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Abstract

Maximum lifespan for most animal species is difficult to define. This is challenging for wildlife

management as it is critical for estimating important aspects of population biology such as

mortality rate, population viability, and period of reproductive potential. Recently, it has been

shown cytosine-phosphate-guanine (CpG) density is predictive of maximum lifespan in ver-

tebrates. This has made it possible to predict lifespan in long-lived species, which are gener-

ally the most intractable. In this study, we use gene promoter CpG density to predict the

lifespan of five marine turtle species. Marine turtles are a particularly difficult group for life-

span estimation because of their migratory behaviour, longevity and high juvenile mortality

rates, which all restrict individual tracking over their lifespan. Sanger sequencing was used

to determine the CpG density in selected promoters. We predicted the lifespans for marine

turtle species ranged from 50.4 years (flatback turtle, Natator depressus) to 90.4 years

(leatherback turtle, Dermochelys coriacea). These lifespan predictions have broad applica-

tions in marine turtle research such as better understanding life cycles and determining pop-

ulation viability.

Introduction

Marine turtles are slow growing, long-lived, and migrate vast distances in the ocean [1]. This

makes it difficult to determine demographic characteristics of wild populations. Although

mark-recapture studies of marine turtles can determine certain features of populations such as

survival probabilities, it is difficult to determine the full extent of life cycles [2]. Consequently,

making broader predictions relating to the risk of extinction, population growth, and viability

due to limited age and longevity data is challenging [3]. Although marine turtles are known to

be long-lived, the true longevity of each species is unknown [4]. Marine turtles epitomise the

difficulties in generating lifespan or longevity information in many wild animal species.

Lifespan is difficult to define for most species of animals, especially in long-lived species,

which may outlive a generation of researchers. Lifespan is commonly regarded as being the

highest recorded age of an individual or the age at death within a selected population [5]. Life-

span is an essential characteristic for any species and has implications for wildlife
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management. Lifespan is associated with life-history traits such as reproductive capacity and

the probability of mortality [6]. Currently, of the seven marine turtle species that occur glob-

ally, only the Green sea turtle (Chelonia mydas) has a reliable lifespan value in the Animal Age-

ing & Longevity Database (An Age; 75 years) [7–9]. Lifespan predictions for the remaining

species is typically based on a small number of ad hoc and opportunistic records, often for ani-

mals held in captivity [10]. This limits the number of analyses relating to population growth

and viability that can be performed for the other marine turtles as they require longevity data

[3].

Previous research has found the frequency of cytosine-phosphate-guanine (CpG) sites in

selected gene promoters can be predictive of lifespan [11, 12]. This provides an alternative

method to predicting lifespan in long-lived species. Here, we predict the lifespan of marine tur-

tle species that occur in Australian waters using CpG density in gene promoters. The molecu-

lar lifespan predictions provided in this study have broad application in the wildlife

management of marine turtles.

Materials and methods

Animal ethics

Animal ethics for the collection of tissue was approved by the Department of Biodiversity,

Conservation and Attractions (FO25000245).

Tissue collection and DNA extraction

Tissue was collected from one individual of each species (Table 1). Flipper biopsies from

marine turtles were stored in 70% ethanol. DNA was extracted from tissue using the DNeasy

Blood & Tissue Kit (QIAGEN) following the manufacture’s protocol. DNA was quantified

using a QIAxpert (QIAGEN).

PCR design and sanger sequencing

Since the five marine turtles of interest do not have published genomes, we used the green sea

turtle genome (CheMyd 1.0) as a reference genome [13]. The green sea turtle is the only

marine turtle with a reference genome available. The lifespan promoters were identified using

Basic Local Alignment Search Tool (BLAST) v2.2.31 (S1 Appendix) [14]. Primers were

designed using Primer3 v0.4.0 for an optimal primer length of 20bp and temperature of 60˚C

[15]. A temperature gradient (45–60˚C) was used for each primer pair to determine the opti-

mal annealing temperature in each species (S2 Appendix). PCR reactions that produced single

band visualised on an agarose gel were used for Sanger sequencing (Australian Genome

Research Facility). Promoter CpG density was determined by calculating the CpG frequency

within the BLAST hit based on the Green Sea Turtle genome and dividing it by the BLAST hit

length (bp).

Table 1. Locations of sea turtles where tissue was collected for DNA extraction.

