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Differentiation of thyroid nodules 
on US using features learned 
and extracted from various 
convolutional neural networks
Eunjung Lee   1,4*, Heonkyu Ha   1, Hye Jung Kim2, Hee Jung Moon   3, Jung Hee Byon3, 
Sun Huh3, Jinwoo Son3, Jiyoung Yoon3, Kyunghwa Han3 & Jin Young Kwak3,4*

Thyroid nodules are a common clinical problem. Ultrasonography (US) is the main tool used to 
sensitively diagnose thyroid cancer. Although US is non-invasive and can accurately differentiate 
benign and malignant thyroid nodules, it is subjective and its results inevitably lack reproducibility. 
Therefore, to provide objective and reliable information for US assessment, we developed a CADx 
system that utilizes convolutional neural networks and the machine learning technique. The diagnostic 
performances of 6 radiologists and 3 representative results obtained from the proposed CADx system 
were compared and analyzed.

Advances in high-resolution ultrasonography (US) along with increased access to health check-up services 
and increased medical surveillance have led to a massive escalation in the number of detected thyroid nod-
ules, especially small thyroid nodules, and thyroid nodules have been detected in up to 68% of adults1. US is 
recognized as the best diagnostic tool for thyroid nodules due to its sensitivity and accuracy. However, US is an 
operator-dependent and subjective imaging modality2. While interobserver variability (IOV) is very low among 
experienced physicians3, poor agreement was documented when US findings of thyroid nodules were interpreted 
by less experienced physicians4.

In order to support the decision-making process of physicians by adding objective opinions, computer-aided 
diagnosis (CADx) has been introduced and developed over the years5–7. CADx provides physicians with second 
opinions from computational and statistical perspectives so that physicians can refer to the information obtained 
through CADx and use it as supplementary data to reach their final decision. In conventional CADx systems, fea-
ture extraction and classification are common processes. Feature extraction involves extracting information and 
generating features from original data. Classical techniques for feature extraction are based on mathematical and 
statistical approaches, and handcrafted features including textural and morphological properties are extracted. 
Textural features include information such as contrast, coarseness, roughness, and intensity and morphological 
features include information such as perimeter, circularity, elongation, and compactness8–10. Classification inte-
grates the extracted features and then estimates the class of data. Many classifiers are variations of Support Vector 
Machine (SVM), decision tree, K-nearest neighbor, etc11. Both feature extraction techniques and classification 
methods have been widely used for thyroid US images5,12–21.

However, extracting meaningful features often results in loss of good characteristics due to a heavy depend-
ence on problems. Therefore, series of trial and error are required to get optimal results and this in turn can 
increase operational costs. Deep learning has attracted attention to recent image classification problems by show-
ing outstanding results in the ImageNet Large Scale Visual Recognition Competition (ILSVRC). Early in the 
2010s, feature extraction based on deep learning was introduced as big data began to be utilized in the medical 
field22–24.

The deep learning method not only generates non-handcrafted features from original data but also acts as a 
classifier. Recently, many studies have applied deep learning to medical image analysis. Convolutional Neural 
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Networks (CNNs), a popular deep learning structure, are widely used for this analysis25. Typically, good learning 
processes require big data which are not often available, especially in the medical imaging field. For this reason, 
we use CNN models trained by huge amounts of data with various classes in a process called transfer learning26,27.

Previous studies have applied deep learning methods to the classification of thyroid nodules on US6,28,29. Other 
studies have also focused on CNN-based features and have applied them to existing classifiers30,31. In this study, 
we employed various trained CNNs to combine features and to use them to diagnose thyroid nodules on US 
through classifiers, and compared the diagnostic performance of CNNs with that of radiologists with various 
levels of experience.

Results
We performed 2 machine learning algorithms which were trained with the combined features from 6 pre-trained 
CNNs to classify thyroid nodules on US images. Representative outcomes were then selected and compared with 
the diagnostic performances of the 6 radiologists. We first examined the performances of the fine-tuned CNNs. 
Afterwards, the proposed combinations for CNN-based feature extraction and classifier results were presented 
and analyzed. Here, accuracy (Acc), specificity (Spe), and sensitivity (Sen) were the three performance evaluation 
criteria and calculated as follows.

Acc TP TN
TP TN FN FP
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TN FP
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TP FN

,=
+
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=

+
=
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where TP (true positive) is the number of nodules correctly predicted as malignant, TN (true negative) the num-
ber of nodules correctly predicted as benign, FP (false positive) the number of nodules inaccurately predicted 
as malignant, and FN (false negative) the number of nodules inaccurately predicted as benign. Acc, Spe, Sen 
and AUC were expressed as values multiplied by 100 in the tables. The diagnostic results with 150 test images 
interpreted by six radiologists who had different levels of experience are presented for comparison (see Table 1).

Conventional approaches.  The conventional CNN results obtained without separating feature extraction 
and classification processes are presented in Table 2. Furthermore, in Table 3, we presented the performances 
observed when the features extracted from a single CNN and one of the SVM/RF classifiers were used (details of 
CNNs and classifiers can be found in Supplementary Information). These results were compared with the results 
obtained with the proposed method.

