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Physiological processes—such as, the brain’s resting-state electrical activity or

hemodynamic fluctuations—exhibit scale-free temporal structuring. However, impacts

common in biological systems such as, noise, multiple signal generators, or filtering

by transport function, result in multimodal scaling that cannot be reliably assessed

by standard analytical tools that assume unimodal scaling. Here, we present two

methods to identify breakpoints or crossovers in multimodal multifractal scaling

functions. These methods incorporate the robust iterative fitting approach of the

focus-basedmultifractal formalism (FMF). The first approach (moment-wise scaling range

adaptivity) allows for a breakpoint-based adaptive treatment that analyzes segregated

scale-invariant ranges. The second method (scaling function decomposition method,

SFD) is a crossover-based design aimed at decomposing signal constituents from

multimodal scaling functions resulting from signal addition or co-sampling, such as,

contamination by uncorrelated fractals. We demonstrated that these methods could

handle multimodal, mono- or multifractal, and exact or empirical signals alike. Their

precision was numerically characterized on ideal signals, and a robust performance was

demonstrated on exemplary empirical signals capturing resting-state brain dynamics by

near infrared spectroscopy (NIRS), electroencephalography (EEG), and blood oxygen

level-dependent functional magnetic resonance imaging (fMRI-BOLD). The NIRS and

fMRI-BOLD low-frequency fluctuations were dominated by amultifractal component over

an underlying biologically relevant random noise, thus forming a bimodal signal. The

crossover between the EEG signal components was found at the boundary between

the δ and θ bands, suggesting an independent generator for the multifractal δ rhythm.

The robust implementation of the SFD method should be regarded as essential in the

seamless processing of large volumes of bimodal fMRI-BOLD imaging data for the

topology of multifractal metrics free of the masking effect of the underlying random noise.

Keywords: multifractality, focus-based multifractal analyses, multimodality, breakpoint, crossover, NIRS, EEG,

fMRI-BOLD

INTRODUCTION

Fractal and multifractal concepts focus on characterizing scale-free properties in terms of scaling
exponents—such as, spectral index (β) or Hurst exponent (H; Mandelbrot, 1982; Eke et al., 2002,
2012; Mukli et al., 2015)—of ideal or empirical signals. The scaling is a global behavior in the
case of monofractals and a local property in the case of multifractals, which requires a set of

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
https://doi.org/10.3389/fphys.2017.00533
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2017.00533&domain=pdf&date_stamp=2017-07-26
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:eke.andras@med.semmelweis-univ.hu
https://doi.org/10.3389/fphys.2017.00533
http://journal.frontiersin.org/article/10.3389/fphys.2017.00533/abstract
http://loop.frontiersin.org/people/70739/overview
http://loop.frontiersin.org/people/61133/overview
http://loop.frontiersin.org/people/12599/overview
http://loop.frontiersin.org/people/23118/overview


Nagy et al. Decomposing Multifractal Crossovers

exponents to be obtained for characterization. Specifically—in
addition to a range of methods operating in the frequency
and time/frequency domains (Eke et al., 2002)—in the time
domain, this is achieved by analyzing a range of statistical
moments (−∞ < q < + ∞) of the signal. In the monofractal
case, a single qth order moment (i.e., the variance at q = 2)
suffices for capturing the global roughness, H. However, for
multifractals, a range of statistical moment orders are needed
to obtain the generalized Hurst exponent, H(q). Submitting
H(q) to the multifractal formalism yields the Hölder exponent,
h, reflecting the local roughness of the process, and then the
multifractal spectrum, D(h), which is essentially analogous with
a histogram of local fractality in the signal. Accordingly, D(h)
captures themoment-wise distribution of the singularity strength
of local roughness or multifractal scaling in the temporal process
(Kantelhardt et al., 2002; Ihlen, 2012; Mukli et al., 2015). We
recently demonstrated that standard moment-based multifractal
analyses were susceptible to signal inhomogeneity leading to
spurious estimates of the multifractal spectrum. We resolved this
issue by developing focus-based multifractal formalism (FMF),
which replaced the standard—essentially monofractal—analysis
forH(q) by fitting an exact multifractal to the family of moment-
wise scaling functions all at once by enforcing an expected value
at signal length (termed focus) as a guiding reference in the fitting
procedure (Mukli et al., 2015). FMF explicitly relied on a previous
observation on the focus (Kantelhardt et al., 2002) and can be
related to some earlier multifractal approaches (Struzik, 1999;
Struzik and Siebes, 2002).

In the pure mathematical sense of the fractal concept, scaling
should be present across an infinite range of scales; a property

FIGURE 1 | Scale-invariance cannot be revealed within inadequate scaling ranges. On synthesized monofractal signals of length N = 214, the Hurst exponent as the

measure of monofractality was estimated by the SSC method (Eke et al., 2000) within a temporal window with a lower boundary, s′, and an upper boundary set to

N/2. The estimate of the generalized Hurst exponent at q = 2 [H(2)] was obtained on multifractal signals by the FMF-SSC method (Mukli et al., 2015) within the same

range of scales. DHM fractal: synthesized by the method of Davies and Harte (DHM; Davies and Harte, 1987) at Htrue = 1.25; SSM fractal: synthesized by the SSM

method (Saupe, 1988); Cantor set and function generated at appropriate weight factors p1, p2, p3 (Cantor, 1883; Mandelbrot, 1982). Estimated Hurst and

generalized Hurst exponents are displayed on an extended scale within the range of [0, 2]. Signal classes based on the extended H and H(2) are shown to the right for

reference. Contracting scaling range—by increasing s′—will render the information remaining in the signal for its analysis inadequate to demonstrate its

scale-invariance (see the bias in reference of Htrue progressively increasing with s′). A standard treatment of scaling function multimodality typically results in

contracted scaling ranges and thus results in a loss of valuable information on fractal scaling.

of ideal fractals with an exact generating algorithm (Mandelbrot,
1982), such as, Cantor set and function (Cantor, 1883). Fractality
can be present in a statistical sense in sampled representations of
temporal processes, as it is the case with fractional Gaussian noise
(fGn) and Brownian motion (fBm; Mandelbrot and Van Ness,
1968; Eke et al., 2000, 2002). However, the estimation of fractality
of even such exact fractal structures can become easily corrupted
by the effect of sampling (see Figure 1), filters (Valencia et al.,
2008), trends (Kantelhardt et al., 2001), shuffling (Kantelhardt
et al., 2001), multiple fractal signal components (Thornton and
Gilden, 2005), or other scale-dependent influences, resulting in
multimodal scaling functions.

Many physical, natural, biological systems show multimodal,
scale-invariant properties, for example, sunspot activities
(Movahed et al., 2006), river water levels (Rego et al., 2013),
human heartbeat time series (Peng et al., 1995; Gierałtowski
et al., 2012), neuronal discharge dynamics (Blesic et al.,
2003), human near infrared spectroscopy (NIRS) signals (Eke
et al., 2006), local field potential (Bedard et al., 2006), human
electroencephalography (EEG) signals (Gifani et al., 2007), rat
blood oxygen level-dependent functional magnetic resonance
imaging (fMRI-BOLD) data (Herman et al., 2011), human
gait trajectories (Kuznetsov et al., 2013), and neonate diffuse
optical tomography data (White et al., 2012). So far—among
the numerous possible scale-dependent influences—only trends
leading to artificial crossovers (Kantelhardt et al., 2001) have been
specifically assessed within such multimodal signals. Common
among these examples is that multimodality emerges, e.g., by
superposition of two or more coexisting multifractal processes.
Thermodynamic analogies of multifractality (Stanley and
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Meakin, 1988; Tel, 1988; Arneodo et al., 1995) have suggested
that superpositioning could also lead to phase transition
(Grassberger et al., 1988; Muzy et al., 1993; Arneodo et al., 1995;
Radons and Stoop, 1996). Multimodality of the former case is
seen in the initial step of multifractal formalism resulting in a
scale-dependent impact on the scale-free pattern, while phase
transition manifests itself at a later stage as a moment-dependent
phenomenon captured as an inflected multiscale exponent, τ(q),
at a critical q. This latter case has been detailed in the literature
due to its demonstrated physiological relevance (Roux et al.,
1999; Nicolay et al., 2007; Kestener et al., 2011); thus, our study
focused on the former case of multimodality only.

