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Abstract

Signal transmission in the brain propagates via distinct oscillatory frequency bands but the aperiodic compo-
nent, 1/f activity, almost always co-exists which most of the previous studies have not sufficiently taken into
consideration. We used a recently proposed parameterization model that delimits the oscillatory and aperiodic
components of neural dynamics on lifespan aging data collected from human participants using magnetoence-
phalography (MEG). Since healthy aging underlines an enormous change in local tissue properties, any sys-
tematic relationship of 1/f activity would highlight their impact on the self-organized critical functional states.
Furthermore, we have used patterns of correlation between aperiodic background and metrics of behavior to
understand the domain general effects of 1/f activity. We suggest that age-associated global change in 1/f
baseline alters the functional critical states of the brain affecting the global information processing impacting
critically all aspects of cognition, e.g., metacognitive awareness, speed of retrieval of memory, cognitive load,
and accuracy of recall through adult lifespan. This alteration in 1/f crucially impacts the oscillatory features
peak frequency (PF) and band power ratio, which relates to more local processing and selective functional as-
pects of cognitive processing during the visual short-term memory (VSTM) task. In summary, this study lever-
aging on big lifespan data for the first time tracks the cross-sectional lifespan-associated periodic and
aperiodic dynamical changes in the resting state to demonstrate how normative patterns of 1/f activity, PF,
and band ratio (BR) measures provide distinct functional insights about the cognitive decline through adult
lifespan.

Key words: 1/f activity; band ratio; healthy ageing; peak frequency; self-organized critical state; visual short-term
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Significance Statement

Ageing is accompanied by the decline in cognitive functions and age itself is a major risk factor for
Alzheimer’s disease and other neurologic conditions. Our study provides magnetoencephalogram (MEG) 1/
f aperiodic and periodic markers across the healthy adult lifespan and shows that different frequency bands
and their spectral features (aperiodic and periodic component) mediate age-related changes across differ-
ent brain regions, in multiple cognitive and metacognitive domains, which not only provides us with a better
understanding of the aging process but would also help in better prevention of cognitive impairments. A
clear characterization of the association between baseline oscillatory component, 1/f activity, band ratio
(BR), healthy aging and cognition, is established in this study.
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Introduction
Spontaneous brain dynamics indexed by variation of

neuroelectromagnetic potential may reflect the local as
well global change associated with healthy aging proc-
esses that guide behavioral response through lifespan
(Bishop et al., 2010; Foster et al., 2016; Sahoo et al.,
2020). While the periodic component of spontaneous ac-
tivity has been extensively studied as an objective mea-
sure for cognitive phenotyping (Klimesch, 1999; Knyazev,
2007; Schutter and Knyazev, 2012), the non-oscillatory/
aperiodic background component also known as “1/f” ac-
tivity received less attention compared with the former.
This spontaneous 1/f aperiodic brain dynamics almost
always pervasively co-exists in EEG/magnetoencepha-
lography (MEG)/LFP signals (Lyne et al., 1992;
Linkenkaer-Hansen et al., 2001; Beggs and Plenz, 2003;
Bédard et al., 2006; Voytek et al., 2015) and critically influ-
ence oscillatory signatures in the context of healthy aging
and constrain task performance (Voytek et al., 2015;
Donoghue et al., 2020). As we age, we are faced with the
likelihood that our cognitive faculties will decline for example,
ascertain memory (Craik, 1994; Ouyang et al., 2004; Nyberg
et al., 2012), shift of sustained attention (Gazzaley et al.,
2005), and processing speed (Gazzaley et al., 2007;
Salthouse, 2010). There were recent attempts to relate 1/f ac-
tivity, where it is being considered as a marker of “neural
noise,” with N900 lexical prediction (Dave et al., 2017), work-
ing memory (Donoghue et al., 2020), and grammar learning
(Cross et al., 2020).
The existence of ubiquitous 1/f activity in neuronal sys-

tems organized across various spatial scales is one of
the key features of signal variability and collectively re-
ferred to as “noise.” However, a recent perspective sug-
gests a serious reconceptualization is necessary to define
what constitutes the “signal of interest” or noise in neuro-
science (Uddin, 2020). The characteristics of 1/f compo-
nent, slope and offset, of the ongoing oscillatory power
has been found to be dynamic in nature. One possible
mechanism for this dynamical change is an increased