As depicted in Table 3, AlexNet, OverFeat, and VGG showed that features extracted from fine-tuned CNNs 
and SVM or RF classification using these features produced similar or better results than the ones in Table 2. 
Conversely, VGG-verydeep, ResNet, Inception showed that a SVM/RF classifier associated with features extracted 
from pre-trained CNNs led to similar or worse results than fine-tuned CNN in Table 2. Taken together, feature 
extraction techniques based on CNNs combined with SVM/RF classifiers may have worse results than fine-tuned 
CNNs (Table 2) with deeper layers. Otherwise, there is a possibility that the training dataset was not large enough 
to tune a huge amount of parameters. Thus, fine-tuning with a small dataset may harm good parameters which 
can generate useful and objective features. When classifiers were compared, RF often performed better than SVM.

TP FN FP TN Accuracy Specificity Sensitivity

Faculty 1 91 9 24 26 78 (70.64, 83.93) 52 (38.63, 65.08) 91 (83.58, 95.26)

Faculty 2 76 24 2 48 82.67 (75.8, 
87.89) 96 (85.32, 99) 76 (66.75, 83.32)

Fellow 1 63 37 3 47 73.33 (65.81, 
79.71) 94 (82.92, 98.06) 63 (53.19, 71.84)

Fellow 2 65 35 4 46 74 (66.59, 80.25) 92 (80.81, 96.91) 65 (55.23, 73.65)

Resident 1 49 51 6 44 62 (53.97, 69.42) 88 (75.99, 94.44) 49 (39.37, 58.71)

Resident 2 63 37 14 36 66 (58.37, 72.88) 72 (57.53, 83) 63 (53.36, 71.71)

CNN 1 96 4 5 45 94 (88.83, 96.86) 90 (78.03, 95.8) 96 (89.82, 98.49)

CNN 2 94 6 3 47 94 (88.83, 96.86) 94 (82.92, 98.06) 94 (87.27, 97.28)

CNN 3 98 2 7 43 94 (88.88, 96.85) 86 (73.28, 93.23) 98 (92.45, 99.49)

Table 1.  Diagnostic performances of radiologists and CNNs. Note. - Data in parentheses are 95% confidence 
intervals. TP = true positive; FN = false negative; FP = false positive; TN = true negative; CNN = deep 
convolutional neural network; AUC = area under the curve.

Net AlexNet OverFeat VGG VGG-verydeep ResNet Inception

Acc 86.7 85.3 86 85.3 84 86.7

Spe 88 86 84 74 86 78

Sen 86 85 87 91 83 91

AUC 90.3 88.4 89.3 90.6 90.5 88.3

Table 2.  Performances of fine-tuned CNNs.
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Feature concatenation.  Based on the idea that different structures in CNN will provide different features, 
we selected effective features for each CNN based on the results shown in Table 3 and concatenated them. We 
chose CNN features extracted from AlexNet32-fc2 with fine-tuning ([A]), OverFeat33-fc2 with fine-tuning ([O]), 
VGG34-fc1 with fine-tuning ([V]), VGG-verydeep35-fc2 without fine-tuning ([Vv]), ResNet36-avg without 
fine-tuning ([R]), and Inception37-avg without fine-tuning ([I]). Table 4 summarizes the results of the selected 
features. Even though AlexNet, OverFeat, VGG, VGG-verydeep allow self-feature-concatenations since features 
can be extracted from two different layers in a single net, we decided not to use them due to there being almost no 
effect with self-concatenation. We expected feature concatenation to improve results compared to when it was not 
performed (Table 3), so we added a new performance criterion J  which is calculated as follows

