they receive rain. The breaking of corm dormancy resulting in
corm sprouting could be due to a leaching effect of the rain on corm-endogenous inhibitory
compounds. The nature of such inhibitory chemicals in H. hemerocallidea corms had not
been investigated. The objective of this study, therefore, was to investigate the presence
of, and to identify, leachable inhibitory chemical compounds in dormant H. hemerocallidea
“mother corms”.

2. Results

The 1H-NMR spectrum (Figure 1) illustrated the metabolite profile of the leachate
from H. hemerocallidea corms.

Four chemical compounds annotated from the leachate with potential inhibitory or
growth-retarding effects were numbered 1, 2, 3, and 4, with 1 and 2 representing organic
acids, whereas 3 represented peaks of the sugar region, and 4, the peaks for propylene
glycol (Figure 2).

The annotation of the identified chemical compounds, with the published NMR
chemical shifts, and the Chenomx and human metabolome database spectral regions or
chemical shifts are summarised in Table 1. Chemical compound 1, annotated as choline,
had a chemical shift at 3.192 ppm. Chemical compound 2, annotated as succinate, had a
chemical shift at 2.42 ppm, and compound 3, annotated as lactose, showed peaks in the
sugar region at 3.28, 3.55, 3.75, 3.85, 3.95 and the anomeric proton at 5.12 ppm. Compound
4, annotated as propylene glycol had a chemical shift for a doublet at 1.14 and 1.16 ppm,



Plants 2022, 11, 2387 3 of 14

and other peaks at 3.4 and 3.5 ppm. The spiking of the leachate with the pure standards of
propylene glycol (Figures S1–S3), succinate (Figures S4 and S5), choline (Figure S6), lactose
(Figures S7 and S8), aligned with identified peaks. The presence of gallic acid could not be
confirmed as the peaks of the leachate sample and the pure standard of gallic acid did not
align (Figure S9).
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Figure 2. H-NMR spectra showing the metabolite profile of the leachate from Hypoxis hemerocallidea
corms. 1 = choline and 2 = succinate (A), 3 = lactose and 4 = propylene glycol (B).

Table 1. Annotation of 1H-NMR spectral regions and chemical shifts of the four compounds identified
from the Hypoxis hemerocallidea leachate.

Compounds Chemical
Group

1H-NMR
Chemical

Shifts (ppm)

Reference
Chemical

Shifts (ppm)

Chenomx
(ppm) References

Human
Metabolome

Database

Assigned
Number

Choline
(C5H14NO) Organic acid 3.192 3.18

3.22 3.19 [27]
[28]

3.18
3.50
4.05

1

Succinate
(C4H6O4) Organic acid 2.42 2.39 2.45 [29] 2.39 2

Lactose
(C12H22O11) Sugar

3.25
3.55
3.75
3.85
3.95
5.12

3.29
3.67
3.73
4.45
5.23

3.23
3.54
3.69
3.85
3.9
4.35
5.17

[27]

3.28
3.55
3.60
3.66
3.73
3.79
3.86
3.94
4.45
5.22

3

Propylene
glycol

(C3H8O2)
Alcohol

1.14
1.16
3.4
3.5

1.13
1.15
3.42
3.48

1.12
1.13
3.4
3.5
3.9

4

Using 3-(trimethylsilyl)propionic acid sodium salt (TSP) at 0.1% as a reference com-
pound, the compounds were quantified using the signature peaks for each compound. Lac-
tose was found to be high in concentration and propylene glycol was the lowest (Table 2).
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Table 2. qNMR of the compounds identified with Chenomx software using TSP at 0.1% as refer-
ence compound and indicating the signature peaks used for the quantification of each compound.
(s) = singlet, (d) = doublet and (t) = triplet.

Compound Concentration (mM) Signature Peak (ppm)

Propylene glycol 0.0038 1.13, 1.14 (d)
Lactose 0.26 3.21, 3.23, 3.25 (t)
Choline 0.0045 3.19 (s)
Succinate 0.04 2.42 (s)

The significant inhibitory effect of the H. hemerocallidea leachate was demonstrated
through tomato seed germination. A 23% reduction in the final germination percentage
was recorded in leachate-treated seeds in comparison to the control (seeds germinated with
distilled water) (Figure 3). The seeds exposed to the leachate also showed comparatively
slow germination, as indicated by the significantly increased mean germination time
recorded. The lower the mean germination time, the faster the germination. Moreover, the
germination index, coefficient of velocity of germination, and germination rate index were
all significantly reduced by the leachate treatment.
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Figure 3. Effect of Hypoxis hemerocallidea leachate on tomato seed germination: mean germination
time (A), germination index (B), coefficient of velocity of germination (C), germination rate index
(D), and final germination percentage (E). *, ** = significant at p < 0.10 or p < 0.05, respectively.

