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During T cell differentiation and activation, specific stimuli, and a network of transcription

factors (TFs) are involved in orchestrating chromatin accessibility, establishing

enhancer-promoter interactions, and regulating gene expression. Over the past few

years, there have been new insights into how chromatin interactions coordinate

differentiation during T cell development and how regulatory elements are programmed

to allow T cells to differentially respond to distinct stimuli. In this review, we discuss recent

advances related to the roles of TFs in establishing the regulatory chromatin landscapes

that orchestrate T cell development and differentiation. In particular, we focus on the

role of TFs (e.g., TCF-1, BCL11B, PU.1, STAT3, STAT5, AP-1, and IRF4) in mediating

chromatin accessibility and interactions and in regulating gene expression in T cells,

including gene expression that is dependent on IL-2 and IL-21. Furthermore, we discuss

the state of knowledge on enhancer-promoter interactions and how autoimmune disease

risk variants can be linked to molecular functions of putative target genes.
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INTRODUCTION

Transcriptomic profiles determine the phenotype and function of cells, and this process is
tightly controlled by various transcription factors (TFs), epigenetics, and chromatin interactions
to define transcriptional patterns in response to cellular signals. More specifically, control of gene
expression depends not only on the binding of sequence-specific TFs to target DNA sequences, but
also on chromatin accessibility, which is controlled by the proper packaging of DNA/nucleosomes
(chromatin) within the nucleus, leading to the arrangement of the genome into distinct spatial
structures. Differences in chromatin composition can determine gene expression profiles in cells
by providing relative accessibility (open or closed) of key regions to TFs that bind to DNA.
Within the immune system, upon cellular stimulation by extracellular signals (e.g., via the T
cell receptor (TCR) or cytokines), chromatin composition is modified through the concerted
actions of signal-specific TFs and chromatin modifiers via a dynamic process. Naturally occurring
genetic mutations in binding sites for TFs that alter the chromatin landscape can potentially
disrupt or establish chromatin interactions, thereby resulting in altered gene expression profiles,
and predisposing to cancer, autoimmune disease, allergy, immunodeficiency, or other immune
disorders. In this review, we focus on the cooperative actions of TFs that play critical roles in
shaping the chromatin landscape and accessibility in early and mature T cell development, and
how these dynamic changes can alter gene expression profiles.
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TRANSCRIPTION FACTORS THAT
ESTABLISH CHROMATIN LANDSCAPE
DURING EARLY T CELL DEVELOPMENT

Lineage specific transcription factors (LSTFs) or master
regulators are expressed at critical times during lymphoid
development or differentiation, and they contribute to cell
type determination. During the development of T cells in
the thymus, master regulators such as TCF-1, BCL11B,
GATA3, PU.1, and RUNX family TFs are critical for T-lineage
commitment (Figure 1) (1–3). To properly regulate gene
expression, TFs must recognize and bind to their sequence-
specific DNA binding sites (motifs). Access to regulatory
regions in the genome is tightly controlled by chromatin
structure. Genome-wide analysis using Hi-C technology, a
method coupling 3C (Chromosome Conformation Capture)
methodology with high-throughput DNA sequencing (4),
has revealed that the genome can be divided into spatially
separated regions or “compartments,” which are composed of
smaller Topologically Associating Domains (TADs) that can be
brought into close proximity to each other by chromatin looping
(4–6).

During early T cell development, hematopoietic stem cells
develop into T cell progenitor cells, termed CD4−CD8− or
double-negative (DN) thymocytes, which can then progress
through four stages of maturation (denoted DN1, DN2a/b,
DN3a/b, and DN4 cells). T cell commitment occurs at the DN2a
to DN2b developmental transitional stages (1–3), and there is a
key checkpoint termed β-selection at the CD25+CD44− DN3a
to DN3b/4 maturation step, with gene rearrangement of the
TCR β chain. Following β-selection, T cells further mature into
CD4+CD8+ double-positive (DP) cells, which express both CD4
and CD8 (3). Some evidence suggests that dynamic changes in
chromatin modifications and transcription are associated with T
cell development (7), but it is not clear if there are genome-wide
modifications in higher-order chromatin structures and whether
such structures are required to establish T cell identity. GATA-
3 is essential throughout the early T cell developmental stages,
including for T cell commitment, β-selection, and CD4+ cell fate
choice during positive selection (8).

