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From carrying potentially pathogenic genes to severe clinical phenotypes, the basic

research in the inherited cardiac ion channel disease such as long QT syndrome (LQTS)

has been a significant challenge in explaining gene-phenotype heterogeneity. These have

opened up new pathways following the parallel development and successful application

of stem cell and genome editing technologies. Stem cell-derived cardiomyocytes and

subsequent genome editing have allowed researchers to introduce desired genes

into cells in a dish to replicate the disease features of LQTS or replace causative

genes to normalize the cellular phenotype. Importantly, this has made it possible

to elucidate potential genetic modifiers contributing to clinical heterogeneity and

hierarchically manage newly identified variants of uncertain significance (VUS) and more

therapeutic options to be tested in vitro. In this paper, we focus on and summarize

the recent advanced application of human-induced pluripotent stem cell-derived

cardiomyocytes (hiPSC-CMs) combined with clustered regularly interspaced short

palindromic repeats/CRISPR-associated system 9 (CRISPR/Cas9) in the interpretation

for the gene-phenotype relationship of the common LQTS and presence challenges,

increasing our understanding of the effects of mutations and the physiopathological

mechanisms in the field of cardiac arrhythmias.
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INTRODUCTION

Long QT syndrome (LQTS) is an inherited cardiac channelopathy (ICCs) associated with
prolonged cardiac repolarization caused by functional changes in cardiac ion channels. It is
characterized by the prolongation of QT interval and fatal arrhythmias (1). Causative mutations
with autosomal dominant inheritance are associated with congenital long QT syndrome in at least
1:2,000 live births, with type 1 LQTS (LQT1) to type 3 LQTS (LQT3) accounting for ∼75% of
clinically defined cases. KCNQ1, KCNH2, and SCN5A encode ion channels Kv7.1, Kv11.1, and
Nav1.5 to cause LQT1, LQT2, and LQT3, respectively (2–5). Single nucleotide variants (SNVs)
occurring in each gene to cause loss-of-function (LOF) (Kv7.1, Kv11.1) and gain-of-function
(Nav1.5) to abnormal ionic currents in each channel are thought to underlie the pathogenesis of
these ICCs (6).
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The pillars of current therapy include the following: β-
blockers (propranolol and nadolol), left cardiac sympathetic
denervation, and the automatic implantable cardioverter-
defibrillator (7). Various limitations, including drug intolerance,
poor compliance, and high complications of invasive strategies,
urgently call for safer and more effective drug administration (8).
From correction of pathogenic phenotypes in the laboratory to
clinical translation, an available treatment always requires robust
disease models that ideally replicate the pathophysiological
features of the patient without gross deviations.

Unfortunately, the search for pathogenesis and effective
therapeutic strategies for ICC is limited mainly by the availability
of disease models; while human primary cardiomyocytes would
be an ideal option, their limited provenance, non-replication,
and poor consistency hinder this choice. In desperation, animal
models and various modified immortalized tool cells are always
alternatives. Overexpression of mutant channels in heterologous
expression systems, such as Xenopus oocytes, human embryonic
kidney (HEK) cells, and Chinese hamster ovary (CHO) cells,
has been used in most functional studies of specific mutations
associated with LQTS. One significant limit of these models
is that they lack critical cardiac ion channel macromolecular
complex components that may be required to recapitulate the
exact molecular and electrophysiological phenotype associated
with the mutation (9, 10).

The rise of the human-induced pluripotent stem (hiPSC)
technology and improvements in hiPSC directed differentiation
schemes with CRISPR/Cas9 gene-editing tools have established
powerful approaches for ICC-related research, human
disease modeling, and drug development or screening (9).
Cardiomyocytes generated by disease-specific hiPSC-induced
differentiation called hiPSC-CMs are expected to retain a
gene-specific clinical phenotype in vitro to better model disease
(11). Furthermore, CRISPR/Cas9 enables us to create any variant
we desire in hiPSC in a dish to generate isogenic cardiomyocyte
lines. These isogenic hiPSC-CMs are generating new study ideas
for SNV in LQTS, particularly for those classified as variations
of unknown significance (VUS) that haven’t been clinically
defined and characterized in the lab, or even pathogenic variants
to investigate the influence of modifier genes (7, 12, 13). More
importantly, through the continuous development of improved
CRISPR/Cas9, building on the successful modeling of hiPSC-
CMs, we are able to use it to introduce or correct disease-causing
mutations at a much smaller cost to the cell (14–16). In this
paper, we will discuss how these technologies can be used to
elucidate common LQTS-related gene phenotypes in a single
dish and strategies for doing so, current achievements, and
future challenges.

HIPSC-CMS IN LQTS

hiPSC-CMs vs. Animal Models and
Heterologous Expression System
Before developing hiPSC-CMs, it was useful to use immortalized
cell lines overexpressing specific ion channels or transgenic
mouse models to replicate LQTS in vitro and in vivo (10).