Net Name #

Without fine-tuning With fine-tuning

Acc Spe Sen AUC Acc Spe Sen AUC

AlexNet

fc1-SVM 4096 80.0 80.0 80.0 89.2 87.3 86.0 88.0 91.2

fc1-RF 4096 85.3 82.0 87.0 88.4 86.0 82.0 88.0 88.7

fc2-SVM 4096 81.3 80.0 82.0 88.3 84.7 82.0 86.0 90.0

fc2-RF 4096 84.0 78.0 87.0 86.9 87.3 82.0 90.0 88.3

fc1fc2-SVM 8192 82.0 80.0 83.0 89.0 85.3 84.0 86.0 90.7

fc1fc2-RF 8192 86.0 82.0 88.0 86.6 87.3 84.0 89.0 88.8

OverFeat

fc1-SVM 4096 78.7 74.0 81.0 86.7 84.7 82.0 86.0 90.6

fc1-RF 4096 81.3 78.0 83.0 84.3 87.3 84.0 89.0 89.9

fc2-SVM 4096 81.3 80.0 82.0 86.8 85.3 84.0 86.0 89.6

fc2-RF 4096 81.3 74.0 85.0 84.8 88.0 84.0 90.0 88.4

fc1fc2-SVM 8192 81.3 76.0 84.0 86.6 85.3 84.0 86.0 90.2

fc1fc2-RF 8192 82.0 72.0 87.0 85.1 88.0 86.0 89.0 89.5

VGG

fc1-SVM 4096 79.3 82.0 78.0 86.5 84.7 80.0 87.0 90.7

fc1-RF 4096 84.7 80.0 87.0 86.4 89.3 86.0 91.0 90.7

fc2-SVM 4096 80.7 84.0 79.0 86.1 86.0 82.0 88.0 90.6

fc2-RF 4096 85.3 80.0 88.0 86.8 88.0 84.0 90.0 90.8

fc1fc2-SVM 8192 79.3 82.0 78.0 86.2 86.7 82.0 89.0 91.0

fc1fc2-RF 8192 82.7 80.0 84.0 83.4 88.7 84.0 91.0 90.8

VGG-verydeep

fc1-SVM 4096 84.7 88.0 83.0 91.4 78.0 76.0 79.0 85.8

fc1-RF 4096 84.0 88.0 82.0 91.1 74.0 76.0 73.0 80.4

fc2-SVM 4096 84.0 88.0 82.0 91.0 72.0 76.0 70.0 81.2

fc2-RF 4096 85.3 90.0 83.0 89.9 69.3 74.0 67.0 75.6

fc1fc2-SVM 8192 84.7 88.0 83.0 91.1 76.0 74.0 77.0 85.9

fc1fc2-RF 8192 85.3 92.0 82.0 90.6 71.3 74.0 70.0 77.9

ResNet
avg-SVM 2048 84.0 82.0 85.0 89.8 74.7 82.0 71.0 84.7

avg-RF 2048 85.3 86.0 85.0 90.9 76.7 80.0 75.0 85.6

Inception
avg-SVM 2048 85.3 82.0 87.0 88.3 75.3 70.0 78.0 82.9

avg-RF 2048 84.7 72.0 91.0 87.4 76.0 68.0 80.0 78.2

Table 3.  Extended features from a single CNN with/without fine-tuning and classification using SVM/RF: 
‘Name’ follows the form ‘extracted layer-classifier’ and # denotes the number of features.

Name

Classifier

SVM RF

Acc Spe Sen AUC Acc Spe Sen AUC

[A] 84.7 82.0 86.0 90.0 87.3 82.0 90.0 88.3

[O] 85.3 84.0 86.0 89.6 88.0 84.0 90.0 88.4

[V] 84.7 80.0 87.0 90.7 89.3 86.0 91.0 90.7

[Vv] 84.0 88.0 82.0 91.0 85.3 90.0 83.0 89.9

[R] 84.0 82.0 85.0 89.8 85.3 86.0 85.0 90.9

[I] 85.3 82.0 87.0 88.3 84.7 72.0 91.0 87.4

Table 4.  Selected CNN features: AlexNet-fc2 with fine-tuning [A], OverFeat-fc2 with fine-tuning [O], VGG-fc1 
with fine-tuning [V], VGG-verydeep-fc2 without fine-tuning [Vv], ResNet-avg without fine-tuning [R], 
Inception-avg without fine-tuning [I].
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J Acc/Spe/Sen with feature concatenation and classifier SVM/RF
maximum of Acc/Spe/Sen with single CNN feature and classifier SVM/RF in Table 2

 = .

The quantity J  indicates whether or not the criteria of feature concatenation led to better results than individ-
ual criteria. An asterisk (*) indicated performance values of feature concatenations that had a J  smaller than 1. 
Table 5 shows the feature concatenations of two or three CNN features and Table 6 shows the feature concatena-
tions of four or more CNN features, respectively. One can tell from Table 5 that most of the feature concatenations 
provide improved results compared with individual results, with the word ‘individual’ henceforth indicating 
results obtained using features from a single CNN in Table 3. With SVM, all results except for [VvI] showed 
improved accuracy than individual results. Notable results were found when we applied feature concatenations of 
four or more CNN features. In Table 6, all accuracies and sensitivities improved compared to individual cases. For 
instance, minimum accuracy and sensitivity was 90.0% and 91.0%, and maximum accuracy and sensitivity was 
94.0% and 99.0%, respectively. This shows that accuracy and sensitivity are guaranteed to improve when feature 
concatenations of more various CNN features are applied.

Classification ensemble.  In this subsection, the same features which were named as [A],[O],[V],[Vv],[R], 
and [I] in the previous section were used again. We first executed a classification ensemble of SVM and RF results 
with single CNN-based features and these results are written in italic, [A],[O],[V],[Vv],[R], and [I]. To compare 
these with individual results (the results found using features from a single CNN) in Table 3, we defined Ĵ  as 
follows

ˆ = .J Acc/Spe/Sen with classification ensemble
maximum of Acc/Spe/Sen with single CNN feature and classifier SVM/RF in Table 2

The value Ĵ  is an indicator of the performance of the classification ensemble. An asterisk (*) was used to mark 
performance values of classification ensembles that had a Ĵ  smaller than 1. As shown in Table 7, several hierarchi-
cal steps of the classification ensemble affected overall accuracies while the classification ensemble of SVM and 
RF for a single CNN did not improve accuracies significantly.

Combination of feature concatenation and classifier ensemble.  A combination of the two previ-
ously proposed approaches was also performed. For the feature concatenation, we used the results of Table 6 and 
then we applied the classification ensemble of SVM and RF results. As seen in Tables 7 and 8, feature concatena-
tion plays a key role while the classifier ensemble merely affects the results.