3. Discussion

Analysis of the leachate from H. hemerocallidea corms submerged in distilled water
led to the identification of four main chemical compounds, namely, choline, succinate,
propylene glycol, and lactose, each with the potential to inhibit bud growth and develop-
ment [6,8,30]. Choline has growth-retarding effects on various plants and generally inhibits
the synthesis of GA3, renowned for its dormancy-breaking effects [31]. Chlorocholine-
chloride (CCC) and acetylcholine, both having similar chemical structures to that of choline,
have strong inhibitory effects on the growth of many plants, although their content is
influenced by environmental conditions and plant developmental phases [6]. Choline was
reported to be a neurotransmitter as a component of acetylcholine and its role is facilitated
by a set of enzymes and receptors linked to acetylcholine as a neuronal mediator involved
in plant physiological processes [6]. Chlorocholine chloride inhibited the (−)-kaurene
synthesis, an intermediate in GA3 synthesis, thus inhibiting plant growth and develop-
ment [32–34]. The effect of acetylcholine has been linked to its regulation of ionic fluxes [35]
by intervening with the functions of potassium cations (K+), thus affecting the root to shoot
growth [36]. For example, corms of Gladiolus tristis L. exposed to 1% KNO3 sprouted in
23 days compared to 45 days it took in the control treatment [37], a possible indication that
potassium could be critical in inducing corm bud development and that choline’s effect on
the K+/Na+ ratio could induce bud dormancy in the corms of the test plant. Generally, CCC
had inhibitory effects on the sprouting of saffron corms compared with the bud breaking
effects of GA3 [30].

Cutting the H. hemerocallidea corms to expose the reproductive buds and soaking in
water, improved the development of cormlets, to a similar extent as soaking in GA3 [26].
Since H. hemerocallidea plants are dormant in winter, choline could act as a neurotransmitter
in the corms by sending signals to induce underground bud dormancy under changing
environmental conditions, as it is highly concentrated in meristematic and differentiating
tissue [38]. For example, through its association with phytochrome-mediated processes,
choline could be involved in the circadian signalling network, which is sensitive to the pho-
toperiod and light quality [39] or perceiving dormancy-inducing short days [40], and thus,
inducing dormancy in the test plant. The onset of short days could have induced growth
cessation and transition to dormancy [41] by downregulating GA3 biosynthesis through
the inhibition of (−)-kaurene synthesis and upregulating the functioning of repressor genes
of meristematic activity [40].

Succinate is a compound that is oxidized to fumarate in the mitochondrion during
respiration [42,43]. A decrease in plant-cell respiration is linked to the reduced activity
of succinate dehydrogenase (SDH), an enzyme that oxidizes succinate, thus, increasing
concentrations of succinate in the mitochondrion and decreasing energy production [42].
Modified stems of most plants experience substantial metabolic changes when entering
dormancy, such as decreased respiration [4,44], whereas respiration and SDH are upregu-
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lated during dormancy release [45]. The interruption of SDH activity induces signalling
patterns such as high-intensity reactive oxygen species (ROS) production related to the
growth and development or stress response in plant tissues [46–50]. The partial inhibition
of SDH decreased shoot and root growth in Arabidopsis and completely blocked hypocotyl
elongation and seedling establishment [42]. Succinate dehydrogenase activity in potato
tubers declined during tuber maturation just before dormancy and increased during tuber
initiation after dormancy release [51,52]. Succinate dehydrogenase and α-ketoglutarate
dehydrogenase (KDH) mediate the regulatory action of acetylcholine in the mitochondria
through parasympathetic nervous system regulation and oxidation in the mitochondria,
thus, forming part of the hormonal system [53], possibly through the ‘cholinergic sys-
tem’. Succinate was among the chemical compounds that increased significantly when
benthi (Nicotiana benthamiana Domin) plants were under severe water stress compared
to those under moderate water stress [8]. Water stress in H. hemerocallidea corms during
early winter resulted in increased succinate content, thereby sustaining the dormancy state.
Succinate dehydrogenase activity could have been reduced as the plant entered dormancy
due to changes in photoperiod [54], thus the accumulation of succinate, which could have
played a role in the signalling system. Due to the reduction in respiration rate, energy
production is reduced and, thus, no growth or development was observed among the
H. hemerocallidea plants.