However, the limitations are pretty obvious. Firstly, these cells
cannot replicate the physiological environment of primary
cardiomyocytes, which could result in false positives or negatives.
For example, to model LQT2, the expression of the KCNH2 gene
encoding a potassium channel in HEK-293 cells alone seems
less than ideal for its intracellular maturation and supracellular
membrane function. The presentation of the hERG channel’s full
physiological state requires the auxiliary subunit minK to form
a stable multimer, which is lacking in a heterologous expression
system (17, 18). Co-expression of them in HEK-293 cells, on the
other hand, requires consideration of the operation strategy of
the researcher, such as differences in transfection ratios and their
sensitivity to cardiotoxic drugs when present alone or together in
a physiological context (19).

As for animalmodels, the implications of species differences in
inconsistency in cardiac electrical activity need to be considered.
Although ion channels are highly conserved in humans and
mice, the substantial differences in gene expression profiles
and physiology between species severely limit the validity of
extrapolating human data from rodents. Such differences are
more pronounced in mice, as evidenced by higher heart-rate
differences and repolarization performance (20). And the low
level of expression of channels mediating repolarizing currents
limits the use of models in knockdown expression. Because of
species differences in cardiac electrical function features, these
different models do not accurately represent all aspects of the
human disease (20).

hiPSC-CMs express a variety of ion currents essential for the
heart, such as INa, ICaL, Ito, IKr, and IKs (21). Although still
immature, mainly reflected by the low expression of IK1 and the
high expression of the pacemaker current, they are important
for forming resting potentials, notably for the action potential
(AP) generation and profile (22, 23). The fetal-like myocardial
function may impair the accurate modeling of adult LQTS. For
example, low expression of IK1 makes hiPSC-CMs dependent
on IKr to obtain the maximum diastolic potential (MDP),
which is markedly depolarized with IKr blockers, negatively
affecting LQT2 disease replication and screening for hERG
channel toxicity (23–26). These deficiencies are not negligible
for the study of LQTS. Multiple cues to promote the maturation
of hiPSC-CMs, including prolonged culture time, biophysical
stimulation, and 3D culture, also help to address this (23). 3D
Cardiac tissue shows longer AP duration (APD), hyperpolarized
resting membrane potential, and faster upward velocity, with
sodium current density and upward velocity similar to human
ventricular tissue (27).

Generation of hiPSC and Directed
Cardiomyocyte Differentiation
Circumventing the ethical limitations of hESCs, reprogrammed
pluripotent stem cells from somatic cells of LQTS patients
are induced by four specific transcription factors (28–
30). Transcription factors are mainly delivered into any
cell type with proliferative potential by viral vector-based
methods (retroviruses, lentiviruses, and inducible viruses)
and non-viral vector methods (plasmids or linear DNA
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FIGURE 1 | Access to disease-specific hiPSC-CMs from LQTS patients and isogenic cell lines by CRISPR/Cas9. Reprogramming somatic cells from healthy

individuals or patients with transcription factors generates hiPSCs that are further targeted to inhibit Wnt/β-catenin capable of directed differentiation into hiPSC-CMs

carrying the genetic information. For hiPSCs from healthy individuals, constructing an isogenic set as control requires the introduction of one of the three

CRISPR/Cas9 components into the cell via a different vector.

and transposons) (31). Initially, skin dermal fibroblasts
were used, followed by non-invasive peripheral blood
cells, including T and B cells, and even uroepithelial cells
(32, 33). Retroviruses and lentiviruses, as delivery vectors,
raise concerns about the risk of insertional mutations and
even karyotypic abnormalities (34–36). The use of non-
integrating viruses (e.g., Sendai virus), free vectors, or the
formation of gene integration-free hiPSC via direct delivery
of reprogramming factors (e.g., proteins or mRNA) has
emerged as an excellent option (37–39) (Figure 1). Of course,
each approach has its own set of benefits and drawbacks.
And no reprogramming delivery mechanism has ever been
modified without encountering severe restrictions or unintended
consequences (40).

The development of hiPSC-CMs is designed to mimic
the human mesoderm and heart development process (41).
Briefly, TGF-β activates the typical Wnt/β-catenin pathway to
signal initiation and subsequent mesoderm formation and is
inhibited late in the cardiac lineage (42). Chemically defined
media containing Wnt inhibitors promote mesoderm formation
capable of efficient formation of cardiomyocytes (43, 44)
(Figure 1).

LQTS individual-derived hiPSCs are directionally
differentiated and retain their genetic background to form
disease-specific hiPSC-CMs, giving most experimental platforms
a novel approach to ICCs research. LQT1 was the first

channelopathy to be modeled using hiPSC-CM. This study
derived hiPSCs from two LQT1 patients carrying the genetic
heterozygous missense mutation KCNQ1-R190Q. LQT1 hiPSC-
CMs summarize the distinctive features of LQT1, including
a reduction in AP repolarisation currents IKs, leading to a
prolongation of APD and a channel protein transport defect
that exhibits a dominant-negative effect (45). Although it is not
always possible to enroll LQTS patients in some laboratories,
the development of CRISPR/Cas9 has alleviated this problem.
Researchers can alter the genetic information of normal
people or LQTS patients nearly at will by modifying the
genome of hiPSC with CRISPR/Cas9 (46) (Figure 1). And
the reproducibility of such genomic modifications in hiPSC
is far superior to the manipulations performed in terminally
differentiated hiPSC-CMs.