As characterization of multifractality in the time domain
requires assessing moment-wise scaling exponents (Kantelhardt
et al., 2001), multifractal multimodality should likewise also
be described—along with the respective scaling exponents—in
terms of moment-wise breakpoints or crossovers (Ludescher
et al., 2011; Schumann and Kantelhardt, 2011; Gierałtowski
et al., 2012; Figures 2B,C). In contrast, a mere presence of
breakpoints or crossovers should by no means be taken as proof
of multifractality (Matic et al., 2015).

Definition of “breakpoints” or “crossovers” appears
inconsistent in the literature (Peng et al., 1995; Iyengar
et al., 1996; Struzik et al., 1997; Kantelhardt et al., 2001; Ge
and Leung, 2013; Kuznetsov et al., 2013; Rego et al., 2013), and
their extension to multifractal multimodality (Figure 2A) is also
lacking. In particular, recent works have either focused mostly on
monofractal multimodality (Kuznetsov et al., 2013) or applied
a monofractal approach to multimodal handling of multifractal
signals (Ge and Leung, 2013; Rego et al., 2013; Figure 2A).

Previously, “breakpoints” or “crossovers” were determined by
“eyeballing” or by segmented line regression (Ge and Leung,
2013) through scaling ranges (SRs). The latter being a typical
adaptive analysis that identifies adjacent SRs with different
scaling separated by a point-like breakpoint. As breakpoint
is not a point-like attribute of the scaling function, some
approaches omitted the transient in its vicinity (Kuznetsov
et al., 2013) or applied fitting with multi-parametric models
(Struzik et al., 1997). Admittedly, the benefit of these approaches
is that they allow an approximation of fractal descriptors
without formulating any a priori concept on signal genesis.
Nevertheless, empirical signals much too often result from co-
sampled signal processes, whose scaling may overlap across their
respective breakpoints (Figure 2B); one such example is signal
contamination by instrumental or biological noise. In these cases,
the signal components obviously cross over around the apparent
breakpoint (Figure 2C). This perception of multimodal signal
genesis calls for an adequate concept for handling crossovers
based on a genuine multifractal approach.

Accordingly, our aims were (i) to decompose the moment-
wise crossover of superimposed multifractal signals based on
an additive model, (ii) to validate this method, (iii) to compare
this approach with an enhanced—moment-wise—version of the
segmented line regression method, and (iv) to demonstrate their
applicability on exemplary empirical signals.

A

B

C

FIGURE 2 | Different concepts for handling multifractal crossover. Exact

scaling functions (solid lines) for a range of qs are shown in log-log plots. The

components (multifractals A,B) separated by breakpoints—at the scale

sb—and by crossovers—at the scale sx—are marked as gray circles.

(A) Approaches in the literature for finding “crossovers” or “breakpoints” of

bimodal multifractals along a single scaling function [i.e., log S(2)] should be

regarded as vaguely defined (Schumann and Kantelhardt, 2011). (B) Our

concept of q-wise scaling range adaptive focus-based multifractal formalism.

This approach employs iterative fitting for q-dependent crossover scales by

enforcing the focus (black circle) of the scaling functions found at maximum

signal length. Note that the point-like q-wise breakpoints separate two

adjacent SRs occupied by distinct scale-invariant components of the

multifractal scaling functions. (C) Scaling function decomposition with

focus-based multifractal formalism utilizing an extended version of the iterative

approach shown in (B). It yields a complete decomposition of the overlapping

scaling functions of the merging fractals/multifractals coexisting within the

same SR.
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MATERIALS AND METHODS

Description of the methods of signal synthesis and empirical
data acquisition are followed by introduction of two adaptive
multifractal analyses of bi- or multimodal signals. The first
approach is based on a q-wise identification of breakpoints
along each and every scaling function as a step of signal pre-
treatment, and hence is referred to as the q-wise scaling range
adaptive (qSRA) method. The essence of the second method is
to decompose the multifractal crossovers for all scaling functions
of the analysis combined, thus achieving true scaling function
decomposition (SFD) in a one-pass manner. As both apply to the
regression scheme of our FMF (Mukli et al., 2015), these will be
further referred to as the qSRA-FMF and SFD-FMF methods.

The multifractal algorithms, signal synthesis, and numerical
tests were implemented inMatlab (TheMathWorks, Inc., Natick,
MA, USA) with code written by the authors. The multifractal
toolbox containing scripts described in this paper can be
requested from the corresponding author.

Investigated Signal Populations
Synthesized Monofractal Time Series
As described previously (Eke et al., 2000), statistically self-affine
time series of the fGn type with exact long-range-dependent
structuring were generated by the Davies and Harte method
(DHM; Davies and Harte, 1987) at length, N, and pre-set Hurst
exponent, fGnHtrue. fBm-type time series were produced by
cumulatively summing (Eke et al., 2000) their fGn counterparts,
yielding a true extended Hurst exponent of Htrue =

fBmHtrue =
fGnHtrue + 1. fBm-type time series were also produced directly at
N and pre-set Htrue =

fBmHtrue by the spectral synthesis method
(SSM; Saupe, 1988).

Synthesized Multifractal Time Series
Cantor sets and—by their cumulative summation—Cantor
functions as examples of exact multifractal structuring were
generated at pre-set weight factors. Statistical self-similar
multifractals with known H(q) were synthesized for testing
purposes using the generalized binomial multifractal model
(Oświȩcimka et al., 2006; Schumann and Kantelhardt, 2011). The
generating algorithm is an iterative process in which a stochastic
binomial cascade is created at a given weight factor and at a given
length. In the generalized method, the degree of correlation and
the strength of multifractality can be separately tuned, the former
being set with the Fourier FilteringMethod; for further details see
Schumann and Kantelhardt (2011) and Mukli et al. (2015).

Synthesized Multimodal Time Series
After considering various numerical testing frameworks, we
chose the DHM algorithm and Cantor functions as offering
the best control over the cardinal parameters in our testing.
The above-listed signals represent cases of unimodality with a
single SR. Multimodal synthetic (or mock) signals with multiple
SRs were created by adding these unimodal fractal time series
of known attributes (N, Htrue). Positioning of crossovers was
controlled by setting the standard deviation (SD) ratios (i.e., focus

ratio) of the signal components in addition to the differences in
Htrue.

Sampled Empirical Time Series
Human NIRS measurements using a NIRO 500 Cerebral Oxygen
Monitor (Hamamatsu Photonics, Hersching, Germany) at a rate
of 2 Hz were carried out to record the relative change in total
hemoglobin concentration with a length of N = 16,384 data
points (for details, see Eke et al., 2006). Human EEG signals were
sampled with a length of N = 16,384 data points with eyes closed
during random hand movements at 500 Hz using a Neurofax
EEG System (see Acknowledgment; Pattnaik and Sarraf, in press).
These empirical records were acquired from healthy volunteers
above the pre-frontal area. Rat fMRI-BOLD data with a length
of N = 4,096 data points were obtained by using a modified
11.7 T Bruker horizontal-bore spectrometer (Bruker AVANCE,
Billerica, MA, USA) using a 1 H surface coil (1.4 cm diameter)
with sequential sampling gradient echo planar imaging (EPI)
sequence (Hyder et al., 1995): field of view of 2.56 × 2.56 cm2;
image matrix of 64× 64; slice thickness of 2 mm; repetition time
of 200 ms (i.e., 5 Hz of sampling frequency) and echo time of 13
ms; and voxel size of 400 × 400 × 2000µm3 (for further details
see Herman et al., 2011).