Lactose is a specific product of the mammary gland, the detection of which has
been controversial since 1949 [55]. The biosynthesis and pathway of sugar accumulation,
especially lactose, during plant stress are enigmatic [56]. β-galactosidase, also called lactase,
is an enzyme of microbial, plant, and animal origin that breaks down lactose into two
monosaccharides, galactose and glucose [57]. In plants, β-galactosidase is mainly found in
almonds, peaches, apples, and apricots, in which it plays a critical role in plant growth [57].
Changes in the activity of plant enzymes that metabolise sugars can induce accumulation
in plant cells, which can be reversed when the stress factor is removed [56]. Sugars are
important in metabolism-related signalling mechanisms that regulate the growth activity
and dormancy cycle [58]. For example, when temperatures are low, an imbalance in
energy flow from the source to the sink is created, affecting the biochemical reactions and
carbohydrate metabolism in plant cells [55] through ‘rate-limiting steps’ [59]. To be fully
active, β-galactosidase requires K+ or Na+ [60]. The increased accumulation of lactose in
the test plant could have been due to the reduced activity of β-galactosidase, resulting in
lower K+ in the plant cells and leading to reduced growth activity and the induction of
the energy-release ‘rate-limiting step’. Sugars protect plant cells during dehydration by
“glass formation”, where, instead of plant solutes forming crystals, the presence of sugars
results in their formation of supersaturated liquids with mechanical properties of solids [61].
“Glass formation” under drought conditions could be as a result of the formation of NADES
consisting of sugars, choline, and other organic acids, and it is accompanied by a decrease in
chemical reactions [10]. Choline, lactose, and succinate are among other plant metabolites
identified as NADES compounds [11].

Propylene glycol is an aliphatic alcohol used as a deep eutectic solvent (DES) [62,63].
Other than its use as a DES, it has applications in the cosmetic industry as a skin-conditioning
agent (humectant), viscosity-decreasing agent, solvent or fragrance ingredient; as a food ad-
ditive; in pharmaceutical products; electronic cigarette liquids, and manufacturing [64,65].
There is not much work reported on propylene glycol in plants and its effect on plant dor-
mancy, which may need further investigation. Propylene glycol toxicity has been reported
previously [66,67], and investigating non-toxic substitutes has been recommended [68].
Propylene glycol is usually a petroleum-based chemical, and efforts have been made to
produce it from soybean and canola as an environmentally friendly alternative [69].

Tomato is one of the most commonly grown fruit vegetables by commercial, subsis-
tence, resource-poor farmers and home gardeners in South Africa. The majority of the
population consumes it in diverse ways [70]. Tomato was employed to determine the
potential inhibitory effect of H. hemerocallidea leachate on plant growth. The leachate in-
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hibited all the germination parameters/indicators recorded, in comparison to the distilled
water-treated seeds. However, the extract needs to be tested on more plant seeds and on
releasing dormant buds as its effect may vary between different plant species. Biologically
active substances produced by plants may have selective effects on other species; they may
have a complete inhibitory effect or slow [12] growth slightly. For example, out of 71 tested
extracts, only Baccharis salicifolia, Ophryosporus charua, and Angelphytum aspilioides extracts
inhibited germination of common oats and wild radish [13].

The identified NADES compounds may also be of significance for the plant’s medic-
inal uses. The presence of compounds such as succinate could explain some of the uses
of H. hemerocallidea corms in traditional medicine as an immune booster. For example, in
animals, succinate modulates blood pressure and immune- and blood-cell function due
to its role in blood and immune signalling prerequisites for platelet aggregation [43,71].
Succinate also plays a beneficial role in the coronary artery and heart diseases and related
reperfusion injuries [72]. However, succinate accumulation in the body can lead to hyper-
tension, obesity, and liver damage [71], which could explain the reported risk of kidney
damage from the prolonged oral intake of H. hemerocallidea extracts [73]. Lactose intolerance
has been reported to be a problem for many individuals who cannot hydrolyse lactose in
the small intestine, resulting in gut symptoms such as diarrhoea, constipation, vomiting,
nausea, and others [74]. Choline, on the other hand, was found to be effective in mem-
ory enhancement and resistance to cognitive decline [75] as well as in inhibiting airway
inflammation [76], indicating a new potential use of H. hemerocallidea in the treatment of
asthma and neurodegenerative diseases. The production of propylene glycol from plant
materials could decrease greenhouse gasses by approximately 60% [69], and it may also
provide solutions to the toxicity of petroleum-based propylene glycol, which could be an
advantage to the health industry.