Electrophysiological Characterization of
LQTS-hiPSC-CMs
The patch-clamp technique is the gold standard for measuring
various AP parameters from hiPSC-CM. They chiefly include
resting membrane potential (RMP), MDP, and APD at different
repolarization percentage levels (i.e., APD20, APD50, and
APD90) that correspond to specific ion current characteristics
(21). Researchers have focused more on APD for LQTS since
APD90 is most dependent on IKs and IKr (9). Using a dynamic
clamp characterized by the real-time evaluation and injection of
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simulated membrane current, the injection of IK1 into hiPSC-
CMs to achieve a close-to-physiological RMP minimizes the
LQTS model’s inaccuracy (47–50).

Compared to the patch-clamp, no other technique can isolate
individual sodium or potassium channels. However, this low-
throughput and relatively complex technique is insufficient
for academic and industrial laboratories. Despite the lower
resolution, a high-throughput multi-electrode array (MEA) can
obtain ex vivo cardiac field potential durations (FPD) correlated
with QT interval characteristics in ECG and aid in the analysis of
normal or prolonged APD (51–57).

Abnormal electrical activity, such as decreased Ikr in LQT2
and Iks in LQT1, increased late sodium currents (INaL) in LQT3,
prolonged APD and FPD, and the occurrences of after early
depolarizations (EADs), can be detected in the laboratory using
these techniques in disease-specific or CRISPR/Cas9 editing-
based LQTS models (Table 1). Different LQTS-associated SNVs
can be assessed for drug response in hiPSC-CM using high-
throughput electrical measurements and simple gene editing
(53, 54, 108, 109). Moreover, optical evaluations by mapping
the hiPSC-CMs with genetically encoded voltage and fluorescent
calcium indicators fulfill the potential for studying conduction
and arrhythmogenesis (110, 111). They are progressively
identifying intracellular calcium transient abnormalities as an
important mechanism of abnormal phenotypic in LQTS, which
could lead to new therapeutic options (8).

RNA-GUIDED GENE MODIFICATION IN
HIPSC

Earlier, various single-gene modification efforts were performed
in hiPSC using genome editing techniques such as zinc finger
nuclease (ZFN) and transcription activator-like effector nuclease
(TALEN) (112). ZFN-driven transgene addition of KCNQ1 and
KCNH2 has successfully modeled the disease (70). Unlike ZFN
and TALEN, which use interactions between amino acid residues
and nucleotides to identify DNA target sites and induce double-
strand breaks (DSBs), CRISPR/Cas9 uses absolutely specific
nucleotide-nucleotide base pairing to make it a more efficient
and precise gene-editing tool (113, 114). Genome editing based
on CRISPR/Cas9 has undoubtedly become the primary means
of modifying the expression of specific genes at the hiPSC. Off-
target mutations in hiPSCs may be sufficiently low to be a
non-issue in disease modeling and other applications (115).

The CRISPR/Cas9 system consists of two components,
CRISPR and Cas9. Two repair mechanisms of Cas9-
induced DNA DSBs, non-homologous end joining (NHEJ)
or homologous directed repair (HDR), are utilized for the
alteration of genomic DNA sequences to prevent or treat a
disease: disruption of a gene, deletion of a specific genomic
region, and correction of a gene (Figure 2). CRISPR can usually
be designed and substituted as a single guide RNA (sgRNA
or gRNA) at LQTS-associated gene target sites (116, 117).
CRISPR/Cas9 cargoes can be of three types, namely (1) DNA
plasmid encoding both the Cas9 protein and the guide RNA,
(2) a combination of sgRNA and Cas9 mRNA, and (3) Cas9

protein with gRNA (ribonucleoprotein complex, RNP) (118–
120) (Figure 1). Furthermore, both gene correction and gene
addition require an exogenous single- or double-stranded DNA
(ssDNA) template with homologous arms or a single-stranded
DNA oligonucleotide (ssODN) (46, 113). For example, SNV for
KCNH2, isogenic correction ssODN templates need to contain
wild nucleotide sequences and CRISPR/Cas-blocking mutations,
preferably in the PAM, to minimize undesirable re-editing
(91, 121) (Figure 4).

Provided that a donor template is available, DSB-mediated
HDR repair mechanisms allow the introduction of targeted
mutations associated with the LQTS phenotype or the
correction of pathogenic mutations. Nevertheless, in addition
to consideration of off-target, DSB leads to activation of the
p53 pathway inducing DNA damage responses and cell cycle
arrest (122, 123). And genome editing by CRISPR/Cas9-induced
DSBs is generally less efficient in hiPSCs compared to 293T
cells (124, 125). DNA base editors (BEs), including the cytosine
base editor (CBE) and adenine base editor (ABE), have been
proposed to perform precise nucleotide substitution without
the need for a donor template or the introduction of DSBs
(46, 126–128) (Figure 2). Prime editors (PEs) extend the limited
editing window of BEs (C-G to T-A conversion for CBE and
A-T to G-C conversion for ABE) to eight transition mutations
(C→ A, C→ G, G→ C, G→ T, A→ C, A→ T, T→ A, and
T→ G) (129–132) (Figure 2). PEs substantially expands the
scope and capabilities of genome editing and, in principle, could
correct up to 89% of known genetic variants associated with
human diseases.