The IL-7/IL-7R axis plays major roles in the survival
of DN thymocytes during early T-cell development (9, 10).
IL-7-signaling activates major signaling pathways, including
JAK1/JAK3-STAT5 and PI 3-kinase, and Y449 of the IL-7R is
part of a YxxM motif and can mediate not only recruitment
of STAT5 but also the p85 subunit of PI 3-kinase (11). IL-7-
mediated signaling results in the induction of anti-apoptotic
BCL-2 and MCL-1 proteins but the decreased expression of pro-
apoptotic proteins (9), and STAT5 has been implicated in the
regulation of expression of BCL-2 (12). IL-7-mediated STAT5
activation controls chromatin accessibility and rearrangement
of the TCRγ locus (13, 14). In addition to its activation
of STAT5, IL-7 was reported to activate NFATc1, with this
serving as an alternative signaling pathway that cooperates
with STAT5 to guide thymocyte development (15). Thus, IL-7-
mediated transcriptional activation serves important roles in T
cell development.

Recent studies have provided further insights into the
mechanisms by which two TFs, TCF-1, and BCL11B, drive
T cell differentiation by modifying the nuclear architecture
to generate distinct chromatin landscapes (16, 17). Chromatin
accessibility across distinct stages of T cell development was
profiled using single-cell DNase-Seq (DNase I hypersensitive
sites sequencing) (18, 19) and ATAC-Seq (Assay for Transposase
Accessible Chromatin combined with DNA sequencing) (20, 21)
to reveal that dynamic modifications in chromatin accessibility
appeared genome-wide during T cell differentiation (16, 17).
Strikingly, different stages of chromatin accessibility were
observed as developing cells progress during T cell commitment
(Figure 1). BCL11B, a critical regulator of T cell commitment,
was found to play critical roles in maintaining higher-
order chromatin structures and was associated with increased
chromatin interactions during T cell lineage commitment (17).
Furthermore, at early stages of T cell differentiation, TCF-1 was
significantly enriched at accessible chromatin that was associated
with T cell-lineage-specific gene loci (16). Mice deficient in
Tcf7, which encodes TCF-1, cannot properly establish the open
chromatin landscape of normal T cells, suggesting that the
initiation of chromatin remodeling was TCF-1-dependent, and
this was particularly evident at the Bcl11b locus (Figure 1).

PU.1 (encoded by Spi1/Sfpi1) was shown to function as a
specialized nucleosome-binding transcription factor during the
DN1-DN2 transition (22, 23), and this factor can bind to closed
chromatin and rapidly open genomic sites. Specifically, ChIP-
Seq (Chromatin Immunoprecipitation combined with high-
throughput DNA sequencing) (24, 25) and ATAC-Seq analysis
showed that the chromatin of selected regions is opened by
PU.1 within 24 h (22, 23), suggesting that PU.1 acts as a
“pioneer factor” to remodel chromatin structure during early
T-cell development.

TRANSCRIPTION FACTORS THAT
MEDIATE CHROMATIN ACCESSIBILITY
DURING T CELL DIFFERENTIATION

During CD4+ T cell differentiation, a range of pioneer factors
are activated to shape the epigenetic landscape and regulate
chromatin accessibility for TFs (26–29). T cell activation requires
antigen signaling via the TCR and co-stimulation with CD28,
resulting in nuclear translocation of a number of TFs, including
AP-1 and NFAT (Figure 2). Interestingly, BATF, a FOS-like AP-1
family transcription factor, and IRF4 were shown to function as
pioneer factors that could regulate chromatin accessibility during
differentiation of Th17 (30) and CD8+ T cells (31).

Following TCR stimulation, cytokines including IL-2 and
IL-21 are also produced and in turn activate and induce the
nuclear translocation of STAT proteins (e.g., STAT5 and STAT3)
through cytokine receptors IL-2R and IL-21R (Figure 2), and
these factors collectively help to prepare the T cell chromatin
landscape. Interestingly, both STAT dimers and tetramers can
form, with STAT5 tetramers being critical for the normal
development and expansion of key immune populations (32, 33).
Cytokines secreted by immune cells can also drive T helper cell
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FIGURE 1 | Transcription factors that mediate chromatin accessibility during early thymic T cell development. Multiple TFs play roles in early stages of T cell

maturation, which involve commitment of hematopoietic stem cells to T cell progenitors. The early DN stage consists of DN1, DN2a/b, DN3a/b, and DN4 cells. During

T cell commitment, which occurs between the DN2a and DN2b stages, TCF-1 establishes chromatin accessibility and mediates compartment switch, where

repressive compartments that harbor T cell-lineage-specific genes (e.g., Bcl11b) are switched to transcriptionally active compartments. TCF-1 upregulates the

expression of BCL11B, which further remodels chromatin architecture and stabilizes the intra-TAD contacts within mature T cell subsets.