4. Materials and Methods
4.1. Plant Material and Leachate Preparation

Mature H. hemerocallidea corms (accession number = M2010/013) were lifted from the
soil in the medicinal plant genebank of the Agricultural Research Council in Roodeplaat,
Pretoria, South Africa. Corms (weighing 250 g on average) were lifted in late winter
(August), rinsed in distilled water to remove soil particles, blotted dry using laboratory
paper towels, and further dried overnight by leaving the corms on laboratory benches.
Thereafter, each corm was cut into four equal pieces (Figure 4), using a clean, sharp knife
and the pieces were submerged in 250 mL distilled water in a soaking bowl for 16 h,
by which the distilled water had changed colour from a clear to dark brown/blackish
liquid. The corms were then removed from the soaking bowl, and the dark brown/blackish
solution was collected for analysis.
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4.2. Reagents

Deuterated methanol, potassium dihydrogen phosphate, and 3-(trimethylsilyl)propionic
acid sodium salt (TSP) were obtained from Merck Life Science (Pty) Ltd. (Modderfontein,
South Africa). Pure standards of succinate (≥98% purity), lactose (≥98% purity), propy-
lene glycol (99% purity), gallic acid (≥99% purity), and choline (≥99% purity) were also
obtained from Merck Life Science (Pty) Ltd. (Modderfontein, South Africa).

4.3. Leachate Analysis and Compound Identification

The 250 mL leachate was dried in a SpeedVacTM vacuum concentrator (ThermoFisher
Scientific, Waltham, MA, USA) for 24 h, with a 50 mg dried sample weighed out into 2 mL
Eppendorf tubes for extraction and analysis. Thereafter, 0.75 mL methanol-d4 (CD3OD)
and potassium dihydrogen phosphate (KH2PO4), buffered in deuterium water (D2O) (pH
6.0), containing 0.1% (w/w) 3-(trimethylsilyl)propionic acid sodium salt (TSP), were added
to samples. The mixtures were vortexed at room temperature for 1 min, ultra-sonicated
for 20 min, and then centrifuged for another 20 min at 10,000 rpm. The supernatant from
each tube was transferred to a 5 mm nuclear magnetic resonance (NMR) tube (Norell,
Sigma-Aldrich, St. Louis, MO, USA) for analysis. The NMR spectral data were obtained
using a 600 MHz 1H-NMR spectrometer (Varian Inc., Santa Clara, CA, USA), with 32 scans
recorded. The human metabolome [77], Chenomx, and other references were used for the
annotation of compounds present in the leachate.

To confirm the annotated compounds, samples were spiked with pure standards of
succinate, lactose, propylene glycol, gallic acid, and choline with subsequent NMR analysis.
For this analysis, 100 mg of leachate was extracted with 0.75 mL methanol-d4 (CD3OD) and
KH2PO4, buffered in D2O (pH 6.0), containing 0.1% (w/w) TSP. This was repeated to yield
five NMR tubes (one control and four tubes for each of the standard compounds). In each
tube, 500 µL of the extract was added. Different standards of lactose (0.684 mg/mL), choline
(0.1 mg/mL), succinate (190.240 mg/mL), gallic acid (0.018 mg/mL), and propylene glycol
(0.2 mL/mL) were prepared in 0.75 mL methanol-d4 (CD3OD) and KH2PO4, buffered
in D2O (pH 6.0), containing 0.1% (w/w) TSP, and 500 µL of each standard solution was
added to one of the NMR tubes containing the leachate extract. The final volume per NMR
tube was, therefore, 1 mL, except for the control sample that only contained 500 µL of the
leachate extract. An increase in the heights of the peaks of the annotated compounds was
considered as confirmation of the presence of the compounds in the leachate at identification
level 1 [78].

4.4. Compound Quantification

The compounds identified in the study were quantified using the software Chenomx
(Chenomx, Edmonton, AB, Canada). This software matches compounds to comprehensive
spectral reference libraries to identify compounds but also to accurately measure concen-
trations of compounds in an NMR sample. TSP (0.1%) was used as reference standard
in the quantification of succinate, propylene glycol, lactose, and choline. For each com-
pound, signature peaks were identified as those that did not overlap with other peaks and
were positively identified as peaks belonging to the compounds after the spiking of the
compounds with pure standards. The concentrations and signature peaks are provided in
Table 2.