DECIPHERING LQTS USING CRISPR/CAS9
AND HIPSC-CMS

Generation of Isogenic Sets of hiPSC-CMs
Using CRISPR/Cas9
Clinical genetic testing has become the standard for diagnosing
genetic variants in suspected monogenic disorders. However,
these results are often found for VUS, for which they do not
have sufficient evidence of pathogenicity. VUS is becoming
a significant challenge in clinical genetics. The critical issue
remains that the variable expression and incomplete penetrance
between individuals with the same LQTS pathogenic mutation
remain largely unexplained (7). As a result of the progressive use
of genetic testing, the discovery of more rare variants, modifier
genes with clear variants, and VUS, combined with the lack of
experimental platforms, the focus has become on how to rapidly
and reliably determine the functional significance of the genetics
of variants.

In vitro hiPSC-CMs models of LQTS can be derived from
disease-specific somatic cell differentiation and differentiation
of CRISPR/Cas9-edited hiPSCs. The main reason for generating
these hiPSC-CMs is to observe the effects of mutations on cell
phenotypes, particularly genome editing using CRISPR/Cas9.
It is worth considering that multiple genetic and epigenetic
differences exist between cell lines and that reprogramming
and genome editing are themselves the causes of epigenetic

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 May 2022 | Volume 9 | Article 889519

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Song et al. CRISPR/Cas9 and hiPSC-CMs in LQTS

TABLE 1 | Disease-specific and CRISPR/Cas9-edited LQTS-associated variants characterized in hiPSC-CMs.

Disease Variants Properties Sources Phenotype References

LQT1 P.308 ∼ 344del, G589D,

IVS7-2A>G, M437V,

R190Q, S566Y, Arg401fs,

G314S, A190G

Heterozygous LQT1 patients Lower IKs amplitude and prolonged APD (P.308 ∼

344del, M437V)

Abnormal calcium transient (G589D, IVS7-2A>G)

LUF7346 enhanced IKs (R190Q)

Not performed (S566Y, Arg401fs, G314S, A190G)

(58–66)

G179S Homozygous LQT1 patients Not performed (67, 68)

R594Q Homozygous (JLNS)

Heterozygous (LQT1)

LQT1 and JLNS

patients

LUF7346 enhanced IKs (62)

A344Aspl Synonymous LQT1 patients Prolonged cFPD (69)

R190Q, G269S, G345E Heterozygous ZFN-mediated

targeted gene

Prolonged APD (70)

Y171X, V254M, I567S,

A344A/spl

Heterozygous LQT1 patients,

CRISPR/Cas9

(A344A/spl)

Prolonged APD (71, 72)

c.569 G>A, c.585delG,

c.573_577delGCGCT

Unavailable LQT1 patients Not performed (66)

LQT2 G1681A, R176W, A561T,

A561V, A561P, L1012P,

N996I, IVS9-28A/G, A422T,

G604S, N633S, R685P,

V822M, P605L, T152P,

R366X, S428X,

c.1714G>A, c.1870A>T,

c.2960del, R752W

Heterozygous

Variant of uncertain

significance (c.1870A>T)

LQT2 patients

Individual carrying the

variant (c.1870A>T)

Prolonged cFPD and EADs (G1681A)

Lower IKr amplitude and prolonged APD (R176W,

A561T, A561V, A561P, N996I, IVS9-28A/G,

G604S, N633S, R685P, V822M)

Not performed (L1012P, P605L, T152P,

c.1714G>A, c.1870A>T, c.2960del)

Lower IKr amplitude and greater ICaL (R752W)

Prolonged cFPD and abnormal calcium transient

(A422T, A561V, IVS9-28A/G, R366X, S428X)

(8, 56, 62, 73–86)

G603D, c.1841C > T,

c.2464G > A

Unavailable LQT2 patients Unavailable (G603D)

Not performed (c.1841C > T, c.2464G > A)

(87, 88)

A614V Heterozygous ZFN-mediated

targeted gene

Prolonged APD (70)

A422T, G601S, R534C Heterozygous LQT2 patients,

CRISPR/Cas9

Prolonged APD and abnormal calcium transient

(A422T, G601S)

Lower IKr amplitude and prolonged APD (R534C)

(72, 89, 90)

T983I Variant of uncertain

significance

Individual carrying the

variant

Lower IKr amplitude and prolonged APD (91)

A561T, N996I, K897T,

A561V

Heterozygous CRISPR/Cas9 Lower IKr amplitude (50, 92, 93)

p.S1112Pfs*171 Frame-shift variant LQT2 patients,

CRISPR/Cas9

Prolonged cFPD and APD (16)

LQT3 V1763M, R535Q, V240M,

N406K, E1784K, R1644H,

R1623Q, N1774D,

D1275N, 1795insD+/-

Heterozygous LQT3 patients

CRISPR/Cas9 (N406K)

Prolonged APD and increased INa (V1763M,

R1623Q, N1774D)

Longer inactivation of INa (R535Q, V240M)

Reduced INa (E1784K, N406K)

Prolonged cFPD (R1644H)

Reduced INa (D1275N)