baseline activity (Voytek et al., 2015) or at a more funda-
mental level, a phenomenon called self-organized critical-
ity (Bak et al., 1987). In neuroscience, the presence of
critical brain states can shape an organism’s ability to op-
timally switch between task states (Buzsáki, 2006).
However, some studies have postulated that the origin of
1/f may lie in the tissue properties (Bédard et al., 2006).
Therefore, we hypothesized that aging is consonant with
alteration of physiological properties in brain tissue, so
any changes along aging dimension in 1/f owes its origin
to the tissue properties. Subsequently, we propose that
prospective age-corrected correlations between 1/f and
behavioral performance in tasks will reveal whether the
tissue properties can alter the self-organized criticality of
functional brain states and subserve as a non-specific
mediator of behavior and cognitive functions.
Other than the characteristics of 1/f component, slope

and offset, physiological aging has been further charac-
terized by progressive change in oscillatory power, central
frequency (CF), and functional connectivity (Voytek et al.,
2015; Murty et al., 2020; Sahoo et al., 2020; Tran and
Reddy, 2020). For example, a consistent line of research
associated higher individual peak a frequency (PAF)
across adulthood with better working memory and better
reading comprehension (Klimesch, 1999; Clark, 2004).
There are also noticeable discrepancies among numerous
existing aging studies based on the estimation of differ-
ence of power between younger and elderly individuals in
the frequency band of interest (Klass and Brenner, 1995;
Aurlien et al., 2004; Cummins and Finnigan, 2007;
Stomrud et al., 2010; Ishii et al., 2017; Scally et al., 2018;
Sahoo et al., 2020). Hence, it is often notoriously difficult
to reconcile those age-associated oscillatory findings dur-
ing spontaneous activity and trusting power changes in
the relevant frequency band were estimated accurately.
One possible reason for this inconsistency might be the
mixing of oscillatory power with the aperiodic background
1/f activity, which was not taken into sufficient considera-
tion by most of the studies.
On the other hand, frequency band ratio (BR) is a com-

mon measure in investigating attention deficit hyperactiv-
ity disorder (ADHD; Lubar, 1991; Snyder and Hall, 2006;
Arns et al., 2014), executive functioning (Lubar, 1991;
Angelidis et al., 2016; Gordon et al., 2018; van Son et al.,
2019) and working memory capacity (Moran et al., 2010).
We propose here that both shifts in individual peak fre-
quency (PF) and BR index clearly different aspects of
functional changes associated with aging impacting
short-term working memory speed and accuracy of re-
trieval on one hand and cognitive capacity on the other.
Together, we suggest the three different measures, 1/f

slope-offset reflecting aperiodic activity, PF and BR reflect-
ing periodic activity provide distinct functional insights
about the neural underpinning of the healthy aging process.

Materials and Methods
Participants
The Cambridge Centre for Ageing and Neuroscience

(Cam-CAN) is a large-scale, multimodal, cross-sectional
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adult lifespan (18–88) population-based study. The Cam-
CAN consists of two stages. In stage 1, 2681 participants
had gone through general cognitive assessments at their
home. Tests for hearing, vision, balance, and speeded re-
sponse were also assessed. Additionally, measures taken
in stage 1 served to screen participants for stage 2. Those
with poor hearing, poor vision, with neurologic diseases
such as stroke, epilepsy, or a score,25 in MMSE (cognitive
assessment examination) were excluded from the further
participation. From stage 1 to stage 2, 700 participants were
screened (50 men and 50 women from each age band). All
screened participants were recruited for testing at the
Medical Research Council (United Kingdom) Cognition
and Brain Sciences Unit (MRC-CBSU) in Cambridge. In
this stage, MRI scans, MEG recordings, and cognitive
task data were collected, all the participants performed
a range of psychological tests and neuroimaging as-
sessments, but only the MEG RS data and visual short-
term memory (VSTM) task data are included in this
study. Out of 700 participants, MEG data from 650 sub-
jects were available. Age values of participants were di-
vided into four age groups for categorical analysis (see
statistical analysis): young adults (YA), middle elderly
(ME), middle-late (ML), older adults (OA). Earlier studies
have done similar grouping (Chan et al., 2014; Sahoo et
al., 2020). A total of 70 participants were randomly cho-
sen from each age group resulting in a total of N = 280

subjects comprising all four important stages of adult
lifespan (Table 1).