Multifractal Analyses
According to its indirect concept, multifractal characterization
of time series is performed by sequencing through the steps of
scaling, regression, and singularity analyses of the multifractal
formalism (Mukli et al., 2015). The output of the first step is the
scaling function (S) obtained in the time domain [i.e., by DFA
(detrended fluctuation analysis; Peng et al., 1994), SSC (signal
summation conversion; Eke et al., 2000), or DMA (detrending
moving average; Gu and Zhou, 2010)] and in the time-frequency
domain (i.e., by WTMM (wavelet transform modulus maxima;
Muzy et al., 1993) and WL (wavelet leader-based multifractal
analysis methods; Jaffard, 2004). S is calculated from the input
signal (Xi) as a function of scale (s) and moment order (q) by
obtaining the power mean of the measure (µ) with q as the
exponent.

S[Xi](q, s) =

(

1

Ns

Ns
∑

v= 1

µ(v, s)q
)1/q

, (1)

where Ns stands for the number of non-overlapping windows,
and v for different temporal positions within a particular signal
segment of size s. For further details, see Kantelhardt et al. (2002)
and Ihlen (2012).

Levels of moment order were selected from −15 to 15 in
increments of 1, based on (i) the findings of Grech and Pamuła
(2012) and (ii) the scaling parameter (Clauset et al., 2009)
obtained from the thin-tailed distribution of our synthetic and
empirical data. The scaling function of the signal was sampled
in 100 logarithmically spaced scales, which is a much denser
representation than dyadic sampling would be for a signal length
N = 214. Low and high temporal scales were excluded from
our analyses (Cannon et al., 1997; Kantelhardt et al., 2002),
resulting in a SR of 8 ≦ s ≦ N/2. The applied data were also
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tested by DFA with high-order detrending, effectively excluding
an “artificial crossover” (Kantelhardt et al., 2001). We did not use
filtering, as it produces a breakpoint effectively splitting the SR
(Valencia et al., 2008). Disregarding this scenario (Matic et al.,
2015) may well end up in the analysis of a filtering-ridden band
for multifractality instead of the range of scale-invariance of the
physiological signal.

Focus-Based Multifractal Method
The FMF (Mukli et al., 2015) exploits the fact that the
family of q-wise scaling functions yields a convergent structure
merging at the coarsest scale, s = N. At this scale, the value
defined in Equation (1) becomes q-independent yielding a
“focus,” S[Xi](N). Enforcing S[Xi](N) as an analytical constraint
improves the extraction of q-wise regression slopes for finite-
length (by excluding inherently conflicting estimates due to
the merely explicit emergence of this restriction) and thus
offers a robust method for multifractal analysis of empirical
data (Mukli et al., 2015; Ali et al., 2016; Delignières et al.,
2016), the very approach adopted in this work. Instead
of independently performing repetitive monofractal analyses
on a set of empirical scaling functions (Equation 2), FMF
methods—through minimizing the residual sum of squared
errors, SSE—iteratively find the best-fitting, true multifractal
and assign it to the family of the evaluated scaling functions
(Equation 3).

SSE(q) =

smax
∑

s= smin

(

(log s− log x)× Ĥ[Xi](q)+ log Ŝ[Xi](q, x)

− log S[Xi](q, s)
)2
, (2)

SSE =

qmax
∑

q= qmin

smax
∑

s= smin

(

(log s− logN)× Ĥ[Xi](q)

+ log Ŝ[Xi](N)− log S[Xi](q, s)
)2
. (3)

In Equation (2), x has two specific values (at x = 0
and in the case of the “focus” x = N); otherwise, it
represents the scale, where the exact scale-dependent statistic
is being evaluated. The case of x =N and represents the
enforced constraint in Equation (3). Thus, according to
FMF, a set of model (i.e., exact) scaling functions with
iterated parameters—Ĥ[Xi](q) and log Ŝ[Xi](N)—are fitted
all at once to the actual data set of the scaling functions.
In order to obtain an overall measure of the goodness-
of-fit of the FMF regression procedure, its mean squared
error (MSE) was calculated according to Equation (21) of
Mukli et al. (2015).

Moment-Wise Scaling Range Adaptivity Method
The standard segmented line regression method is capable
of finding breakpoints, sb, and also in the case of a
superimposed signal (Figure 3) approximating crossovers,
sx. Equation (4) is an adaptation of the segmented line
regression method for a bimodal scaling function, where
s′ could be any particular temporal scale. To capture q-
dependent breakpoints, we introduced a q-wise regression

FIGURE 3 | Numerical demonstration of the moment-wise scaling range

adaptivity method. A bimodal, multifractal structure–function profile at q = 2

(solid black) was synthesized by DHM as the sum of fractal (Htrue = 1.25) and

noise (Htrue = 0.5) signals with commensurable standard deviations.

Regression slopes were determined by the DFA algorithm. The SSE(q,s′)

function (solid gray line) at q = 2 is derived from Equation (3). The qSRA

method finds the breakpoint (sb) at the minimum of this function. The

exclusion range (ER, shown at a tolerance level of 20%) spans across scales

where SSE(q,s′) < SSEtolerance as calculated by Equation (5). In turn, the

boundaries of the ER are set to the low and high edges of the adjacent scaling

ranges for the underlying fractal and noise components, respectively. If

tolerance = 0, then the ER is not excluded from the regression analysis (gray

dashed regression lines). When tolerance = 0.2 (gray dotted regression lines),

the estimated slopes better represent those of the underlying fractals. Other

methods (such as, SSC) yielded isomorphic results (not shown).

algorithm, broken down into three steps of Equations
(4a–c)

nSSE(q, s′) =

s′
∑

s= smin

(

(log s− log x)× Ĥ[nXi](q)

+ log Ŝ[nXi](q, x)− log S[Xi](q, s)
)2
, (4a)

f SSE(q, s′) =

smax
∑

s= s′

(

(log s− log x)× Ĥ[fXi](q)

+ log Ŝ[fXi](q, x)− log S[Xi](q, s)
)2
, (4b)

SSE(q, s′) = nSSE(q, s′) + f SSE(q, s′), (4c)

where indices f and n stand for different fractal processes: in
our particular case uncorrelated (noise) and correlated (fractal)
signals within a co-sampled arrangement, respectively. We chose
noise and fractal signals as the constituents of a bimodal signal
in describing our methods because this was the case for bimodal
cerebral hemodynamic data reported earlier (Eke et al., 2006;
Herman et al., 2011) and is used in this study as an exemplary
dataset. The breakpoint for a given moment is obtained at
the minimum value of the SSE(q,s′) function as the estimates,
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Ĥ[Xi](q) and log Ŝ[Xi](q,x) for the fractal and noise components,
respectively, are being refined during the iteration process.
Further away from the breakpoint, in the low range of scales,
the underlying noise with low H will dominate, while in the
high range of scales, the fractal component with high H will
dominate. However, in between the two, where the respective
function values are commensurable, their fluctuations blend into
a non-fractal segment, a so-called exclusion range (ER; Figure 3).
Consequently, by excluding the ER from the analysis, the error
in assessing the low and high Hs will be smaller, while for the
FMF analysis yielding H(q), the error will increase due to SR
being contracted by the exclusion range. To find the ER, we
used Equation (5) (a similar approach as Equation (20) of Ge
and Leung, 2013) at a specific q and selected a range of scales
with SSE(q,s′) lower than SSEtolerance calculated at a preset level of
tolerance (0 ≤ tolerance ≤ 1)

SSEtolerance(q) = min SSE(q, s′) + tolerance ×
(

max SSE(q, s′)

− min SSE(q, s′)
)

. (5)

Any moment-to-moment inconsistencies in the regression
analysis will upset the expected structural aspect of multifractal
scaling functions known as the “H(q)-monotonicity” (Mukli
et al., 2015), the monotonous drop of regression slopes of H(q)
from q = −∞ to q = +∞, because in subsequent steps of
multifractal formalism this automatically results in “inversed” or
“corrupted” multifractal spectra. To eliminate this eventuality,
the analytical constraints of H[Xi](q) > H[Xi](q-k) with k > 0
were enforced on the nested iterative processes of minimization.
MSE was obtained from the sum of SSEs from respective FMF
analyses see Equation (3) on the noise and fractal components
separated by q-wise breakpoints.