Name

Classifier

Name

Classifier

SVM RF SVM RF

Acc Spe Sen AUC Acc Spe Sen AUC Acc Spe Sen AUC Acc Spe Sen AUC

[AO] 86.7 *84.0 88.0 90.6 87.3 82.0 90.0 89.7 [AOV] 90.7 82.0 95.0 95.0 91.3 92.0 91.0 95.1

[AV] 88.0 *76.0 94.0 94.5 90.7 90.0 91.0 95.0 [AOVv] 91.3 88.0 93.0 93.9 93.3 92.0 94.0 94.1

[AVv] 93.3 90.0 95.0 94.1 92.7 90.0 94.0 93.9 [AOR] 92.0 90.0 93.0 94.1 *86.7 *82.0 *89.0 91.5

[AR] 92.0 90.0 93.0 94.1 88.7 88.0 89.0 91.3 [AOI] 88.7 86.0 90.0 92.4 93.3 84.0 98.0 91.7

[AI] 88.0 86.0 89.0 92.1 90.7 82.0 95.0 91.7 [AVVv] 93.3 88.0 96.0 97.2 93.3 90.0 95.0 96.8

[OV] 90.0 82.0 94.0 94.8 92.0 90.0 93.0 94.8 [AVR] 93.3 84.0 98.0 96.8 92.0 88.0 94.0 95.8

[OVv] 90.7 90.0 91.0 94.1 92.0 92.0 92.0 94.6 [AVI] 92.0 86.0 95.0 94.3 92.7 80.0 99.0 93.5

[OR] 92.0 90.0 93.0 94.3 89.3 88.0 90.0 93.2 [AVvR] 93.3 90.0 95.0 94.2 92.7 90.0 94.0 93.8

[OI] 87.3 84.0 89.0 91.3 90.7 86.0 93.0 91.5 [AVvI] 90.0 88.0 91.0 93.1 91.3 86.0 94.0 93.5

[VVv] 90.7 88.0 92.0 95.9 93.3 90.0 95.0 97.5 [ARI] 88.7 86.0 90.0 92.9 90.7 84.0 94.0 92.2

[VR] 92.0 86.0 95.0 95.4 90.0 86.0 92.0 93.3 [OVVv] 92.0 88.0 94.0 97.3 93.3 90.0 95.0 97.7

[VI] 87.3 80.0 91.0 93.4 *88.7 78.0 94.0 92.9 [OVR] 94.7 88.0 98.0 97.4 93.3 94.0 93.0 96.4

[VvR] 88.7 90.0 88.0 92.1 *84.7 *88.0 *83.0 91.5 [OVI] 90.7 82.0 95.0 94.4 91.3 82.0 96.0 94.7

[VvI] *84.0 *80.0 *86.0 89.4 86.7 *82.0 *89.0 90.4 [OVvR] 90.7 90.0 91.0 94.2 91.3 90.0 92.0 95.3

[RI] 85.3 82.0 87.0 89.4 85.3 78.0 89.0 87.0 [OVvI] 88.7 *84.0 91.0 92.5 91.3 86.0 94.0 93.0

[ORI] 88.0 84.0 90.0 92.2 88.7 *80.0 93.0 90.4

[VVvR] 92.0 88.0 94.0 96.4 93.3 90.0 95.0 97.1

[VVvI] 90.0 *84.0 93.0 94.8 92.7 *86.0 96.0 95.8

[VRI] 88.0 *82.0 91.0 94.2 90.0 *78.0 96.0 91.3

[VvRI] 86.7 *84.0 88.0 90.2 87.3 *82.0 *90.0 91.0

Table 5.  Feature concatenation (2 or 3 CNNs) results: [N , , N ], k 2, 31 k =  denotes feature concatenation 
using the features from CNNs, N1 to Nk. An asterisk denotes that the concatenation result is worse than the 
individual result.
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Diagnostic performances of radiologists and CNNs.  The diagnostic performances of the 6 radiologists 
and 3 CNN-combinations for the diagnosis of thyroid malignancy are shown in Table 1. We chose three types of 
CNN-based feature concatenations and classifier ensembles from Tables 6 and 7 which were shaded. CNN 1 stands 
for the results obtained from trained SVM using features from [A], [V], [Vv] and [R]. CNN 2 represents RF classifier 
results trained with [O], [V], [Vv] and [R]-based features. CNN 3 corresponds to the results from the ensemble 
outcome of SVM and RF which were both trained with concatenated features from [O], [V] and [I]. Experienced 
radiologists showed higher accuracies than less experienced radiologists (Table 1). Compared to the diagnostic per-
formances of the two experienced radiologists, differences in accuracies were not statistically significant (P = 0.309). 
Faculty 1 showed significantly higher sensitivity than faculty 2 (P < 0.001). In contrast, faculty 2 showed significantly 
higher specificity than faculty 1 (P = 0.006). Accuracies of faculty 1, faculty 2, CNN 1, CNN 2, and CNN 3 were 78%, 
82.7%, 94%, 94%, and 94%. Accuracies of the 3 CNNs were significantly higher than those of the 2 faculties (Table 1). 
Specificities of the 3 CNNs were significantly higher than that of faculty 1 (90% of CNN 1, 94% of CNN 2, 86% of 
CNN 3 vs 52% of faculty 1, P < 0.001) (Table 9). Sensitivities of the 3 CNNs were significantly higher than that of 
faculty 2 (96% of CNN 1, 94% of CNN 2, 98% of CNN 3 vs 76% of faculty 2, P < 0.001) (Table 9).

Interobserver variability and agreement of US assessments for predicting thyroid malignancy 
among 6 radiologists and between 2 radiologists with similar experience levels.  Interobserver 
agreement to diagnose thyroid malignancy among the 6 radiologists was 0.465, which meant a moderate degree 
of agreement Table 10). Interobserver agreements for the differentiation of thyroid nodules was 0.387 (fair agree-
ment) for the two faculties, 0.663 (substantial agreement) for the two fellows, and 0.418 (moderate agreement) 
for the two residents.

Discussion
We have proposed a CADx system which can provide reliable supplementary and objective information to help radi-
ologists in the decision-making process. More precisely, we focused on constructing an efficient and accurate CADx 
system for thyroid US image classification using deep learning and this was achieved by concatenating features 
extracted from various pre-trained CNNs and training classifiers based on those features. Six pre-trained CNNs, 
AlexNet, OverFeat, VGG, VGG-verydeep, ResNet, and Inception, were utilized in feature extraction and two classi-
fiers, SVM and RF, were used. In the overall process, 594 training and 150 test images were used. Table 2 shows that 
the results of pre-trained CNNs with fine-tuning were not much better than those of the radiologists (Table 1). A 
past study38 also found similar results. The pre-trained CNN, VGG-F, was utilized to classify the US images of thy-
roid nodules. The study only focused on using a single CNN to determine the label of each test image.