Species Location Latitude Longitude

Leatherback sea turtle (Dermochelys coriacea) Albany, Western Australia -30.505 115.066

Loggerhead sea turtle (Caretta caretta) South Muiron Islands, Western Australia -25.498 112.987

Olive Ridley sea turtle (Lepidochelys olivacea) Roebuck Bay, Western Australia -18.019 122.237

Hawksbill sea turtle (Eretmochelys imbricata) Delambre Island, Western Australia -20.451 117.076

Flatback sea turtle (Natator depressus) Roebuck Bay, Western Australia -18.036 122.284

Green sea turtle (Chelonia mydas) South Muiron Islands, Western Australia -20.425 115.591

https://doi.org/10.1371/journal.pone.0236888.t001
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Predicting lifespan

Lifespan prediction was determined using the model developed previously that is exclusive to

five vertebrate classes [12]. Lifespan prediction is conducted by determining the CpG density

within selected genomic promoters. Genomic promoters predictive of lifespan were identified

by comparing the sequences of 29,598 promoters to a database of known animal lifespans [7,

16]. An elastic net regression model was used to regress the lifespans of 252 species against the

CpG densities of the genomic promoters. The model returned a total of 42 genomic promoters

and coefficients that can be used to predict lifespan. The model returns the most informative

genomic promoters but does allow redundancy as not all species will contain all 42 genomic

promoters. The model was found to have an error range of 5.9%. The model returns a single

lifespan prediction, but the 5.9% error is given in ± years. CpG densities were calculated for

each promoter that received a BLAST hit to the Green Sea Turtle genome. A significant

BLAST hit in the green sea turtle genome was considered with an identity > 70%.

Average mass and length data

To determine whether basic morphological traits correlated with predicted lifespans, physical

features including the average carapace length (mm) and mass (g) for each species was

obtained from the Animal Diversity Web (ADW) database [17]. Olive ridley sea turtles did not

have data available in the ADW database and were removed from the analysis. Pearson corre-

lations between physical features and maximum lifespan were natural log (ln) transformed to

determine if there was a linear relationship. All analyses were performed in R v3.5.1 [18].

Results

Lifespan prediction

Promoter CpG density used for lifespan prediction is provided in S3 Appendix. The lifespan pre-

diction for five marine turtle species are detailed in Table 2. The green sea turtle was excluded from

the analysis as it has a known lifespan [7–9]. Leatherback sea turtles were found to have the longest

lifespan prediction at 90.4 ± 5.3 years and flatback sea turtles with the shortest at 50.4 ± 2.9 years.

Lifespan and physical features

We found a strong positive correlation between both the average length (cor = 0.95, p-

value = 0.012) and mass (cor = 0.98, p-value = 0.0038) with the lifespan prediction from CpG

densities in marine turtles (Fig 1). Positive correlations were also observed in untransformed

data for both length (cor = 0.91, p-value = 0.030) and mass (cor = 0.96, p-value = 0.010).

Discussion

Marine turtles globally face many anthropogenic threats [19]. However, as with other long-

lived organisms their lifespan is difficult to determine and data on this key life-history attribute

Table 2. Lifespan prediction of marine turtle species using promoter CpG density.

Species Prediction (- 5.9% Error) Prediction Prediction (+ 5.9% Error)

Leatherback sea turtle (Dermochelys coriacea) 85.1 90.4 95.7

Loggerhead sea turtle (Caretta caretta) 59.1 62.8 66.5

Olive Ridley sea turtle (Lepidochelys olivacea) 51.1 54.3 57.5

Hawksbill sea turtle (Eretmochelys imbricata) 50.1 53.2 56.4

Flatback sea turtle (Natator depressus) 47.4 50.4 53.4

https://doi.org/10.1371/journal.pone.0236888.t002
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is sparse. This may partly be attributed to the fact that they may out-live research projects or

researchers themselves. Age-estimates for marine turtles do exist but are based on much

weaker data than typically is available for short-lived species. A lifespan prediction, provides

an immediate value thereby providing useful demographic parameter regarding marine turtle

ecology. In this study, we have used a molecular approach to confirm marine turtles as being

long-lived animals. We found the leatherback sea turtle to have the longest lifespan and the

flatback sea turtle with the shortest, with a difference of 40 years. This suggests a high variance

and specific lifespan between species. The lifespan predictions provide a fundamental parame-

ter used in determining mortality rates [20]. This can be used in the wildlife management of

marine turtles and determine if specific populations are at risk of extinction.