Data acquisition
MEG resting-state data
MEG Data used for this study were obtained from the

Cam-CAN repository (available at http://www.mrc-cbu.
cam.ac.uk/datasets/camcan/; Taylor et al., 2017; Shafto
et al., 2014). For all the 700 participants, MEG data were
collected by Elekta Neuromag, Helsinki at MRC-CBSU
using 306 channels, consisting of 102 magnetometers
and 204 orthogonal planar gradiometers. MEG data col-
lection was done in a light magnetically shielded room
(MSR). A high pass filter of 0.03-Hz cut-off was used to
sample the data at 1000Hz. Head-position indicator (HPI)
coils were used to continuously assess the head position
within the MEG helmet. To monitor blinks and eye move-
ments, two pairs of bipolar electrodes were used to re-
cord horizontal and vertical electrooculogram signals. To
monitor pulse-related artefacts, one pair of electrodes
was used to record electrocardiogram signals. MEG data
collected for resting state required the participants to sit
still for a minimum of 8 min and 40 s with their eyes
closed. From this subset, 280 participants were included
in the present study (70 in each group).

VSTM stimuli and task
In Cam-CAN, the design was adapted from Zhang and

Luck (2008; Fig. 1). On each trial, participants were pre-
sented with one, two, three, or four colored discs (mimick-
ing different memory load conditions) for 250ms.
Following that, a blank screen was presented for 900ms
to hold those colors in memory. One of the original loca-
tions was highlighted by a thick black border (acting as a
probe for participants to remember the color at that

Table 1: Each representative age is divided into four groups
YA, ME, ML, and OA

Serial Number (S.No) Group Age N
1 Young adults (YA) 18–35 70
2 Middle elderly (ME) 36–50 70
3 Middle-late (ML) 51–65 70
4 Old adults (OA) 66–88 70

Figure 1. Experimental design of the color recall task. Example trial, with memory load of four items (data were taken from Cam-
CAN repository; adapted from Mitchell et al., 2018).
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location), and at the same time, a response color wheel
was presented. Participants had as much time as required
to report by touching or clicking, as accurately as possible
the remembered hue of the highlighted disk. No feedback
was given. After every trial, there was a 830-ms fixation
period. Participants complete two blocks of 112 trials,
with memory load (1, 2, 3, or 4) counterbalanced and ran-
domly intermixed. For each set size (memory load), the
following measures (Table 2) were estimated by fitting the
error distribution with a mixture model of von Mises and
uniform distributions, proposed by Zhang and Luck
(2008) and modified by Bays and Husain (2008; for de-
tailed analysis, see Zhang and Luck, 2008; Mitchell et al.,
2018). In brief, as a model-free index of performance, the
response error, the angular difference between the target
color presented and the color reported, was calculated.
This model-free index cannot be used to distinguish er-
rors because of imprecise memory of an item, from errors
because of reporting the wrong item, or guessing when
an item is not kept in memory at all. To estimate these,
Maximum likelihood estimation was used to decompose
the data from each subject into three parameters that rep-
resent a mixture of a uniform distribution of errors and a
von Mises distribution of errors. The von Mises distribu-
tion is the circular analog of the Gaussian distribution and
was used because the tested color space was circular.
The uniform distribution was represented by a single pa-
rameter, Pm, which is the probability that the probed item
was present in memory at the time of the probe. K is cal-
culated by multiplying the memory load by Pm. The von
Mises distribution was represented by two parameters, its
mean (m) and its Standard Deviation (SD); m reflects any
systematic shift of the distribution away from the original
color value. The “precision” of each item held in memory

is reported as the reciprocal of the SD of the fitted von
Mises distribution. Subjects indicated their uncertainty in
their choice of color by the length of time they touched
the wheel: as they held their finger down, white confi-
dence intervals spread out around the selected point indi-
cating greater uncertainty about their selection. To assess
metacognitive awareness, the angular width of the re-
ported confidence intervals provided a trial-by-trial mea-
sure of subjective uncertainty. To summarize overall
uncertainty for each individual and condition, the mean
was taken across trials. Participants with smaller values
thus reported more confidence in their responses.