Name

Classifier

SVM RF

Acc Spe Sen AUC Acc Spe Sen AUC

[AOVVv] 93.3 88.0 96.0 96.8 94.0 92.0 95.0 97.1

[AOVR] 93.3 84.0 98.0 96.9 92.7 92.0 93.0 95.6

[AOVI] 92.7 84.0 97.0 94.7 92.7 84.0 97.0 94.5

[AOVvR] 92.0 90.0 93.0 94.1 92.7 90.0 94.0 94.1

[AOVvI] 91.3 86.0 94.0 92.9 91.3 86.0 94.0 92.8

[AORI] 89.3 86.0 91.0 92.9 91.3 *84.0 95.0 91.4

[AVVvR] 94.0 90.0 96.0 97.3 92.7 *88.0 95.0 97.4

[AVVvI] 91.3 88.0 93.0 95.8 92.0 *88.0 94.0 94.6

[AVRI] 93.3 86.0 97.0 95.0 92.0 *84.0 96.0 93.8

[AVvRI] 90.0 88.0 91.0 93.3 92.0 *86.0 95.0 93.4

[OVVvR] 93.3 90.0 95.0 97.4 94.0 94.0 94.0 98.5

[OVVvI] 90.0 *84.0 93.0 95.2 91.3 *86.0 94.0 96.2

[OVRI] 92.0 84.0 96.0 95.0 92.0 *78.0 99.0 94.4

[OVvRI] 90.0 88.0 91.0 93.1 92.0 *88.0 94.0 93.4

[VVvRI] 90.0 *84.0 93.0 95.4 90.0 *84.0 93.0 94.4

[AOVVvR] 94.0 90.0 96.0 96.9 93.3 90.0 95.0 97.0

[AOVVvI] 93.3 90.0 95.0 95.7 92.7 *88.0 95.0 95.5

[AOVRI] 93.3 86.0 97.0 95.2 93.3 86.0 97.0 94.2

[AOVvRI] 92.0 88.0 94.0 93.2 92.7 *88.0 95.0 94.6

[AVVvRI] 91.3 88.0 93.0 95.9 92.0 *88.0 94.0 94.1

[OVVvRI] 92.0 88.0 94.0 95.8 90.7 *86.0 93.0 95.5

[AOVVvRI] 93.3 90.0 95.0 95.7 90.7 *86.0 93.0 95.6

Table 6.  Feature concatenation (4 or more CNNs) results:  =[N , , N ], k 4, 5, 61 k  denotes feature 
concatenation using the features from CNNs, N1 to Nk. An asterisk denotes that the concatenation result is worse 
than the individual result.
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Name Acc Spe Sen AUC Name Acc Spe Sen AUC Name Acc Spe Sen AUC

[A] *86.0 82.0 88.0 88.5 [A][O][V] 90.7 90.0 91.0 94.2 [A][O][V][Vv] 93.3 90.0 95.0 96.6

[O] *86.0 84.0 *87.0 88.8 [A][O][Vv] 91.3 90.0 92.0 94.3 [A][O][V][R] 93.3 88.0 96.0 96.6

[V] *87.3 *82.0 *90.0 90.6 [A][O][R] 89.3 90.0 *89.0 93.5 [A][O][V][I] 93.3 88.0 96.0 94.7

[Vv] *83.3 *88.0 *81.0 90.7 [A][O][I] 89.3 86.0 91.0 91.4 [A][O][Vv][R] 92.0 *88.0 94.0 95.0

[R] *84.7 90.0 *82.0 90.9 [A][V][Vv] 92.0 *86.0 95.0 97.6 [A][O][Vv][I] 93.3 *88.0 96.0 94.0