FIGURE 2 | Transcription factors in T cell activation and differentiation. T cell receptor (TCR) and CD28 signaling activate various pioneer factors, such as NF-κB,

NFAT, and AP-1 (FOS and JUN family proteins; the schematic shows BATF as the FOS-like AP-1 family protein). In addition, cytokine stimulation activates

cytokine-specific TFs, such as IL-2-activated STAT5 and IL-21-activated STAT3, through their own cytokine receptors IL-2R and IL-21R, respectively. Together, these

factors influence the enhancer landscape in a genome-wide fashion, with binding of TFs to typical-enhancers and/or super-enhancers to regulate the expression of

target genes in T cells and influence cell differentiation and cell plasticity. Whereas typical enhancers span more limited regions, super-enhancers include groups, or

clusters of enhancer elements, that span broader regions and are densely bound by transcriptional co-activators.

differentiation. For example, IL-12, IL-4, and IL-6 drive Th1, Th2,
and Th17 differentiation, respectively, with critical roles for IL-
2 in promoting (Th1, Th2, Th9, Treg) or inhibiting (Th17 or

T follicular helper [Tfh] cell) differentiation and often opposing
actions for IL-21 (34–37). All of these cytokines are 4-alpha
helical bundle type 1 cytokines that use the JAK-STAT pathway
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as a major signaling pathway to transduce extracellular cytokine
signals into the cell and regulate expression of corresponding
genes (37–39). Interestingly, of these cytokines, IL-2, IL-4, and
IL-21 signal via receptors that belong to the common cytokine
receptor γ chain (γc, also known as the IL-2 receptor γ chain IL-
2Rγ, or CD132) family of cytokines (40, 41). During CD4+ T cell
differentiation, STATs can have major impact on the activation
of lineage-specific enhancers and the suppression of enhancers
associated with alternative cell fates. For example, STATs can
shape the active enhancer landscape in Th1 and Th2 cells (42, 43)
in the presence of different cytokine signals, with IL-12/STAT4
and IFN-γ/STAT1 driving Th1 and IL-4/STAT6 driving Th2
differentiation, respectively. In addition, however, IL-2 via STAT5
serves a key role and primes T cells for responsiveness to IL-
12 and IL-4 and Th differentiation. For Th1 differentiation,
IL-2 via STAT5 augments expression of IL-12Rβ2 and TBET
(44) and for Th2 differentiation, it augments expression of IL-
4Rα (45) and IL-4 (46–48), with IL-2-induced STAT5 kinetically
binding earlier to the Il4ra than to the Il4 locus. Interestingly,
IL-2-activated STAT5 binding was shown to augment chromatin
accessibility at the Il4 locus (46). IL-2 via STAT5 also inhibits
Th17 differentiation (49, 50), potentially by several mechanisms,
including a direct IL-2-STAT5 competition with IL-6-STAT3
(49, 51), the inhibition by IL-2-STAT5 of gp130 expression and by
IL-2-mediated induction of TBET, which interacts with RUNX1,
potentially limiting the required RUNX1-RORγt interaction
(44). Moreover, IL-2-STAT5 drives Th9 differentiation (52) and
limits Tfh differentiation (53, 54) whereas, IL-21-STAT3 has an
opposing effect (52, 55, 56). As compared to pioneer factors,
cytokines that influence Th differentiation have less profound
effects on the epigenetic landscape.

INTERPLAY OF CHROMATIN AND
TRANSCRIPTION FACTORS AP-1, IRF4,
AND STAT3 IN T CELLS

BATF and IRF4 were shown to functionally cooperate and
recognize specific AP-1-IRF composite elements (AICEs) mainly
in T cells and dendritic cells (57–59) and these factors cooperate
to regulate chromatin accessibility during the differentiation
of Th17 (30) and CD8+ T (31) cells (Figure 3). FAIRE-Seq
(Chromatin accessibility analysis using formaldehyde-assisted
isolation of regulatory elements sequencing) (60) revealed that
the loss of BATF or IRF4 in Th0 or Th17 cells had little if any
effect on genomic loci already accessible in naive cells, but most
loci with inducible accessibility exhibited marked reductions
in Batf - or Irf4-deficient mice compared to wild-type cells,
suggesting that IRF4 and BATF remodel the chromatin landscape
and potentially facilitate subsequent recruitment of TFs involved
in regulating expression of Th17-relevant genes (30). Enhancer
occupancy by AP-1/IRF4 complexes correlates with sensitivity
of gene expression in response to TCR signaling (61, 62), so
that genes with low-affinity or high-affinity AICE-dependent
enhancers are induced at lower or higher TCR signal strength,
respectively. IRF4 alone was also shown to be induced in a
manner dependent on TCR affinity, and as a dose-dependent