Reliable lifespan values for long-lived species are difficult to find within the literature,

although some do exist for selected individuals. Leatherback sea turtles were found to have the

longest lifespan at 90 years. They have been reported to live at least 30 years in the wild with

informal evidence suggesting a longevity of 70–80 years [21]. Loggerhead sea turtles have also

been reported to have a lifespan of at least 30 years and up to 60 years in the wild [22, 23]. Sim-

ilarly, the Olive Ridley, Hawksbill, and Flatback sea turtles have had reported lifespans of at

least 30 years and up to 50 years in the wild [24, 25]. These reported lifespan values are sup-

portive of the molecular predictions. A limitation of these studies is the low samples size as

they only followed selected individuals. The longevity of marine turtle’s life cycles makes it

challenging to study and determine the maximum lifespan.

Age estimates of wild animals can provide insight into age at sexual maturation and longev-

ity [26, 27]. Skeletochronology is used to determine the age of stranded deceased marine turtles

[28, 29]. Previous studies have found, depending on the species, that the age at sexual maturity

ranges from as early as 6 years (Kemp’s ridley sea turtle) to 35 years (leatherback sea turtle)

[30–33]. Other studies researching the same species, but different populations have recorded

different ages at sexual maturity. For example with loggerhead sea turtles age at sexual matura-

tion can range from 20 years of age in North American populations to 35 years in Australia

[34–36]. Although longevity can be determined from age at sexual maturation, it can range

greatly between different populations. Older age at sexual maturation ranges suggest marine

Fig 1. Increasing a. carapace length and b. mass of marine turtle species with lifespan. Each dot represents a species. Average length and mass data was obtained from

the Animal Diversity Web database [17].

https://doi.org/10.1371/journal.pone.0236888.g001
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turtles are long-lived animals. Other studies have found wild sea turtles of at least 40 years of

age [28, 37]. Many of these age estimates are on the lower end of the lifespan predictions pre-

sented in this paper. Older individuals may exist in the wild and are not recorded since skeleto-

chronology can only be carried out on deceased individuals. Therefore, the lifespan

predictions provide a useful but potentially conservative values. However, it is important to

note that older sea turtles are known to exist, primarily in captivity. It is well known animals,

including reptiles, which are kept in captivity generally live longer than their wild counterparts

[38, 39]. The lifespan predictions presented here suggest they may be on the upper end of what

can be achieved in the wild but may be considered low to what can occur in captivity.

We found two morphological metrics of turtle size to strongly correlate with increasing life-

span (Fig 1). When more data becomes available the loggerhead and Kemp’s ridley sea turtle

morphological and lifespan data can be added to the analyses. As a life-history strategy this

may reflect a lower death rate in larger animals from extrinsic causes such as predation [40].

This may be the case with marine turtles since except for humans and large sharks, adults have

few predators [41]. This correlation between size and longevity is well established in other

taxa, supporting our findings in marine turtles [42]. To our knowledge this is the first time

that this has been demonstrated in marine turtles, an ancient vertebrate group [42].

The main limitation of using a molecular method to predict lifespan is the generalisation of

the species. A single molecular prediction does not account for population differences. Envi-

ronmental pressures differ between populations which may reduce life expectancies. Without

factoring environmental pressures, the molecular method cannot be used to make predictions

for specific populations or individuals. Rather, it represents a potential maximum lifespan for

the species. A maximum lifespan can be used as a reference tool see if individuals within a pop-

ulation are reaching their natural limit. If their life expectancy is low compared to their maxi-

mum lifespan it may indicate a potential environmental factor that may be limiting their

longevity. Another limitation is the lack of known age data. Skeletochronology is used to deter-

mine the age of turtles but by having a non-invasive method, older aged turtles can be deter-

mined. This can then be used to determine if some turtles are either approaching or exceeding

the lifespan predictions in this paper. A limitation of the method used in this study to predict

lifespan is the dependency on an assembled genome. Reference genomes are in different stages

of assembly such as contigs, scaffolds, or at the chromosome level. This can introduce artefacts

and may result in inaccurate CpG densities. In this study, sanger sequencing was used to deter-

mine CpG density thereby removing the possibility of a lack of coverage. Lifespan prediction

from DNA has shown to be highly predictive across most speciose vertebrate classes, including

reptilia [12]. In the absence of robust observational information on the lifespans of wild marine

turtles, molecular predictions represent useful consistently derived foundation values for this

iconic and vulnerable group of marine animals.

Supporting information

S1 Appendix. Green sea turtle genomic coordinates and primer sequences used to amplify

promoter sequences.

(XLSX)

S2 Appendix. Species specific annealing temperatures for each primer pair.

(XLSX)

S3 Appendix. Promoter CpG density from sanger sequencing used to predict marine turtle

lifespan.

(XLSX)
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