[I] *84.0 *70.0 91.0 87.3 [A][V][R] 94.7 90.0 97.0 97.6 [A][O][R][I] 92.0 86.0 95.0 93.5

[A][O] *84.7 *80.0 *87.0 89.0 [A][V][I] 92.7 *84.0 97.0 95.5 [A][V][Vv][R] 93.3 *88.0 96.0 97.7

[A][V] 90.7 *80.0 96.0 95.2 [A][Vv][R] 90.7 90.0 91.0 95.0 [A][V][Vv][I] 92.0 *84.0 96.0 96.6

[A][Vv] 92.0 *88.0 94.0 94.9 [A][Vv][I] 90.7 *86.0 93.0 94.1 [A][V][R][I] 94.0 88.0 97.0 96.5

[A][R] 93.3 88.0 96.0 94.1 [A][R][I] 92.7 86.0 96.0 93.4 [A][Vv][R][I] 90.0 *88.0 91.0 94.3

[A][I] 90.7 82.0 95.0 91.5 [O][V][Vv] 93.3 *88.0 96.0 97.5 [O][V][Vv][R] 92.0 90.0 93.0 97.7

[O][V] 91.3 86.0 94.0 95.2 [O][V][R] 92.7 88.0 95.0 97.5 [O][V][Vv][I] 92.7 *86.0 96.0 96.8

[O][Vv] 90.7 *88.0 92.0 95.1 [O][V][I] 94.0 86.0 98.0 95.6 [O][V][R][I] 92.0 86.0 95.0 96.6

[O][R] 90.7 88.0 92.0 94.6 [O][Vv][R] 90.0 90.0 90.0 95.0 [O][Vv][R][I] 89.3 88.0 90.0 94.4

[O][I] 92.7 84.0 97.0 92.1 [O][Vv][I] 89.3 *86.0 91.0 94.4 [V][Vv][R][I] 88.7 *86.0 90.0 96.1

[V][Vv] 90.0 *88.0 91.0 96.8 [O][R][I] 91.3 86.0 94.0 93.7 [A][O][V][Vv][R] 94.0 90.0 96.0 97.2

[V][R] 92.0 86.0 95.0 97.1 [V][Vv][R] 89.3 88.0 90.0 97.2 [A][O][V][Vv][I] 94.0 90.0 96.0 96.2

[V][I] 89.3 *76.0 96.0 94.2 [V][Vv][I] 88.7 *82.0 92.0 96.0 [A][O][V][R][I] 94.0 88.0 97.0 96.1

[Vv][R] 88.7 92.0 87.0 91.5 [V][R][I] 92.0 *82.0 97.0 96.0 [A][O][Vv][R][I] 91.3 *88.0 93.0 94.6

[Vv][I] 86.7 *86.0 87.0 91.4 [Vv][R][I] 87.3 *86.0 88.0 91.6 [A][V][Vv][R][I] 93.3 *88.0 96.0 97.0

[R][I] 86.0 *84.0 *87.0 90.9 [O][V][Vv][R][I] 90.7 *88.0 92.0 96.9

[A][O][V][Vv][R][I] 92.0 *86.0 95.0 96.6

Table 7.  Classification ensemble results: M M[ , , ]k1  denotes classification ensemble, where [Mi] indicates the 
ensemble result of SVM and RF using Mi CNN-based features. An asterisk denotes that the classification 
ensemble result is worse than the individual result.

Name Acc Spe Sen AUC Name Acc Spe Sen AUC

[AOVVv] 93.3 88.0 96.0 97.0 [OVVvI] 91.3 86.0 94.0 95.9

[AOVR] 93.3 82.0 99.0 96.6 [OVRI] 92.0 78.0 99.0 95.0

[AOVI] 93.3 84.0 98.0 94.8 [OVvRI] 92.0 88.0 94.0 93.3

[AOVvR] 92.0 90.0 93.0 94.3 [VVvRI] 90.0 84.0 93.0 95.2

[AOVvI] 92.0 86.0 95.0 93.1 [AOVVvR] 93.3 88.0 96.0 97.1

[AORI] 91.3 84.0 95.0 92.3 [AOVVvI] 93.3 88.0 96.0 95.9

[AVVvR] 94.0 90.0 96.0 97.5 [AOVRI] 92.7 84.0 97.0 94.9

[AVVvI] 92.0 88.0 94.0 95.5 [AOVvRI] 92.7 88.0 95.0 93.8

[AVRI] 93.3 84.0 98.0 94.4 [AVVvRI] 92.0 88.0 94.0 95.3

[AVvRI] 92.0 86.0 95.0 93.5 [OVVvRI] 90.7 86.0 93.0 95.7

[OVVvR] 93.3 90.0 95.0 98.0 [AOVVvRI] 90.7 86.0 93.0 96.0

Table 8.  Results for when both feature concatenation and classifier ensemble were performed.

Accuracy Specificity Sensitivity

Faculty1 vs Faculty2 0.309 <.001 0.006

Faculty1 vs CNN1 <.001 <.001 0.163

Faculty1 vs CNN2 <.001 <.001 0.424

Faculty1 vs CNN3 <.001 <.001 0.046

Faculty2 vs CNN1 0.004 0.257 <.001

Faculty2 vs CNN2 0.004 0.649 <.001

Faculty2 vs CNN3 0.003 0.102 <.001

Table 9.  Comparisons of diagnostic performances between experienced radiologists and CNNs for thyroid 
malignancy.
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Our approach suggested using pre-trained CNNs only for feature extraction and training them with SVM or 
RF classifiers. More importantly, we proposed combining features from various CNNs (feature concatenation) 
and combining the results from different classifiers (classifier ensemble). The different structures of various CNNs 
allow the creation of different features, which motivates our approach. Several factors have to be considered 
before CNN-based feature extraction is used in CADx: CNN selection, performance of fine-tuning, extracted 
layer selection, and classifier selection. We conducted all possible combinations considering these factors and 
the results are reported in this paper. The pre-trained CNNs, AlexNet, OverFeat, VGG, and VGG-verydeep 
have two feature extractable layers in which self-feature-concatenation was possible. But, it turned out that 
self-feature-concatenation was not very effective. In AlexNet, OverFeat, and VGG, feature extraction with 
fine-tuning led to results with higher accuracy. On the contrary, for VGG-verydeep, ResNet, and Inception, the 
results of feature extraction without fine-tuned CNNs were generally better than those obtained with fine-tuned 
CNNs. Since these latter three CNNs have deeper layers, we supposed that the extracted features from the original 
pre-trained CNNs were sufficiently objective and fine-tuning may have degraded meaningful features instead.

When a single CNN was used to extract features, the results (Table 3) were almost the same with fine-tuned 
pre-trained CNNs in Table 2. Moreover, a classifier ensemble using features from a single CNN (from the first to 
the sixth row in the first column of Table 7) had results that were not that different from those obtained without a 
classifier ensemble, as can be seen in Table 3. Based on the results in Tables 5–7, we conclude that feature concat-
enation with more CNNs produces better results while a classifier ensemble does not.