FIGURE 3 | IRF4 and BATF remodel the chromatin landscape to facilitate

subsequent recruitment of transcription factor STAT3. (A) Cooperative binding

of AP-1 (shown here as a BATF-JUN heterodimer; BATF in this setting is the

FOS-like factor) and IRF4 function as pioneer factors to remodel the chromatin

landscape, therefore affecting chromatin accessibility. (B) STAT3 is

subsequently recruited by AP-1/IRF4 complexes (which recognize AP-1-IRF

composite elements, AICEs) via possible STAT3-JUN interactions. Such

STAT3/AP-1/IRF4 complexes have been shown to regulate the expression of

IL-21-inducible genes.

regulator of themetabolic function of activated T cells (63). BATF
is also a key regulator of early effector CD8+ T cell differentiation
(31), and BATF-deficient CD8+ T cells are profoundly defective
in their ability to undergo naive to effector differentiation and
proliferative expansion. Moreover, BATF and IRF1 are induced
early during in vitro regulatory T (Treg) cell differentiation and
act as pioneer factors for the differentiation of type 1 Treg (Tr1)
cells (64). BACH2, like AP-1 factors that contain a bZIP domain,
can regulate CD8+ T cell differentiation by controlling the access
of AP-1 factors to enhancers, thus limiting the expression of TCR-
driven genes by attenuating the availability of AP-1 sites to JUN
family TFs (65, 66).

IRF4 often cooperates with STAT3 in modulating IL-21-
dependent gene expression in Tfh and Th17 cells (30, 58, 67).
Given that STAT3 can physically bind to c-JUN (68), it is
reasonable to hypothesize that STAT3 can be recruited by BATF-
JUN-IRF4 complexes via STAT3-JUN interactions (Figure 3).
ChIP-Seq analysis revealed that IL-21-induced STAT3 binding
was dramatically diminished in Irf4−/− CD4+ T cells compared
to WT cells (67), suggesting that it was IRF4-dependent. It is
possible that STAT3 directly binds to IRF4, or that its binding
is dependent on chromatin accessibility that is pre-patterned
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FIGURE 4 | Genetic variation can affect human disease phenotypes by

disrupting regulatory networks mediated by long-range chromatin interactions.

In the healthy state (A), all regulatory enhancer elements (shown here for a

hypothetical gene as elements e1–e4) are utilized and loop to the promoter to

effect normal gene expression. In the disease state (B), a hypothetical genetic

variant (SNP) residing at e2 disrupts enhancer-promoter and

enhancer-enhancer interactions and results in abnormal gene expression and

disease phenotypes.

by IRF4 to facilitate the subsequent recruitment of STAT3 to
AP-1. However, STAT3 binding motifs are not enriched in
genomic proximity to AICEs (58, 69), suggesting that STAT3-
IRF4 association may also occur via long-range chromatin
interactions, a hypothesis that remains to be experimentally
validated.

T CELL RESPONSES TO DIFFERENT
STIMULI INCLUDING IL-2 AND IL-21 AND
THE ROLE OF SUPER-ENHANCERS

After antigen encounter, CD4+ T cells are activated and secrete
cytokines including IL-2 and IL-21, which regulate immune cell
differentiation and effector functions by differentially activating
specific STAT proteins that recognize and bind to γ-interferon-
activated sequence (GAS) motifs. IL-2 potently activates STAT5,
whereas IL-21 primarily activates STAT3. This differential STAT
activation leads to differential gene expression by these cytokines.
It is established that STAT proteins are critical components
of cytokine-activated enhancers, but recently their roles related
to super-enhancers (70) and their abilities to fine-tune gene
expression (71) have been elucidated, with, for example, greater
IL-2-inducibility of genes with STAT5-based super-enhancers, as
compared to STAT5-based typical enhancers (71). As opposed to
typical enhancers, where factor binding occurs in more limited
regions, super-enhancers (also known as stretched or clustered
enhancers) (70, 72, 73) represent groups of putative enhancers
in close genomic proximity that span broader regions (Figure 2),
are densely bound by transcriptional coactivators, and usually
are associated with high levels of the active chromatin mark