GS967 inhibited INa (1795insD+/-)

(72, 90, 94–101)

W156X, R1638X Nonsense mutation LQT3 patients Reduced INa and AP upstroke velocities (102)

F1473C, N406K Unavailable LQT3 patients Prolonged APD and increased INa (F1473C)

Abnormal calcium transient (N406K)

(103, 104)

S1103Y, R1193Q Heterozygous

Homozygous

LQT3 patients,

CRISPR/Cas9

Prolonged APD (S1103Y)

Increased INa and IKr (S1103Y, R1193Q)

(105–107)

variation. Moreover, genetic background variation may
confound disease characteristics, particularly for LQTS with
incomplete penetrances (73). It requires the generation of
appropriate control cell lines (isogenic cell lines) with the same
genetic background (Figure 1). Isogenic hiPSCs provide reliable
and effective model alternatives for human disease research
(50, 73, 89, 91, 133).

For disease-specific differentiation of hiPSC, unrelated
healthy individuals need to be recruited to generate hiPSC-CMs
under the same conditions. CRISPR/Cas9-edited hiPSCs can
then insert the same mutations into control hiPSC lines or
introduce disease-causing variants in normal hiPSCs (Figure 1).
Even comparing LQTS-specific to genome-edited isogenic
cell lines is a strategy that could be considered. It could
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FIGURE 2 | Genome editing according to repair mechanism. DSBs induce two repair mechanisms, NHEJ and HDR. NHEJ can generate an indel at the gene of

interest-based on gene disruption resulting in premature translation stop to achieve knockout, while gene deletion requires the creation of two DSBs on both sides of

the pathogenic mutation (purple point). BE and PE can perform base substitution without DSBs, with the former being limited to 8 base substitutions and the latter

enabling arbitrary base substitutions. DSB, double-strand breaks; NHEJ, non-homologous end joining; HDR, homologous directed repair; BE, base editor; PE, prime

editor. CBE, cytosine base editor; ABE, adenine base editor.

be an attempt to discern their superiority or inferiority
in LQTS modeling by eliminating genetic background
interference (89). In terms of these considerations, disease-
specific hiPSC-CMs may have an advantage in overcoming
the detrimental effects, such as p53 pathway-induced cell
apoptosis associated with genome editing. Subsequently,
CRISPR/Cas9 corrective mutations performed in the same
genetic background from the same individuals to produce
isogenic control sets would provide stronger evidence for
the reversal of abnormal cell phenotypes than control sets
from unrelated individuals. Unfortunately, sometimes, such
disease-specific individual patients are not easily recruited,
especially those with rare variants, which impedes the timely
and effective management of those patients carrying what is
defined as VUS after the genetic screening. Due to its high
efficiency, CRISPR/Cas9 is also a powerful tool for establishing
homogeneous controls when outlining the disease profile
of LQTS.

LQT1

In 1996, KCNQ1 was identified as the gene responsible for LQT1
(134). LOF mutations in KCNQ1 to reduce IKs are the most
common cause of congenital LQTS, occurring in 40–50% of all
patients, and are referred to as LQT1 (135) (Figure 3). Numerous
models of LQT1 hiPSC-CMs carrying SNVs are summarized in
Table 1.

Before applying genome editing in hiPSC, controls were
generated based on unrelated healthy individuals with hiPSC-
CMs. The generation of isogenic cells is not only salutary for
modeling but also for explaining clinical heterogeneity (13). At
this point, the introduction of CRISPR/Cas9 can target not only
SCN5A itself but also SCN5A modifiers, such as myotubularin-
related protein 4 (MTMR4) (13). The impact of an indirect
generation of wild or mutated modifiers on the phenotype of
isogenic cell lines identifies the underlying regulation of SCN5A
to produce diverse clinical manifestations. Their recognition can
improve risk stratification and clinical management. And even
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FIGURE 3 | Pathophysiology of the common LQTS. Dominant mutations in KCNQ1 on chromosome 11 and KCNH2 on chromosome 7 result in loss of function of

Kv7.1 and Kv11.1 potassium channels, respectively, and these channel currents play a significant role in myocardial repolarization. Pathogenic mutation in SCN5A on

chromosome 3 causes gain of function of Nav1.5 channel, resulting in increased late sodium currents to prolong the action potential.

though mutation correction is inefficient and unavailable for
mature heart cells, the CRISPR/Cas9 system remains a powerful
tool for validating its gene therapy potential by generating normal
isogenic controls (14, 71).

LQT2

LQT2 is the second most common LQTS and results from
mutations in the KCNH2, also known as the hERG gene
(136). Dominant mutations present a haplotype deficiency or
dominant-negative effect, causing a partial or complete reduction
in IKr current and prolonging APD (137) (Figure 3). Modeling
hiPSC-CMs avoids the problem of changes in channel activity
generated by the absence of auxiliary subunits. IKr has been
reported in hiPSC-CM with a current density value comparable
to native human myocardium (10). Like LQT1, several SNVs
in LQT2-hiPSC-CMs have been developed (Table 1). Itzhaki
et al. first established a model containing the KCNH2-A614V
mutation using dermal fibroblasts from LQT2 patients. APD and
FPD were significantly prolonged compared to healthy control
models (138).