4.5. Effect of Hypoxis Hemerocallidea Leachate on Tomato Seed Germination

Seeds of a determinate tomato (Solanum lycopersicum L.) variety, Floradade, were
procured from the local market. Twenty-five seeds, replicated three times, were placed in
each petri dish (90 mm diameter) lined with filter paper moistened with the leachate or
distilled water. The seeds were exposed to H. hemerocallidea leachate prepared as described
in Section 4.1 above, by adding 5 mL of the leachate into each petri dish. As a control,
another set of seeds was treated with 5 mL of distilled water. The petri dishes were placed
randomly in a growth chamber set at a constant temperature of 25 ◦C and in a constant
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state of darkness for five days. An additional 2 mL of the leachate or distilled water was
added to the respective petri dishes on day four of the experiment to avoid the drying of
the seeds.

Seed germination data were collected on a daily basis beginning from the first day
after setting up the experiment. The final germination percentage, mean germination time,
germination index, germination rate index, and coefficient of velocity of germination were
calculated using the following formulae [79,80]:

Final germination percentage (FGP) = Final number of germinated seeds in a seed lot × 100

Mean germination time (MGT) = ∑f ·x/∑f

where f = number of seeds germinated on day x.

Germination index (GI) = (5 × n1) + (4 × n2) + . . . + (1 × n5)

where n1, n2 . . . n4 = number of germinated seeds on the first, second, and subsequent
days until the last day of counting; 5, 4 . . . represent the weights given to the number of
germinated seeds on the first, second, and subsequent days, respectively.

Germination rate index (GRI) = [(G1/1) + (G2/2) + . . . + (Gt/t)]

where G1, G2, and Gt represent the percentage of seed germination on day 1, 2, and t.

Coefficient of velocity of germination (CVG) = 100 × ∑Ni/∑NiTi

where Ni = number of germinated seeds per day, Ti = number of days from start of the
experiment.

The data were subjected to a two-sample t-test using Genstat® 64-bit Release 21.1
(PC/Windows 8-10, ver. 21.1, VSN, Rothamsted, UK).

5. Conclusions

Hypoxis hemerocallidea plants are generally dormant in the winter due to low soil
moisture and decreasing temperatures, among other factors. The dormant state starts
with leaf senescence, during which the lactose content could increase. Under natural
conditions, the NADES compounds could be leached out by rainfall, resulting in increased
concentrations or ratio of dormancy-breaking hormones. This correlates with exposure to
distilled water through the soaking of corms, as applied in the current study. The study
is the first to successfully identify four compounds that could have an inhibitory effect
on the growth and development of H. hemerocallidea corms. Choline, lactose, propylene
glycol, and succinate are reported to be part of NADES compounds that protect plant
cells during stress period. The four growth-retarding compounds were leached out of the
corms, possibly resulting in a balanced hormonal concentration for breaking bud dormancy
and for cormlet development. The harvesting period of H. hemerocallidea corms could be
critical in medicinal use since higher succinate concentrations could lead to kidney damage,
whereas lactose could be problematic for lactose-intolerant individuals. However, there
are some therapeutic benefits of the compounds that need to be further investigated. The
possibility of producing an alternative to the petroleum-based propylene glycol, which
may be less toxic, also warrants further investigations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11182387/s1, Figure S1: Spiking of the leachate (red) with
the standard of propylene glycol; Figure S2: Spiking of the leachate (red) sample with propylene
glycol with the peaks aligned at 4.24, 3.44, 43.46, 3.49, 3.50, and 3.53 ppm; Figure S3: Spiking of the
leachate (red) sample with propylene glycol showing alignment of the peaks at 1.15 and 1.16 ppm;
Figure S4: Spiking of the leachate sample with the pure standard of succinate; Figure S5: Spiking
of the leachate sample (red) with the pure standard of succinate showing alignment of the peak at
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2.43 ppm; Figure S6: Spiking of the leachate sample with choline; Figure S7: Spiking of the leachate
sample (red) with lactose; Figure S8: Anomeric proton peak of lactose at 5.17 ppm; Figure S9: The
leachate extract (red) spiked with gallic acid.
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