MEG data preprocessing
MEG processed data were provided by Cam-CAN.

Preprocessing pipeline included temporal signal space
separation, applied on continuous MEG data to remove
noise from the HPI coils, environmental sources and con-
tinuous head motion correction. For removing the main
frequency noise (50-Hz notch filter) and to reconstruct
any noisy channel, max filter was used. More details
about data acquisition and preprocessing have been pre-
sented elsewhere (Shafto et al., 2014; Taylor et al., 2017).
Additionally, we performed independent component anal-
ysis (ICA) to get rid of the artifacts and removal of higher
order harmonics present in different frequency bands in
the signal following previous studies (Taylor et al., 2017;
Sahoo et al., 2020).

Data analysis
We analyzed the MEG and behavioral data in MATLAB

and python using custom made scripts. In this study, we
used Python MNE for preprocessing; standard python li-
braries including Scipy, Pandas, and NumPy for data

Table 2: Estimated behavioral measures of VSTM task

Serial Number (S.No) Variable Description
1 Precision Accuracy of reportable items (degrees�1)
2 RT Median reaction time (ms)
3 K(VSTM capacity) Number of reportable items (k-score)
4 Mean uncertainty Size of confidence interval within which answer is thought to lie (degrees)

Table 3: Effect of age on periodic and aperiodic features

Effect Response variable F value Coefficient b 1 R2 p value
Age Aperiodic features

1/f slope 26 10.0034901 0.584 0.003262
1/f offset 5.35 �0.0033423 0.308 0.0894

Periodic features
Power
u 6.82 10.0050947 0.363 0.0227
a 36.3 �0.0059263 0.751 0.0000599
b 28.7 10.002496 0.705 0.000172
Central frequency
u 0.577 10.0029928 0.0459 0.462
a 7.32 �0.010234 0.41 0.0205
b 10.3 �0.024068 0.462 0.00751
Bandwidth
u 2.15 �0.0062634 0.15 0.168
a 5.05 10.001472 0.3 0.056
b 17 10.040345 0.58 0.00141
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management and processing; and python-matplotlib and
seaborn for data visualization. The analysis pipeline is pre-
sented in Figure 2.

Power spectral density (PSD) using Welch’s periodo-
gram method. The Power spectrum Sxx(f) of a signal x(t)
capture how the strength of the signal is distributed in the
frequency domain. Using fast Fourier transform (FFT; a
variant of Fourier analysis), the representation of raw
signal (time or space) is transformed into a frequency
representation of the signal. Processed MEG data pro-
vided in .fif format was analyzed using Fieldtrip toolbox
(Oostenveld et al., 2011). Data for each N = 280 subjects
were first downsampled from 1000 to 250Hz. The fre-
quency resolution was held at 0.05 Hz. PSD was esti-
mated using Welch’s periodogram method (pwelch
function) implemented in MATLAB 2019b. For each par-
ticipant, 102 magnetometer sensor’s time series data
resulted in a matrix of size 102XT, where Tcorrespond
to the number of time points. Each sensor’s c9s time se-
ries xc(t) was further divided into segments of 20 s
(epochs) without any overlap. Spectrum was estimated
for each segment after multiplying the time series seg-
ment with a Hanning window. We estimated a global
spectrum, representative of each subject, i.e., SI(f) by
taking a grand average of spectrums across all 102
magnetometer channels.

SIðfÞ ¼
X

c

sIðc; fÞ (1)

For each participant, resulted power spectrum matrix
was �Xc. For group-wise analysis, each participant’s
spectrum was averaged across sensors of interest.