The isogenic set generated by CRISPR/Cas9 editing
makes it convenient to replicate the newly identified LQTS
variants in hiPSC-CMs. More recently, in a genetically
elusive multigenerational LQTS pedigree, a frameshift variant
(p.S1112Pfs∗171) in patient-specific hiPSC-CMs was identified
as a novel LQT2-causative variant to induce prolonged FPD,
a result compared to CRISPR/Cas9-corrected isogenic control
hiPSC-CMs (16). Besides, as hERG channels are the most

common targets of drug-acquired LQTS, modeling using hiPSC-
CMs combined with high-throughput assays of MEA offers great
advantages in assessing multiple groups of cardiotoxic drugs
(53, 54, 139). More importantly, the genetic background may
influence individual sensitivity to these drugs (19, 55, 72, 73).
Through introducing different variants in healthy wild-type
hiPSC without any known disease-causing mutations, isogenic
sets of hiPSC-CMs with distinct KCNH2 mutations differ
functionally and in susceptibility to drug-induced arrhythmias
(50, 72, 89, 91). Targeted editing of KCNH2 using CRISPR/Cas9
to generate hiPSC-CMs carrying SNPs supports hiPSC-CMs as
solid candidates for evaluating the underlying severity of KCNH2
mutations, which could facilitate patient risk stratification.

LQT3

LQT3 is caused exclusively by a gain-of-function mutation
in the SCN5A gene that encodes for the alpha subunit of
the Nav1.5 (94, 140). SCN5A mutations cause gain-of-function
of Nav1.5 channels by impairing channel inactivation and
accelerating recovery from inactivation, increasing INaL to
counter repolarization and prolonging APD (103) (Figure 3;
Table 1).

The primary question for simulations of the SCN5A
mutation may be the relationship between genotype-phenotype
(141). Mutations are associated with several genetically
heterogeneous disorders, including Brugada syndrome (BrS),
cardiac conduction disease (CCD), sick sinus syndrome
(SSS), and others (142). Genotype-phenotype studies in large
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FIGURE 4 | A representative example of the targeted design of isogenic corrected gRNA or ssODN for the locus where KCNH22948C>T VUS is located, enabling

correction of the point mutation (91). gRNA is designed by targeting the upstream of the 5’-NGG (PAM) of the KCNH2 VUS locus. By introducing ssODN containing

homologous arms, the VUS isogenic line can be generated in a healthy control cell line. Similarly, the VUS line can also be corrected to enable a phenotype of

abnormal calcium transient to be reversed. VUS, variants of uncertain significance. PAM, protospacer adjacent motif. gRNA, guide RNA. ssODN, single-stranded DNA

oligonucleotide.

pedigrees have established that several single SCN5A mutations
present with multiple clinical manifestations due to the various
biophysical defects.

CRISPR/Cas9 generation knockdown of SCN5A to generate
the Nav1.5 KO hiPSC lineage or the introduction of pathogenic
mutations to build control models has great breakthroughs in
analyzing the pathophysiological mechanisms of the phenotype
(15, 105, 106). Similarly, drug arrhythmogenic susceptibility
can be determined using genomically corrected SCN5A variant
isogenic control cell lines (105). Even introducing CRISPR/Cas9
in hiPSCs makes it possible to compare the properties of
different variants, a single variant in different cell models, or
even differences between homozygous or heterozygous mutation
(107, 143).

Elucidation of Gene Modifiers and VUS
LQT1

Modifier genes are genes at the same or other loci that affect
the phenotype of the major gene (144). Non-synonymous coding
variants common to the same major mutant gene and common
variants in genes encoding ion channel regulators or auxiliary

subunits can also act as gene modifiers (144). KCNE1 encoding
the Kv7.1 auxiliary subunit (p.Asp85Asn, also known as D85N) is
more susceptible to LQTS andmay be associated with an increase
in disease severity (145). These observations can be explained
by impaired repolarisation currents (IKs, IKr) when this KCNE1
variant interacts with KCNQ1 or hERG channels. Non-coding
elements required for mRNA stability and translation exist in
the genes’ 3′-untranslated region (3′-UTR). Variants in the 3′-
UTR are only related to a prolonged QT interval in heterozygous
KCNQ1 mutations, not in the general population (146, 147).
Conversely, the SNVs of the gene may also be an independent
modifier to confer protection against cardiac events in patients
with LQTS (13, 148).

It is helpful to explain monogenic diseases’ incomplete
penetration and variable expression. Further examples include
AKAP9 and NOS1AP variants (3, 149–151). Recently, two SNVs
on the myotubularin-related protein 4 (MTMR4) gene were
identified by whole-exome sequencing as potential contributors
to the clinical phenotype of LQT1 patients (13). As an interactor
of Nedd4L, the MTMR4 variant is thought to be responsible
for the different clinical manifestations of members of the
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same family carrying the same mutation, KCNQ1-Y111C. It
was discovered that hiPSC-CMs from asymptomatic patients
showed increased degradation of KCNQ1 than hiPSC-CMs from
symptomatic patients, who showed reduced degradation of
KCNQ1 and hERG proteins due to reduced Nedd4L activity
caused by the MTMR4 variant. And the correction of SNVs
in MTMR4 by CRISPR/Cas9 unmasked the LQTS phenotype
(13). While new modifier genes are proposed, it is worth testing
whether such protective modifications are present in more
monogenic diseases, as in the case of KCNQ1 polymorphism
rs2074238 T-allele (148).