When the diagnostic performances of the 6 radiologists and 3 CNN-combinations were analyzed, accuracies 
of the 3 CNN-combinations (all 94%) were significantly higher than those (78% and 82.7%) of the 2 experienced 
radiologists. Specificities were significantly higher with the 3 CNN-combinations (86%~94%) than that (52%) 
of faculty 1. The 3 CNN-combinations (94%~98%) also had significantly higher sensitivities than that (76%) of 
faculty 2. Furthermore, the interobserver agreement for the final assessment among the 6 radiologists was fair 
(κ = 0.387) for the 2 faculties, substantial (κ = 0.663) for the 2 fellows, moderate (κ = 0.418) for the 2 residents, 
and moderate (κ = 0.465) for all 6 radiologists (2 faculties, 2 fellows, and 2 residents). Therefore, a CADx system 
using CNN-combinations may help radiologists make decisions by overcoming interobserver variability when 
assessing thyroid nodules on US.

In our opinion, feature concatenation with many CNNs shows promising performance and we expect this 
approach to be a potential supplementary tool for radiologists. In the future, we plan to examine the proposed 
method with more data and with medical images from other devices such as MR and CT. Another aiming chal-
lenge is developing an efficient localization scheme using concatenating methodology. Our research has excluded 
the localization task since all US images in this study had a square region-of-interest (ROI) that was depicted by 
experienced radiologists (with all US images being either cytologically proven or sugically confirmed). There 
has been research on a CNN-based framework conducting both detection and classification. For example, a 
multi-task cascade CNN framework was proposed39 to detect and recognize nodules and the framework was able 
to fuse different scales of features in a single module. This spatial pyramid module seems promising as a detection 
and classification scheme can be established with features from multiple CNNs.

Methods
Patients.  Institutional review board (IRB) approval was obtained for this retrospective study and the require-
ment for informed consent for review of patient images and medical records was waived. The patients in the 
current cohort38 had been included in a previous study that used a computerized algorithm to predict thyroid 
malignancy with a deep CNN to differentiate malignant and benign thyroid nodules on US. Unlike previous 
studies, we separated the feature extraction and classification processes to enhance the efficiency and accuracy 
of the previously studied deep CNN algorithms. Multiple deep CNNs were only used for feature extraction and 
conventional machine learning algorithms were applied for classification.

From May 2012 to February 2015, 1576 consecutive patients who underwent US and subsequent thyroidec-
tomy were recruited. Of those, 592 small nodules from 522 patients were excluded because they were microcalci-
fications. Finally, we included 589 small nodules equal to or larger than 1 cm and less than 2 cm on US from 519 
patients (426 women and 93 men, 47.5 years ± 12.7). The mean size of the 589 nodules was 12.9 mm ± 2.5 (range, 
10–19 mm). All of the nodules were confirmed by histopathological examination after surgical excision. Of the 
396 malignant nodules, 376 (94.9%) were conventional papillary thyroid carcinoma (PTC), 14 (3.5%) were the 
follicular variant of PTC, 4 (1%) were the diffuse sclerosing variant of PTC, 1 (0.3%) was the Warthin-like tumor 
variant of PTC, and 1 (0.3%) was a minimally invasive follicular carcinoma. For the 193 benign nodules, 154 
(80%) were adenomatous hyperplasia, 25 (13%) were lymphocytic thyroiditis, 8 (4%) were follicular adenoma, 2 
(1%) were Hurthle cell adenoma, 2 (1%) were hyaline trabecular tumors, 1 (0.5%) was a hyperplastic nodule, and 
1 (0.5%) was a calcific nodule without tumor cells. We designated 439 (142 benign and 297 malignant) US images 

Radiologist Kappa (95% CI)

All 0.465 (0.388, 0.535)

Faculties 0.387 (0.226, 0.511)

Fellows 0.663 (0.540, 0.784)

Residents 0.418 (0.286, 0.557)

Table 10.  Interobserver variability for the prediction of thyroid malignancy among 6 radiologists and between 
2 radiologists with similar levels of experience.
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as the training dataset and 150 (50 benign and 100 malignant) US images as the test dataset. To balance the train-
ing set, data augmentation was applied for the benign training data by left-right flipping and up-down flipping so 
that 155 additional benign images were added to the training dataset. As a result, a total of 594 US images were 
used as the training data and 150 US images were used as the test data. All US images were labeled as benign or 
malignant and cropped by a ROI.

Image acquisition.  One of 12 physicians dedicated to thyroid imaging performed US with a 5-to 12-MHz 
linear transducer (iU22; Philips Healthcare, Bothell, WA) or a 6–13-MHz linear transducer (EUB-7500; Hitachi 
Medical, Tokyo, Japan). A representative US image was obtained for each tumor considering US findings by 
K.J.Y who had 16 years of experience in analyzing thyroid US images. The images were stored as JPEG images in 
the picture archiving and communication system. Square regions of interest (ROIs) were drawn using the Paint 
program of Windows 7.

Image analyses.  A total of 150 US images (50 benign and 100 malignant) were reviewed by two faculties 
(K.H.J. and M.H.J.) with 8 and 16 years of experience in thyroid imaging, two second-year fellows (B.J.H. and 
H.S.), and two second-year residents (S.J.W. and Y.J.), retrospectively. Each physician categorized the nodules as 
‘probably benign‘ or ‘suspicious malignant‘ based on the criteria from Kim et al.40. which classified a nodule as 
‘suspicious malignant‘ when any of the suspicious US features (markedly hypoechogenicity, microlobulated or 
irregular margins, microcalcifications, and taller-than-wide shape) were present. In Figs. 1 and 2, two clinical 
cases were introduced.