Scaling Function Decomposition Method
As fluctuations from the two underlying signal components
mutually contribute to each other’s scaling functions near the
breakpoint, they hold estimates deviating from the power-
law relationship (Figure 4). Taking the exemplary case of the
SSC algorithm—where the statistical measure is the standard
deviation, SD—this relationship is readily seen as a realization
of the Bienaymé formula stating that in the case of uncorrelated
variables, the variance (SD2) of their sum equals the sum of the
respective variances (Bienaymé, 1853). A generalization for the
case of (anti)correlated signals is given in the Appendix (See
Supplementary Material). Thus, the emerging scaling function
(the power mean of SD) can be well estimated (Figure A1
in Supplementary Material) as the root sum square of the
composing scaling functions as

S [Xi] (q, s) = S

[

Nc
∑

c= 1

cXi

]

(q, s) =

√

√

√

√

Nc
∑

c= 1

S [cXi] (q, s)
2, (6)

where the signal (cXi) used in the calculation of S is in square
brackets with c being a positive integer referring to each and every
of the Nc constituent signals.

Earlier—for the cases of resting-state cerebral hemodynamic
fluctuations—we showed that a fractally correlated signal is

FIGURE 4 | Numerical demonstration of the scaling function decomposition

method. The two signal components (fractal and noise) of the bimodal signal

are the same as shown in Figure 3. From these components, two bimodal

signals were obtained: one by adding the raw signals (black) and the other

their respective scaling functions (dashed gray). The three points represent

exemplary values for this process at a given scale. The identical scaling

functions demonstrate the validity of Equation (7) in the quantitative handling of

bimodality—or for that matter—multimodality.

typically interwoven by uncorrelated noise (Eke et al., 2006;
Herman et al., 2011). In this simplest case of bimodality,
the above derivation can be reduced to the following direct
approximation

S[Xi](q, s) = S
[

nXi +
fXi

]

(q, s) ≈
√

S[nXi](q, s)
2
+ S[fXi](q, s)

2.

(7)
Accordingly, instead of fitting the two constituting fractally
correlated components of a bimodal scaling function separately
in two distinct processes, an exact bimodal model scaling
function is reconstructed from two properly fitting power-law
sets, based on the rule of addition Equation (7). Performing
this one-pass regression on a log-log scale, the minimization of
SSE—with the generalized Hurst exponent and the focus of the
scaling function being iterated—results in the best fit of the exact
bimodal model as follows

Ŝ[nXi](q, s) = exp
(

(log s− log x)× Ĥ[nXi](q)

+ log Ŝ[nXi](q, x)
)

, (8a)

Ŝ[fXi](q, s) = exp
(

(log s− log x)× Ĥ[fXi](q)

+ log Ŝ[fXi](q, x)
)

, (8b)

SSE(q) =

smax
∑

s= smin

(

log
√

Ŝ[nXi](q, s)
2
+ Ŝ[fXi](q, s)

2

− log S[Xi](q, s)

)2

. (8c)

A special application of this procedure is when one of the
constituting components of the composite signal is known,
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which obviously reduces the number of tuning factors in the
minimization process. Specifically, this component could be
uncorrelated noise [i.e., instrument and/or biological noise (Peng
et al., 1995; Blesic et al., 2003; Eke et al., 2006; Herman
et al., 2011)] with a fractal estimate of Ĥ ∼= Htrue = 0.5
[as will be seen later in Section Performance of the SFD
Method on an Empirical Bimodal Signal with Limited Definition
(fMRI-BOLD)].

SFD is not at all limited to q-wise applications, but can
also be performed along with FMF. In this case, the process
of minimization of the FMF analysis needs to be modified
by raising the number of tuning parameters Equation (9).
Thus, both the two sets (nXi and fXi) of H(q) and their
associated two foci, S(N), see Equations (9a and 9b) are
being simultaneously adjusted in the same iterative process
Equation (9c)

Ŝ[nXi](q, s) = exp
(

(log s− logN)× Ĥ[nXi](q)

+ log Ŝ[nXi](N)
)

, (9a)

Ŝ[fXi](q, s) = exp
(

(log s− logN)× Ĥ[fXi](q)

+ log Ŝ[fXi](N)
)

, (9b)

SSE =

qmax
∑

q= qmin

smax
∑

s= smin

(

log
√

Ŝ[nXi](q, s)
2
+ Ŝ[fXi](q, s)

2

− log S[Xi](q, s)

)2

. (9c)

Similarly to the qSRA method, H(q)-monotonicity was granted
by applying the same analytical constraints. The calculation of
MSE from SSE Equation (9) was as explained in Section Focus-
Based Multifractal Method.

The crossover scale, sx, of the decomposed scaling
functions—where the respective statistical values are in
principle the same—can be determined as the common
value of the equations of the two underlying regression
lines

Ĥ[fXi](q) × log sx(q)+ log Ŝ[fXi](q, 0) = Ĥ[nXi](q)

× log sx(q)+ log Ŝ[nXi](q, 0). (10)

Thus, the crossover scale can be calculated as

log sx(q) =
log Ŝ[fXi](q, 0)− log Ŝ[nXi](q, 0)

Ĥ[nXi](q)− Ĥ[fXi](q)
. (11)

When enforcing the respective foci of the underlying
components, the best value of the crossover scale is obtained as

log sx(q) =
log Ŝ[fXi](N)− Ĥ[fXi](q)× logN − log Ŝ[nXi](N)+ Ĥ[nXi](q)× logN

Ĥ[nXi](q)− Ĥ[fXi](q)
. (12)

Characterization of Methods
To assess the precision of our novel approaches in analyzing
multifractal bimodal signals, estimates were compared with

multifractal endpoints derived from the singularity spectrum,
D(h), (Figure 5) and the results presented in the form of
performance vignettes (Eke et al., 2012). These endpoints are
hmax [the Hölder exponent, h, at the peak of D(h)] and fwhm
[the full width of D(h) at half maximum] (Eke et al., 2012). hmax

captures the degree of correlation, and fwhm can be taken as the
measure of the supporting base of the singularity spectrum (see
Figure 3 of Mukli et al., 2015).

For obtaining references for the estimates by subsequent SFD-
FMF and qSRA-FMFmethods, synthetic signal components were
analyzed for their respective multifractal estimates with the FMF-
DFA and FMF-SSC methods ((Mukli et al., 2015); Figure 5). The
characterization of our methods was completed by testing their
performance on empirical NIRS, EEG, and fMRI-BOLD signals.

RESULTS

Impact of Moment Level on Crossover
Scales
As seen in Figures 5A1,A2, the crossover between two
components of markedly different correlation structuring is easy
to detect. When H approaches Hnoise—as the true breakpoint
becomes poorly defined—the bimodal signal approaches
unimodal. A similar scenario is seen with the impact of moment
level (Figures 5B1,B2), where the actual scale-wise distribution
of crossovers will be determined by the dynamics of the H(q) of
the signal components.

Performance of qSRA and SFD Methods on
Synthetic Bimodal Signals
In addition to the impact of correlation and moment level,
the focus has a decisive impact on how markedly a signal
component dominates the bi- or multimodality of a composite
signal (Figure 6). Accordingly, depending on the actual signal
component, H and the component focus ratio (or SD ratio)
together will impact the direction and magnitude of bias
in the multifractal estimates (hmax and fwhm) for the two
approaches alike. When the aim is to provide a characterization
of multifractality for a bi- or multimodal multifractal signal (i.e.,
with hmax and fwhm, combined), the actual combination of H
and the focus ratio should preferably be as close as possible to
the diagonal band of low bias (Figure 6, combined).