Given the above, a conclusion can also be drawn: if no disease
phenotype is observed, this does not necessarily mean that the
variant is benign. The disease phenotype may be masked if the
mutation has low penetration and the control hiPSC line selected
carries a protective genetic modifier. In such cases, it is essential
to correct for these protective SNVs in the patient-derived hiPSC
to demonstrate their effect on the disease phenotype.

LQT2

As with LQT1, modifier genes explain the clinical genotype-
phenotype inconsistency of LQT2. It is important to investigate
this issue by examining modifier genes, introducing them to
hiPSC-CMs, and characterizing their function. KCNH2 -K897T
is the most commonly reported genetic modifier of KCNH2,
which impairs the repolarisation reserve associated with LQT1
and LQT2 mutations, and exacerbates LQTS (144, 152–155).
For example, K897T with the KCNH2 mutation (A1116V)
exacerbates the reduction in IKr caused by the latter to produce
symptoms, whereas there are no symptoms when A1116V is
present alone (154).

Conversely, some protective mutations like KCNH2-R1135H
maintain IKr channel function (156). Isogenic hiPSC-CMs lines
with K897T in cis and trans were produced using CRISPR/Cas9
to see if the linkage phase of the K897T polymorphism to the
majorKCNH2 polymorphisms A561T and N996I caused changes
in IKr (92). The findings show that the common polymorphism
KCNH2-K897T has a different effect on LQT2-causing KCNH2
mutations depending on whether it is present in cis or trans (92).
Similarly, the correction of K897T variants with CRISPR/Cas9
would be valuable in determining whether this common
polymorphism plays a protective or aggravating role in QTc
prolongation and the corresponding effect on disease severity.
Genome sequencing provides more evidence of genetic modifiers
to explain genotype-phenotype discordance (74, 157, 158). In
the LQT2 lineage, genomics identified two modifier genes,
KCNK17 and REM2, to elucidate the contributors to variable
expressivity of KCNH2-R752W mutation (74). CRISPR/Cas9
editing to correct a REM2 variant reversed the enhanced ICaL and
prolonged APD observed in hiPSC-CMs from severely affected
individuals (74).

Another study of interest is the only one to date to characterize
KCNH2-T983I (KCNH22948C>T) VUS in LQTS using hiPSC-
CMs combined with CRISPR/Cas9 editing (91) (Figure 4).
Determining the pathogenicity of a VUS is challenging due to
the lack of suitable model systems and accessible technologies
(12). Approximately 40% of variants are designated as still

not classifiable as pathogenic or benign (159). Multiple family
members carrying the same mutation may have different QT
intervals and clinical presentations. Moreover, in the era of
next-generation sequencing, the interpretation of the increasing
number of identified unknown variants will pose an even
greater therapeutic challenge. Thus, Garg et al.’s research was
groundbreaking, demonstrating that genome editing in hiPSC
could be a helpful tool for determining the pathogenicity of
VUS in cardiac channelopathies (91). They generated hiPSC-
CMs from peripheral blood mononuclear cells carrying the
novel VUS mutation KCNH2-T983I. VUS hiPSC-CMs exhibited
significantly prolonged APD, reduced IKr, and abnormal calcium
transients compared to a healthy control line. Further correction
of VUS hiPSC-CMs with CRISPR/Cas9 resulted in a normal
phenotype, and the introduction of VUS in healthy hiPSC-
CMs recapitulated the hallmark features of LQTS disease (91)
(Figure 4). These attempts were able to categorize and manage
VUS in a timely and effective manner without the development
of SCD.

Identifying these variants can guide genotype-specific
management or facilitate rapid screening of potentially high-risk
relatives. Although distinguishing pathogenic from benign is
a significant challenge, primarily when classified as VUS, this
new approach still represents a significant advance in precision
medicine for the management of LQTS disease (157).

LQT3

A modifier gene can also explain the phenotype caused by the
SNVs in SCN5A. SCN3B encoding the Nav1.5 β-subunit amplifies
the reduced sodium current generated by mutation SCN5A-
E1784K and thus masks the Brs phenotype (95). Compared to
the almost 100% penetration of the typical1KPQ variant initially
described, the R1193Q is close to zero (107, 160). The prevalence
of this variant in an unaffected population (6.1% in the East Asian
allele) strongly suggests that it cannot play an essential role in
disease manifestion (161).

The underlying mechanisms of SCN5A 1KPQ and R1193Q-
inducible variants were assessed by designing gRNAs to
introduce R1193Q into SCN5A exon 19 of hiPSC from healthy
individuals (107). The study suggests that the low penetration
rate of the R1193Q mutation involves PI3Kα-mediated changes
in PIP3-modulated INaL. Unlike1KPQ, the sensitivity of R1193Q
to PIP3 means distinct pathologies need to be considered
when interpreting the severity of the excess late current
functional defect in Nav1.5 (107). The observation of late current
in an in vitro setting does not necessarily translate into a
highly pathogenic LQT3 phenotype but rather depends on the
underlying mechanisms. Nav1.5 channels differ in hiPSC-CMs of
LQTS, or Brs may rely on different Tbx5 variants, such that LQT3
may be due to the failure of the Tbx5-D111Y mutation to repress
CAMK2D and SPTBN4, which significantly enhances INaL (162).