Feature extraction using pre-trained CNN.  In CNN, high-level features were generated as images 
passed through multiple layers. Here, two different approaches were used when the features were extracted. One 
was to collect the generalized (or objective) features from pre-trained CNNs directly (Fig. 3(a)). The other was 
to train pre-trained CNNs with modifications of the last layer to fit the given data (Fig. 3(b)). In this process, 
pre-trained parameters were considered as initial information and these parameters were fine-tuned by the 
training dataset so that they would carry information about the given training data. The overall procedure was 

Figure 1.  An ultrasonography (US) image of a 50-year-old woman with an incidentally detected thyroid 
nodule discovered on screening examination that shows a 1.2-cm sized hypoechoic solid nodule with eggshell 
calcifications (arrows). All 6 radiologists interpreted the nodule as a benign. In contrast, 3 CNN-combinations 
interpreted it as cancer. The nodule was diagnosed as papillary thyroid cancer by surgery.

Figure 2.  An ultrasonography (US) image of a left thyroid nodule in a 77-year-old woman who was confirmed 
with cancer in the right thyroid gland. A 1-cm sized isoechoic nodule with internal echogenic spots was seen 
(arrows). Four radiologists (1 faculty, 1 fellow, and two residents) interpreted the nodule as cancer. In contrast, 3 
CNN-combinations interpreted it as benign. The nodule was diagnosed as adenomatous hyperplasia.
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transfer learning and fitted features were extracted from fine-tuned CNNs. The pre-trained CNNs, AlexNet32, 
OverFeat-accurate33, VGG-F34, VGG-1935, ResNet-5036, and Inception-v337, were used to extract features.

Feature concatenation.  Features extracted from deeper layers are compressive, so discriminative infor-
mation may have been missed. Also, different CNNs might have differentiated information. While some CNNs 
(AlexNet, VGG, VGG-verydeep) had several possible feature extractable layers, the others had only one feature 
layer to extract features. To catch the sensible information, we examined features extracted from different layers 
in a particular CNN and those from different CNNs in various combinations. For instance, Fig. 4 describes the 
feature concatenation of features extracted from three different CNNs.

Classification ensemble.  Once a feature set was ready, a classifier was trained to establish the results. We 
employed two classifiers, SVM and RF, to produce results with different criteria. The two classifiers may agree but 
sometimes they give conflicting results. To observe an objective result, we applied the classification ensemble by 
averaging the results from the classifiers as follows.

For a given input image x, let r Rxf ( ), 1, ,r =  be trained with classifiers and let p pp { , }r rr ( ,0) ( ,1)=  be the 
output of xf ( )r , where p r( ,0) and p r( ,1) are the probabilities that the feature in question corresponds respectively to 
benign and malignant. Then, the outputs from each classifier were averaged to generate new probability results p̂0
and p1̂ as follows

ˆ ˆ∑ ∑= =
= =

p
R

p p
R

p1 and 1

r

R

r
r

R

r0
1

( ,0) 1
1

( ,1)

and this is the ‘classification ensemble’. In Fig. 5(a,b) delineate the abovementioned process.

Figure 3.  Two feature extraction strategies using pre-trained CNN: Feature extraction from pre-trained CNN 
without fine-tuning (a) or with fine-tuning (b).

Figure 4.  Example of feature concatenation: Feature concatenation of features extracted from three different 
CNNs.

Figure 5.  Example of classification ensemble: Two CNNs were used as feature extractors and then classification 
ensembles were applied for SVM and RF of CNN-A(a) and CNN-B(b) to observe results. For further objective 
results, the classification ensemble was again applied for ensemble results(c).
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This classification ensemble can be extended to cases using multiple feature sets as well. Let N , j 1, , Mj 





 =  

be the feature set extracted from CNNj (or the feature set obtained from j-th feature concatenation), then xf ( )j
r  is 

the trained classifier using features in 

Nj  and = { }p pp ,j

r
j

r
j

r ( ,0) ( ,1)
is the corresponding probability result. Then, a 

more objective result can be obtained by averaging the ensemble results through the procedure below
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The above approach does not require any additional training processes because the ensemble method only 
uses results already obtained. Figure 5 illustrates classification ensembles with SVM and RF using two feature sets.

Data and statistical analysis.  To evaluate the performances of radiologists and CNNs for predicting thy-
roid malignancy, sensitivity, specificity, and accuracy with 95% confidence intervals were estimated and com-
pared with the logistic regression using the generalized estimating equation. We calculated the interobserver 
variability. Fleiss’s kappa statistics were used for interobserver variability among the 6 radiologists and Cohen’s 
kappa statistics were used for interobserver variability between the two radiologists with similar levels of experi-
ence. To obtain 95% confidence intervals of kappa statistics, the bootstrap method was used with resampling done 
1000 times. We interpreted kappa statistics as follows: 0.01–0.20 (slight agreement), 0.21–0.40 (fair agreement), 
0.41–0.60 (moderate agreement), 0.61–0.80 (substantial agreement) and 0.81–0.99 (almost perfect agreement41).

P values less than 0.05 were considered statistically significant. Data analysis was performed using R version 
3.5.1 (R Foundation for Statistical Computing, Vienna, Austria).
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