An accurate multifractal output is at most partially qualified
to assess performance. Determination of the proper method
for a given signal is also a requirement. Lower MSE levels in
the estimates of the SFD method when compared with those
obtained by qSRA analysis suggests that the signals emerged as
sums of two underlying scale-free processes, in which case the
SFD method should be preferred. The performance of the SFD
analysis was tested on the synthesized data pool used in Figure 6.

The crossover-model, eventually identified by comparing the
MSEs of our two methods (qSRA and SFD), showed a sensitivity
of 73%.
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A1 B1

A2 B2

FIGURE 5 | Impact of correlation and moment level on crossover scales. (A1) Twelve bimodal signals were generated by adding the scaling functions of 12

DHM-generated monofractal signals in length of 212—representing varying degrees of correlation—and the same noise component of Hnoise = 0.5. These signals

were evaluated by scaling analysis for S(q)s. (B1) Scaling functions at seven moment levels of + 15 ≧ q ≧ −15 in increments of five are shown for the two

constituents for demonstrating the use of signal addition in a multifractal setting. As seen (A2), the breakpoints (gray circles), the exclusion ranges (gray bars), and the

true crossover scales (black circles) become shifted toward larger scales with an increasing degree of correlation with the only exception being when sx is occupying

the lower scales. In this case, the algorithm will settle with a pseudo breakpoint at much larger scales where, due to increasing fluctuations, the first large enough

hump in S(q) will be accidentally taken for a breakpoint (sb). When two multifractal components are merged, the analysis yields a similar distribution of breakpoints and

crossover scales (B2) as determined by the actual span of H(q)s and the range of qs.

Performance of qSRA and SFD Methods on
High-Definition Empirical Bimodal Signals
(EEG and NIRS)
High-definition empirical signals (EEG and NIRS in Figure 7)
were chosen for demonstrating the optimal performance of the
qSRA and SFD methods on empirical data. Both of these data
sets had a combination of H and focus ratio close to the low-
bias band of these methods (as seen in Figure 6, combined).
The SFD method proved superior on these signals over the
qSRA approach, yielding lower MSE-values and values of a
magnitude lower when compared with those of the unimodal
analysis (Table 1). Synthesizing the signal components based
on the endpoint parameters of the SFD-FMF analysis (Table 2)
yielded the same MSE when these components were added.
This supports the notion that these bimodal signals could be
treated as the sum of two concomitant processes, of which one
could be fitted by an exact multifractal (Mukli et al., 2015) and
the other by an exact multifractal noise (Grech and Pamuła,
2012). The multifractal analysis by the SFD FMF-SSC method
for H(2) and hmax yielded a correlated level for the fractal and
an uncorrelated level for the noise component. The multifractal
measure (fwhm) was greater for the former than for the latter as
shown in Table 2.

The scaling functions for the EEG and NIRS data sets are
shown in Figure 8. The estimated crossover scale of the human
EEG is 257 ms at q= 2 and in case of NIRS records is 46 s at q= 2
(Figure 8). This demonstrates that the identified moment-wise
crossover scales correspond well with characteristic boundaries
between the theta and delta bands of the EEG and, in the case

of NIRS signals, the transient is in-between the low- (Biswal
et al., 2010; Herman et al., 2011) and high-frequency fluctuations
(Figure 8). In this particular case, our analyses confirmed that
bimodality in the analyzed EEG and NIRS signals (recorded
from the human brain cortex) should not be regarded as
a scale-dependent imprint of a transfer function but as one
resulting from the superposition of random noise and correlated
multifractal processes (Figures 7, 8 and Tables 1, 2).

Performance of the SFD Method on an
Empirical Bimodal Signal with Limited
Definition (fMRI-BOLD)
Rodent fMRI-BOLD imaging data of limited definition (Eke et al.,
2012) was chosen to demonstrate the performance of our SFD
method on scans of bimodal BOLD time series data obtained
across a section at the level of the bregma (Herman et al., 2011;
Figure 9A). Criteria of 0.5 < H[fXi](2) < 2, sx within the full
available SR, and 0.1 < sb/sx < 10 yielded valid estimates of
crossovers with MSE:SFD-FMF < MSE:qSRA-FMF at a rate of
68%. Accordingly, this assessment led to frequent dropouts in
the parametric images at locations with extreme sx (data not
shown). We could, however, make the performance of the SFD
method robust on limited-resolution BOLD data by exploiting
the fact that a ubiquitous uncorrelated component with minor
variations was present in the scaling functions throughout the
section (Figure 9A) and thus could be used as a default in
the analysis. Building on the maximal precision of the SFD
method as demonstrated on synthetic signals (Figure 6), this
default component was determined in a voxel with a mid-scale
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FIGURE 6 | Performance of the qSRA and SFD methods on synthesized signals. A set of DHM-generated multifractal signals of length N = 212 were created as a

sum of fractal and noise components generated at Htrue[
fXi ] in steps of 0.1 and Htrue [nXi ] = 0.5 at pre-determined ratios of the respective foci. Values of correlation

(hmax) and multifractality (fwhm) were estimated for the fractal and noise components by qSRA- and SFD-FMF-SSC methods. Their biases with respect to estimates

by FMF-SSC alone were plotted in intensity coded performance vignettes (Eke et al., 2012). The mean of the absolute biases for a combined evaluation of the fractal

and noise components was also created and displayed in contour plots with the actual coordinates of the two empirical signals (EEG, NIRS) overlayed.

sx (Figures 9A,C, marked in red). A reliable assessment of sx(q)
resulted in consistent estimates of H(q) and fwhm as seen in the
parametric maps in Figure 9D. Note that, in our case, because
of the impact of the uncorrelated component, lower crossover
scales appeared to be associated with lower Hurst exponent
values in cortical areas with the exception of the cingulate
cortex, where the correlated component was very dominant.
This yielded apparently inverse patterns in the H[fXi](2) and
H[Xi](2) maps (Figures 9B,D). Furthermore, the crossover scale
seen in the human NIRS signal (Figure 8) fell within the range
of crossover scales found in the rodent fMRI-BOLD image
data (Figure 9D).

DISCUSSION

We reported here on the SFD-FMF method as a genuinely
multifractal approach to decompose the scale-free constituents
of empirical bimodal signals by combining our multifractal
formalism (Mukli et al., 2015) with the use of the Bienaymé
formula (Bienaymé, 1853). We also developed qSRA-FMF,
a moment- and FMF-based variant of the segmented line
regression method (Ge and Leung, 2013) in order to obtain an
MSE-based reference for discerning (i) additive from (ii) non-
additive forms of signal genesis (see Figures 2A,B, respectively).

Goodness-of-fit statistics—for given bimodal characteristics—
were used as a guide in choosing between estimates obtained
by the SFD-FMF or qSRA-FMF methods, as respectively valid.
Accordingly, based on low MSE values, when analyzing bimodal
EEG, NIRS, and fMRI-BOLD data we could demonstrate that
these signals resulted from superposition. When applied to high-
definition empirical signals (EEG, NIRS) with high degrees
of freedom, these methods performed in a robust manner.
Sub-optimally sampled physiological processes—such as, the
exemplary fMRI-BOLD imaging data—however, obviously
imposed limitations to the extent to which these methods could
reveal bimodality in the signals; a circumstance that we could
overcome by reducing the degrees of freedom in the analysis, thus
yielding a robust performance on limited-definition fMRI-BOLD
signals too.