histone H3 lysine 27 acetylation (H3K27Ac). Although super-
enhancers were originally recognized in the setting of master
regulator genes (74) and genes associated with cell identity,
STAT5- and STAT3-dependent super-enhancers have now also
been shown to exist and to regulate gene expression in a cytokine-
and context-specificmanner (71). Chromatin interaction analysis
using paired-end tag sequencing (ChIA-PET) (75, 76) revealed
that IL-2–activated STAT5 can influence RNA Polymerase II
(RNA Pol II)-based chromatin interactions, with looping anchor
sites in proximity to STAT5 binding sites. Moreover, CRISPR–
Cas9 (77, 78) genome editing was used to generate mutant
mice in order to functionally analyze the STAT5-bound super-
enhancer containing gene, Il2ra, in vivo. When three of the
super-enhancer elements were separately deleted, each exhibited
defective expression of IL-2Rα, indicating that each enhancer
element contributed to IL-2-induced IL-2Rα expression and that
these elements were not functionally redundant (71). These
observations provide insights into the mechanism underlying the
regulation of IL-2 target genes. Interestingly, IL-2-based super-
enhancers included not only positive regulators of signaling,
such as Il2ra, but also negative regulators such as SOCS family
proteins (e.g., Cish), revealing that super-enhancers are critical
for both the positive and negative regulation of IL-2 signaling
(71).

Similar to the mouse Il2ra gene, human IL2RA also has a
similar super-enhancer that is densely bound by STAT5, and
some of the enhancer elements are highly conserved in both
mouse and human, consistent with an evolutionarily conserved
mode of gene regulation (71, 79, 80). Interestingly, tiled CRISPR
activation (CRISPRa) (81) was used to identify several CRISPRa-
responsive elements with chromatin features of stimulus-
responsive enhancers, including an IL2RA enhancer that contains
a non-coding autoimmunity risk variant (80) that is conserved
between humans and mice. Mutating this element in mice did
not completely block Il2ra gene expression but rather delayed
gene activation in response to TCR stimulation, indicating that
the kinetics of Il2ra gene expression are important. This mutation
skewed polarization of naive T cells from Treg cells toward pro-
inflammatory Th17 cells, which elucidates its role in autoimmune
disease (80).

ENHANCER-PROMOTER INTERACTIONS
AND AUTOIMMUNE
DISEASE-ASSOCIATED SNPs

Gene expression is regulated via complex interactions between
promoters and long-range regulatory elements, and disruption
of chromatin interactions by mutations (e.g., SNPs or INDELs)
may result in altered target gene expression that leads to disease
development (Figure 4). Another study correlated histone
modification of H3K27ac with active enhancers and promoters
and furthermore analyzed protein-centric chromatin interactions
by utilizing HiChIP, chromatin immunoprecipitation (ChIP) and
Hi-C assays (82). By generating enhancer–promoter contacts in
primary naive CD4+ T cells, Treg cells, and Th17 cells, chromatin
loops were identified that were shared by all three cell types (82).
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Strikingly, the majority of these chromatin interaction anchors
were associated with enhancers or promoters. Furthermore,
autoimmune disease–associated variants in intergenic regions
could interact with multiple target genes, providing insights into
the functional interrogation of disease associated genetic variants;
however, further high-resolution chromatin interactions in
various cell types are needed to better explain how connections
between variants and genes can be translated into molecular and
cellular functions.

CONCLUDING COMMENTS

In summary, studies of the transcriptional and epigenetic
regulation of T cells have identified several mechanisms of
cross-regulation between TFs, chromatin modifiers, and the
pre-existing chromatin landscape. The interactions between
chromatin and TFs are influenced by a range of stimuli, including
TCR and cytokine signals. Transcription factors are important
for cell function, and they collaborate combinatorically with
other factors to influence gene regulation. Their binding to
DNA depends on epigenetic landscapes, and their function may

depend on chromatin interactions to juxtapose distal regulatory

elements with gene promoters. The ability of cytokine-activated
proteins to modify nucleosome packing and influence histone
modifications allows them to control developmental processes.
The gene regulatory networks that determine T cell development
are broad and involve chromatin accessibility, epigenetic status,
and distant chromatin interactions in both time- and context-
dependent manners. Our evolving understanding of gene
regulatory networks will help to comprehensively link genetic
variants to putative gene targets, furthering our understanding
of molecular mechanisms for a range of immune diseases.
Achieving a deeper understanding of the mechanisms involved
has now been greatly facilitated by genetic manipulations
including CRISPR/Cas9 gene editing but still awaits other
advances, such as the ability to comprehensively study single cells
in real time.
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