Potential Causative Genetic Modification
Strategies
Attempts at effective management strategies in disease-
specific hiPSC-CMs are valuable. The corrective effect of
applying CRISPR/Cas9 against the SNVs of KCNQ1 was first
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demonstrated in a hiPSC-CMs carrying a double mutation
(c. 605-2A>G and c. 815G>A). Splicing mutations causing
exon skipping lead to significantly longer APD90 and EADs;
designing gRNAs to target these SNVs can correct aberrant
cellular phenotypes (14). Nevertheless, unable to rescue two
mutations simultaneously by constructing a CRISPR/Cas9
system containing two guide RNAs. In LQT1, KCNQ1 variants
often exhibit dominant-negative effects (163–167). Therefore,
substitution alone, such as silencing the mutant allele using
RNA interference (RNAi) without affecting the wild allele, is
not sufficient; such a strategy requires that the effect of silencing
exceeds that of wild-type expression, and the best outcome
is to present a haplotype deficiency. Attempts to replace the
mutant allele are feasible, and targeting SNV in CRISPR/Cas9
to design a segment of ssODN as a template for repair is
feasible. The recently reported strategy of a dual-component
suppression-and-replacement (SupRep) KCNQ1 gene therapy
targeting two variants of KCNQ1 is also a clever optional strategy
(71). Unfortunately, all of these tools face the problem of how to
push data to the living body for the next validation step.

As previously stated, allele-specific RNAi was developed
with targeted mutant KD to eliminate dominant-negative
interference, assuming that the remaining WT allele would
provide enough function to alleviate the disease phenotype
despite haploinsufficiency. In previous studies of LQTS, allele-
specific small interfering RNAs rescued the hERG current
in heterologous expression systems through specific KD of
the dominant-negative missense variants KCNH2-E637K (168).
Such experiments in hiPSC-CMs were also victorious against
KCNH2-G1681A (75). However, the end of the haplotype
deficiency generated by dominant-negative effect RNAi appears
promising. However, its implementation is still limited, such as
the difficulty of designing each RNAi targeting SNVs and the
fact that designing separate RNAi targeting specific individual
variants is impractical when multiple variants are present
simultaneously (71).

The advent of BEs and PEs seems to have made the correction
of SNVs easier. But CRISPR/Cas9 still has a high probability of
off-targeting associated with spatially inhomogeneous tolerances
for pairwise mismatches in sgRNA-DNA heteroduplexes. They
are still some way from being studied and applied in vivo
(169). The most significant breakthrough in LQT2 treatment
came with identifying the chemical chaperone lumacaftor, a
drug approved by the FDA for the treatment of cystic fibrosis
(8). Lumacaftor corrected two mutations, KCNH2-IVS9-28A/G
and -A561V, representing trafficking defects in patient-specific
hiPSC-CMs (8). Subsequent clinical translations showed good
therapeutic effects in LQT2 patients (170). Targeting more
KCNH2 variants, lumacaftor had opposite effects in different
cellular models (76, 171–173). They suggest that the dominance
of the hiPSC-CMs model is responsible for the role of
lumacaftor, which further delineates the differences between
hiPSC and heterologous expression systems. Currently, a total
of 160 KCNH2mutations representing protein trafficking defects
are presented in the Milan database tested using Orkambi

(lumacaftor plus ivacaftor) (7). This is another grand attempt
by researchers to use the hiPSC-based platform to move toward
precision medicine.

CHALLENGE AND PERSPECTIVE

After a decade of development, from the initial use of
hiPSC to building a disease model to understand the clinical
heterogeneity of the disease today combined with CRISPR/Cas9,
the researchers have made a great deal of work. To achieve
this, a large number of issues including consistently available
in vitro research models, avoidance of ethical requirements and
immune rejection, safety and efficiency of the reprogramming
process, feasibility and efficiency of targeted differentiation,
characterization of successful myocardial differentiation, off-
target and cell safety of gene editing, quality control of
epigenetics, and ex vivo and in vitro dissemination of the strategy,
are being progressively addressed.

From somatic cells to hiPSC-CMs, the development of
genome editing gives us more options in elucidating diseases.
Experts in every field are working tirelessly to achieve the goal
of precision medicine. In the case of a monogenic ICC such as
LQTS, genome sequencing of individuals, and ongoing genome-
wide association studies, identifies many possible variants that
could be involved but need to be validated.

We need to figure out why people with the same SNV
have varied clinical features, but we also need to test potential
therapeutic options. Meanwhile, because there is a lack of
VUS knowledge compared to typical dominant mutations, it
is even more crucial to open a window of opportunity for
timely intervention for patients carrying VUS or rare variants.
Finally, achieving precision medicine may require collaboration
from experts in clinical cardiology, electrophysiology, stem cells,
genomics, and even pharmacology.
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