Physiological Significance
Complex dynamics in biological systems—like that of the brain—
have recently become the focus of intensive research as they
represent an essential attribute for normal functioning (Bullmore
et al., 2009). Staying with the example of the brain, multifractality
is regarded as one of the main facets of complex, scale-free
dynamics emerging from the underlying immense neuronal
networks (Bullmore et al., 2009; Bullmore and Sporns, 2009).
Multifractal characterization of scaling is inherently complex.
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FIGURE 7 | Performance of the qSRA and SFD approaches in handling multifractal bimodality on high-definition empirical signals (EEG and NIRS). EEG and NIRS

signals recorded from the human brain were used as exemplary empirical signals in this demonstration. They were analyzed by qSRA- and SFD-FMF-SSC methods

for H(q) and D(h) functions. Their synthetic equivalents (mocks) were created by adding fractal and noise components with foci, degree of correlations [H(2)], and

multifractalities (1H15) matched to those of the empirical counterparts. As demonstrated by the closely matching true and estimated H(q) and D(h) functions for both

the fractal and noise components of the mock signals, the SFD method proved clearly superior in handling the multifractal crossovers. Hence, the estimated H(q) and

D(h) functions (A1, A2, C1, C2) should be regarded as realistic characterizations of the fractal and noise components of the bimodal empirical signals at the level of

expectable bias shown in Figure 6.

It cannot be applied to empirical data without defining the
application criteria in terms of the properties of the empirical
signals in which resting-state brain dynamics are captured (i.e.,
EEG, MEG, NIRS, fMRI-BOLD; Eke et al., 2012). One such
important property is multi- or bimodality that was the subject
of this study.

The standardmoment-based analyses of multifractal behavior,
operating on the basis of an assumed unimodal model, estimates
the scaling exponents within a single SR. This approach, however,

will lead to erroneous estimates if unimodality does not hold.
Indeed, it has been shown that EEG, NIRS, and fMRI-BOLD
signals (Eke et al., 2006; Gifani et al., 2007; Herman et al., 2011)
were in fact multimodal, a signal property that, therefore, must be
taken into consideration in their multifractal characterization. To
this end, our SFDmethod provides a means for decomposing the
signal components of a bimodal signal with each part having its
own set of single SRs needed to meet the aforementioned criteria
for scale-invariance.
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TABLE 1 | The goodness-of-fit statistics (MSE) of the raw (FMF-SSC) and the two

adaptive FMF-SSC methods (qSRA and SFD) for the empirical signals and their

numerical equivalents shown in Figure 7.

Method/Signal EEG mock EEG NIRS mock NIRS

FMF-SSC 0.5226 0.5386 0.1388 0.2776

SRqA FMF-SSC 0.0353 0.0409 0.0388 0.0550

SFD FMF-SSC 0.0311 0.0320 0.0237 0.0260

TABLE 2 | The endpoint parameters of SFD-FMF-SSC analysis of exemplary

bimodal empirical signals shown in Figure 7.

Method Endpoint EEG NIRS

Noise Fractal Noise Fractal

SFD FMF-SSC hmax 0.41 1.83 0.55 1.26

fwhm 0.18 0.66 0.24 0.54

Beyond obtaining correct estimates for the scaling exponents,
an understanding of the signal genesis in reference to the
underlying physiological factors should be the subject of future
research. Accordingly, in this work, we weremotivated to develop
the multifractal signal decomposition methods as needed and
likely useful instruments to study multimodal signal genesis, in
particular in the case of hemodynamic signals—such as, NIRS
or fMRI-BOLD—that are widely used in brain connectivity
research (Biswal et al., 2010; Mesquita et al., 2010). Both could
be modeled as the convoluted product of ongoing regional
neuronal activity (EEG) and the regional hemodynamic response
function (HRF; Liu et al., 2011). As HRF is equivalent to
low-pass filtering, it should render the hemodynamic signal
multimodal with a breakpoint in its scaling function. Our qSRA
and SFD methods can readily separate a breakpoint manifesting
as signal convolution from a crossover resulting from signal
superpositioning; we found the latter to be the case with the
empirical signals studied. Despite its fundamental importance in
signal genesis, this issue has not yet been addressed in the field of
physiology or in particular in that of brain dynamics. Thus, our
results on multifractal crossovers in the exemplary resting-state
NIRS and fMRI-BOLD signals should be regarded as not only
relevant but also promising in that our qSRA and SFD methods
can reveal various facets of hemodynamic signal genesis in the
brain.

Crossover Scales
Our FMF formalism (Mukli et al., 2015) as implemented in SFD-
FMF offers an explicit framework to deal with the crossover of
empirical multifractals. Incorporating the focus in the regression
scheme of the SFD-FMF method allows for a robust estimation
of crossovers in empirical signals. Omitting the use of the
focus in guiding the regression process of H(q)—as is the case
with standard methods like MF-DFA (Kantelhardt et al., 2002;
Ihlen, 2012)—would potentially upset the moment-wise order of
their independently obtained regression slopes. Ensuring such
order of regression slopes in H(q) is essential in meeting the

FIGURE 8 | Scaling function representation of empirical signals interpreted by

our SFD-FMF approach. The EEG and NIRS scaling functions were used in the

analysis shown in Figure 7. For the properties of the EEG, NIRS, and fMRI

signals see Section Methods. Shown are the respective scaling functions (solid

lines), foci (black circles), and crossover scaling function values (gray circles).

For further details, see the text.

application criteria of the Legendre transformation incorporated
in the multifractal formalism (Frisch and Parisi, 1985; Halsey
et al., 1986; Bacry et al., 1993) and thus preventing outcomes
with inversed or corrupted singularity spectra (Mukli et al., 2015;
Delignières et al., 2016). To this end, Gierałtowski et al. (2012)
attempted to circumvent the use of the Legendre transformation,
known to be an inherently critical step in the formalism,
with the multiscale assessment of H(q) (termed multiscale
multifractal analysis, MMA). Nevertheless, a “reversed” H(q,s)—
i.e., H increasing with q—as shown in Figure 17 of Gierałtowski
et al. (2012) does evidently fail in meeting the above-mentioned
criterion for a monotonously declining H(q,s) with increasing
qs. This also explains the artifacts in the singularity spectra
seen in their Figure 6. While their interpretation of the change
of the average slope of the scaling function profile at some
scale, s, would not suffice for multifractal analysis complete with
singularity spectrum, it can still approximate breakpoints and/or
crossover scales, but without discerning these phenomena.
Nevertheless, there are other effective approaches to circumvent
the difficulties associated with the use of the Legendere in
obtaining D(h) (Jensen et al., 1987; Chhabra et al., 1989).

Impact of Component Focus Ratio and Temporal

Correlation
Additive random or correlated noise readily upsets multifractal
analysis as demonstrated by Ludescher et al. (2011). In particular,
when random noise with increasing amplitudes is added to
a multifractal signal, the q-wise scaling function obtained by
standard tools such as, MF-DFA will exhibit crossovers gradually
shifting to larger scales. Accordingly, H(q) evaluated within
the range of chosen scales becomes dominated by that of the
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FIGURE 9 | Performance of the SFD approach in handling multifractal bimodality on a limited-definition empirical signal (fMRI-BOLD). Results of voxel-wise analysis of

rat fMRI-BOLD scan-based time series data (Herman et al., 2011) by the SFD-FMF method are shown along with those obtained by the FMF method for comparison.

(A): Representative scaling functions for cortical (C), subcortical (S), and basal (B) voxels are shown. The uncorrelated component determined from a voxel with

mid-range sx [marked in red in (A,C)] that fits very well as a ubiquitous noise component for all scaling functions. Standard, unimodal FMF-based analysis yielded the

multifractal metric maps seen in (B). The concept of the SFD-FMF-based adaptive, bimodal analysis is shown in (C). The ubiquitous uncorrelated component (red)

seen in (A) was used as default in decomposing the correlated (fractal) component for all scaling functions (see the representative black and blue functions with their

associated foci). Parametric maps for the second moment crossover scale, Hurst exponent, and full-width-at-half-maximum of the multifractal singularity strength

spectrum along with the focus of the generalized Hurst exponent function are seen in (D). Note that only multimodal analysis can reveal the real topology of

multifractality in the brain (D) that cannot possibly be captured by unimodal analysis (B).

added noise component. While the aim of these authors was
not to provide a solution for handling noise contamination, they
made an important contribution demonstrating that added noise
propagates across scales ultimately leading to spurious results in
multifractal analysis.

As for the impact of the component focus ratio (Figure 6),
from the above-mentioned geometrical properties of multifractal
scaling functions and the relationships shown in Figure 5A2 it
follows that the crossover scale is low when both H and the
component focus ratio are low (Figure 6, vignettes in lower left
corner). Conversely, it is high when both H and the component
focus ratio are high (Figure 6, vignettes in upper right corner).
In between these extremes, a diagonal band of low bias due to the
impact of mid-range crossover scales in the data is seen (Figure 6,
bottom row) where the presence of merging scale-free patterns
can be statistically confirmed (Clauset et al., 2009). When—due
to the actual representation of scaling in the empirical data—
the analysis is not performed within this optimized range, the
signal definition should be improved: crossover scales that are
much too low require an increased sampling rate, those that are

much too high call for a longer signal to be collected (Eke et al.,
2002).

There are cases when the superposition of two fractal
components yields a composite signal with a crossover falling
outside the observed range of scales (Figure 10). The multifractal
spectrum in this case is typically asymmetric (Drożdż and
Oświęcimka, 2015). While under these conditions the crossover
is not directly accessible to our SFD-based analysis, our
additive model still allows for its characterization and offers
an explanation for the asymmetry in D(h). This way, a
composite process yielding asymmetricD(h) can be modeled too.
Asymmetric D(h) can also be interpreted as a phase transition
(Grassberger et al., 1988; Muzy et al., 1993; Arneodo et al., 1995;
Radons and Stoop, 1996) based on the deep analogy that exists
between the multifractal formalism and equilibrium statistical
thermodynamics (Stanley and Meakin, 1988; Tel, 1988; Arneodo
et al., 1995). According to this model, the superimposed partition
functions under and above a critical q and the signals mutually
perturb each other to a slight extent (Arneodo et al., 1995);
thus, the partition function, τ(q) and D(h) are always dominated
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FIGURE 10 | Representation of superimposed signal components in multifractal formalism. In (A), scaling functions of a multifractal noise and a multifractal were

generated by DHM (black) and Cantor function (red), respectively at moment levels of +15 and −15 with crossover (i.e., the intercept of scaling functions at identical q

levels) falling outside the observed range of scales (indicated by the arrow bar). Their corresponding H(q) and D(h) are shown in (C,D). The superimposed functions are

indicated in green. Note that under the condition when the crossover falls outside the range of scales used in the analysis, the resulting D(h) becomes asymmetric in

that the singularity strengths corresponding to multifractal noise and multifractal components end up being segregated in the negative and positive ranges of q,

respectively. Hence, in this case the decomposition of the two signal components in S(q) for H(q) and D(h) across −15 ≤ q ≤ + 15 is not possible. In (D–G), a collage

is provided for component representation in D(h) for some typical cases depending on which of the components dominates the scale- and moment-wise dynamics.

(D) Case of no crossover within the observed range of scales due to comparable foci and overlapping H(q) described in details in (A–C) note that this is the case of

q-dependent phase transition where the dominance is q-wise, only resulting in a composite D(h) with no possibility of decomposition. (E) Case of no crossover and no

composite D(h) due to the dominance of the multifractal. (F) Case of crossover with no dominance yielding decomposable S(q) and thus two separate D(h)s for the

components. (G) Case of no crossover and no composite D(h) due to the dominance of the multifractal noise. Note that signal decomposition of the composite S(q)

by our SFD approach is possible only in the case of F when crossover is present across the range of observation across a wide range of moment levels yielding a

complete description of H(q) and D(h) of the components.

by a single component under which condition the Bienaymé
formula yields similar results in describing the superposition

(Ssuperimposed ≈

√

S2component + 0 = Scomponent).

Impact of Moment Level
In a scaling function representation of empirical temporal
multifractality, the crossover scale for the chosen smallest
negative moment is the largest and it becomes the smallest at
the largest positive moment (see for example Figure 5B2). This
moment-wise distribution of crossover scales emerges from the
geometrical underpinnings of FMF (see Figure 2C) and the way
H(q)-dependence is formulated in Equation (12) yielding the
crossover scale itself. As crossover scales and breakpoints are
similar manifestations of scaling, breakpoints should also be
captured in a moment-wise manner.

The significance of the breakpoint in the analysis of bi-
or multimodal signals has already been recognized in the
literature (Peng et al., 1995; Kantelhardt et al., 2001; Eke
et al., 2006; Herman et al., 2011; Ge and Leung, 2013).
However, disregarding their moment-wise nature (Ge and
Leung, 2013) distorts the acquired H(q)s with breakpoints
falling outside the proper SR. This generates uneven error
propagation across the moments in the case of standard

multifractal methods (Ludescher et al., 2011), or introduces a
slight but global error when FMF methods are applied. To
the best of our knowledge, the qSRA- and SFD-FMF methods
should be regarded as first attempts to carry out genuinely
adaptive multifractal analyses on bi- or multimodal signals in
a properly designed, moment-wise manner. They can readily
be combined with various fractal and multifractal tools as
their adaptive step, thus opening new possibilities for future
applications.

Significance of the fGn-fBm Framework
Mono- andmultifractal analyses alike have been shown to benefit
from the fGn-fBm fractal signal model of Mandelbrot and Van
Ness (1968) as implemented by Eke et al. (2000). Despite its
simplicity, this model captures the most fundamental properties
of scale-free signals as realizations of fGn and fBm processes.
These two signal classes are mutually convertible via cumulative
summation or differencing of their subsequent values leading to
an increase or decrease in their extended H by 1, respectively.
As seen in Figure 11, methods differ in the range in which
they yield minimal-bias estimates of extended H across the
fGn-fBm framework. A multimodal signal may well contain
components with H falling above or below the minimal-bias
range. Hence, signal classification by methods such as, SSC (Eke
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FIGURE 11 | Performance of various fractal algorithms within the fGn-fBm framework on synthetic signals. Exact monofractal time series were generated by DHM for

0 < Htrue < 1. Using the conversion rule of the framework, signals for −1< Htrue < 4 were created by differencing (diff) and cumulative summation (cumsum) to

obtain differenced fGn and summed fBm signals, respectively. Bias, as the absolute value of the difference of estimated and known Hs, was trimmed to [0, 2]. Note

that each of these methods has a range of Htrue with minimal bias indicated by arrows and referred to as the H-window for the method. Above and below the

H-window, estimates become increasingly biased due to saturation.

et al., 2000) should be incorporated as a first step in the analysis.
The actual implementation is by repetitive signal conversion
until a difference in two successive H estimates is found of
∼1. All of our signals and signal components proved one or

other of the two classes of the fGn-fBm dichotomy. This way
of handling signal classes in fractal analyses should reconcile
issues seen with other adaptive approaches (Kuznetsov et al.,
2013).

Frontiers in Physiology | www.frontiersin.org 14 July 2017 | Volume 8 | Article 533

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Nagy et al. Decomposing Multifractal Crossovers

A

C

B

FIGURE 12 | Breakpoints and crossover scales of superposition-type bimodality cannot possibly be identical. (A) Component scaling functions (fractal and noise)

applied in Figures 3, 4 were used (solid black) to demonstrate the discrepancy in the underlying fractal components estimated by qSRA-FMF (light gray) and

SFD-FMF (gray) methods. (B) The vicinity around the true crossover is shown enlarged. Note the difference between the true crossover scale and its estimate by

SFD-FMF and the breakpoint estimated by qSRA-FMF. The former is due to the limited precision of the estimation by SFD-FMF, which both in principle and practice

can be decreased. The latter cannot be minimized by improving the precision of qSRA-FMF owing to conceptual limitations preventing minimization of the difference

between the true crossover scale and its estimation by a breakpoint. (C) Composite scaling functions were obtained by superpositioning the component time series

(black line) or by applying the best fitted scheme of SFD-FMF and qSRA-FMF methods, respectively.

Comparing Overall Performances and
Limitations of qSRA and SFD Methods
The precision of the qSRA method increases with the level of
tolerance, which in turn results in contracted SRs. This tends
to weaken the estimates of H(q) due to falling short of securing
wide enough scale-invariance (as seen in Figure 1). This effect is
altogether eliminated by the SFD method, which makes use of all
the data of the merging signal components.

Our SFD method was validated against synthetic signals
(Figures 6, 7, and Table 1). It outperformed the qSRA method
for low-scale crossovers as the latter was shown to be susceptible
to increased fluctuations typically seen in the large-scale region
with limited number of available non-overlapping windows
(Cannon et al., 1997). Hence, qSRA tends to locate the
breakpoint for spuriously high scales (Figure 6). Multimodal
scaling functions may deviate from the exact segmented line
regression model near the breakpoint (Kuznetsov et al., 2013).
This phenomenon always appears in superimposed fractals or
multifractals, and can be modeled by added scaling functions
(Figure 12).

Significance of the Design Concept
The SFD approach is built around the notion that the
multimodality emerges from the superposition of multiple and
typically scale-free signal components. Multimodal multifractal
scaling functions can also be produced by non-fractal generators
like the infinitely divisible cascades (Chainais, 2007), filters,
etc. Only specific generator models can adequately treat scale-
dependent dynamics in the multimodal processes. As such,
causal models are typically unavailable; our qSRA method
can offer a phenomenological solution. Thus, where a causal
generator model is sought, analysis by SFD should be preferred
over that by qSRA. As the number of modeling parameters
are the same in both cases, a smaller level of goodness-of-fit
statistics (i.e., MSE, SSE) can indicate which of the two seems
a realistic model for a particular signal (for a demonstration
see Figures 7, 9). Performance of our methods and their
discriminating power evidently depend on empirical signal
definition (length, sampling, non-fractal contamination, etc.) as
seen in the cases of our exemplary applications to high-definition
EEG and NIRS, and limited-definition fMRI-BOLD signals.
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Performance of qSRA and SFD Methods on
Empirical Signals
Human EEG and NIRS Signals
The crossover between the EEG signal components was found
at the boundary between the δ and θ bands (Figure 8) of EEG
classification. An independent δ and θ rhythm has already been
proposed due to the significant interregional gap in synchrony
(Mormann et al., 2008; Fetterhoff et al., 2015). Our current
findings also prove the presence of an independent multifractal
δ rhythm. The NIRS signal was also found to be the sum of
temporally correlated, scale-free fluctuations dominated by low
frequencies (i.e., low-frequency fluctuations) and uncorrelated
[but not instrumental (Eke et al., 2006)] noise.

Rodent fMRI-BOLD Imaging Data
Resting-state brain dynamics as captured in fMRI-BOLD
fluctuations is powered by ongoing neurodynamics spreading
across the functional connections of a fractally organized
anatomical network of an immense neuronal pool (Bullmore
et al., 2009; Werner, 2010). Previously, we demonstrated that
the resting-state fMRI-BOLD signal in an animal (Herman et al.,
2011) and the fNIRS signal in a human model (Eke et al., 2006),
alike, were bimodal temporal fractals. Thus, subject to future
but likely advances in fMRI-BOLD technology, an improved
signal definition may likely reveal bimodality in human fMRI-
BOLD signals too. However, due to limitations inherent to the
current fMRI-BOLD technology (Eke et al., 2012), their scale-
free character—especially in cases of bimodality—is hard to
capture (see Figure 12). Accordingly, while the SFD analysis
yielded valid estimates of crossovers in a sizable fraction of
the scanned voxels, still—depending on the correlation level
and component focus ratio—numerous crossover estimates—
due to sub-optimal data acquisition—proved invalid at extreme
scales. This severely upset the topology of the multifractal
parametric maps and prompted us to look for justifiable
grounds to reduce the degree of freedom in finding breakpoints
and/or crossovers in an attempt to improve the performance
of the analysis. We did indeed find that the uncorrelated
components of the scaling functions could be taken as
default throughout the voxels of the scan. This uncorrelated
component was determined at a site (Figure 9) where the
precision of the method has been shown to be maximal in
tests on synthetic signals (Figure 6). This procedure effectively
compensated for the limited definition in the BOLD signals
as seen in the enhanced topology of the parametric maps
(Figure 9D).

CONCLUSIONS AND FUTURE
PERSPECTIVES

The issue of bimodality presents a major challenge when it
comes to multifractal analysis of complex biological signals. We
reported a novel approach (SFD-FMF method) as a genuinely
multifractal tool to decompose the scale-free components
of empirical bimodal signals by combining our multifractal
formalism (Mukli et al., 2015) with the use of the Bienaymé
formula (Bienaymé, 1853). We also developed a moment- and
FMF-based variant of the segmented line regression algorithm
(qSRA-FMF method) to discern additive from non-additive
forms of signal genesis based on respective goodness-of-fit
statistics. When applied to high-definition empirical signals
(EEG, NIRS), these methods performed in a robust manner. The
performance on sub-optimally sampled physiological signals is
expected to be weaker; a circumstance that we could overcome
by reducing the degree of freedom of the analysis, thus restoring
a robust performance of the SFD-FMF and qSRA-FMF methods
on a limited-definition fMRI-BOLD imaging dataset too. These
methods offer the means to identify signal generators in
physiological processes. Most importantly, they open ways to
characterize the topology of key multifractal metrics in the brain
emerging from its complex network dynamics.
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SYMBOLS AND DEFINITIONS

∧ – estimated value
A – amplitude
β – spectral index
1H15– the difference between the H(−15) and H(15) values
DFA – detrended fluctuation analysis
DHM – davies and harte method
DMA – detrending moving average
D(h) – spectrum of singularity strength (or singularity spectrum
for short)
EEG – electroencephalography
ER – exclusion range
f – frequency (Hz)
fBm – fractional Brownian motion (non-stationary signal)
fGn – fractional Gaussian noise (stationary signal)
FMF – focus-based multifractal formalism (an approach using a
focus-based regression scheme)
fMRI – functional magnetic resonance imaging
fNIRS – functional near-infrared spectroscopy
f – measure describing the fractal signal component dominating
over the higher scales
fwhm – full width of the singularity spectrum, D(h), at half of its
maximum
H – extended Hurst exponent (fGn: 0<H<1; fBm: 1<H<2;
summed fBm: 2<H<3)
Htrue – known value of the Hurst exponent in numerical
syntheses of time series
H(q) – generalized Hurst exponent
h – Hölder exponent
hmax – the value of h at the peak position of D(h)
HRF – hemodynamic response function
m – detrending order (in DFA)

MF – multifractal (an approach using a standard regression
scheme)
MSE – mean squared error
µ – measure
N – the length of time series (in data points)
n – measure describing the fractal (or noise) dominant over the
lower scales
Nc – number of constituent signals
NIRS – near-infrared spectroscopy
Ns – number of non-overlapping segments
q – statistical moment order used in multifractal analysis
(moment for short)
qSRA – moment-wise scaling range adaptivity (method)
s – temporal scale
s′ – scaling boundary (possible breakpoint)
sb – breakpoint
sx – crossover scale
SD – standard deviation
S[Xi](q,s) – scaling function value at a given q and s calculated
from signal Xi

S[Xi](N) – the focus of the scaling function for signal Xi

SR – scaling range
SFD – scaling function decomposition (method)
SSC – signal summation conversion (method)
SSE – sum of squared error
SSM – spectral synthesis method
v – the order of non-overlapping segments v= 1,...,Ns

x – the scale selected for obtaining an actual value of a scaling
function
Xi – time series (signal), where i= 1,...,N
WL – wavelet leader (method)
WTMM – wavelet transfer modulus maxima (method)
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