Extracting periodic and aperiodic features using a pa-
rameterization model. To separate the periodic (oscilla-
tory) component from the aperiodic component of the

signal power spectra, we used a recently proposed pa-
rameterization model, fitting-oscillations-and-one-over-f
(FOOOF toolbox; for full description, see Donoghue et al.,
2020). In brief, the PSDs calculated using pwelch were
given as an input to the FOOOF model, which considers
PSDs as a linear sum of aperiodic 1/f like characteristics
of neural power, and it is entirely described by the aperi-
odic “exponent” and “offset.” Periodic components de-
scribe putative oscillations that describe power above
aperiodic component [so-called “peaks,” simulated as
Gaussian function; are described by PF in Hertz, peak
power over and above the 1/f signal in arbitrary units (au)
and bandwidth (BW; Hz)]. Larger BW in given frequency
band indicates the deviation of power from the baseline
and the spread across a wider frequency range. This
global spread in power across frequency band further
quantifies the strength of a signal at a specific frequency
and allows for information transfer across wider frequency
range. The simulation, for a power spectrum P is de-
scribed as follows:

P ¼ L1
XN

n¼0

Gn (2)

Where P is the linear sum of the aperiodic signal L and
N Gaussian peaks Gn. For each peak, Gaussian function
Gn is fitted which is modelled as the following:

Gn ¼ a p exp
�ðF�CÞ2

2w2

� �
(3)

Where a denotes the amplitude, c denotes the CF, w
denotes the BW of the Gaussian. F is the frequency vec-
tor. Subsequently, all fitted Gaussians were subtracted
from the original power spectrum to get a peak-removed
power spectrum (PRPS). Finally, a 1/f signal is estimated

Figure 2. Data processing and analyses pipeline.
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from this PRPS using Equation 4, representing the actual
cortical noise. Exponential function in semilog-power
space (logged power values and linear frequencies) is
used to model the aperiodic signal (initial and final fit
both), L, as:

L ¼ b� logðk1Fx Þ: (4)

Where b denotes the broadband offset, x is the slope,
and k is the knee parameter, which depends on the bend
in the aperiodic signal. F is the frequency vector. The
FOOOF model described in Equation 2 fits the power of a
given sensor signal by estimating a linear function L for
the aperiodic component of the signal and each oscilla-
tory contribution Gn is modelled as Gaussian peaks.
Moreover, estimated power was fitted across the entire
frequency range of 1–45Hz by as no knee was expected
in the MEG recordings across the 1- to 50-Hz frequency
range (Miller et al., 2009). The number of oscillatory com-
ponents is determined from the data, with the option to
set a maximum number of components as a parameter.
The general model assumption here is that oscillatory and
aperiodic processes are distinct and separable. Algorithm
was implemented using custom python scripts on the py-
thon3 version.
The model was fitted for individual subject and output

parameters were averaged across subjects for each
group (Fig. 3A). The settings for the algorithm were set as:
(1) peak_width_limits = [0.5, 12]; (2) min_peak_height = 0;
(3) max_n_peaks= 12; (4) peak_threshold =2; (5) aperio-
dic_mode = “fixed”; and (6) verbos = “true.” Oscillations
were post hoc grouped into u (4–8 Hz), a (8–12 Hz), and
b (13–30 Hz). For estimating the topographical

dynamical changes, the brain was segmented into five
non-overlapping regions: frontal (number of sensors =
26), parietal (number of sensors = 26), occipital (num-
ber of sensors = 24), and right and left temporal
(number of sensors = 26).

BR measures. Additionally, we estimated the BRs
which reflect the quantitative measure of oscillatory activ-
ity and are investigated in different cognitive processes;
however, they also get impacted by the 1/f background
noise (Donoghue et al., 2020). After removing the aperi-
odic signal using a parametrization method proposed
by the FOOOF toolbox, periodic values were estimated.
Thus, after implementing appropriate parametrization of
the aperiodic component of the signal power spectra BR
values were re-estimated to indicate the true power
changes and finally, were grouped into different frequency
bands of interest. For each participant, we calculated the
ratio of periodic components of different frequencies and
averaged across participants for age bin-wise distribu-
tion. BR of all the periodic components for each frequency
band was then calculated by dividing the average of low
band periodic features by the average of high band peri-
odic features. We calculated frequency-specific BRs of all
periodic features.

BandRatioðXÞ ¼ AvgðXLowBandÞ
AvgðXHighBandÞ

; (5)

where X = PW, CF, BW.

Statistical analysis
We performed both categorical as well as continuous

analyses to capture different aspects of age-associated

Figure 3. Parameterization using FOOOF model. (A) Power spectrum of all age-groups after removing the 1/f activity component.
(B) (C) FOOOF model fit for young and old adults. Power spectrum without model fitting and for the other two age categories along
with their statistics is shown in Extended Data Figure 3-1. Other extended analysis for different age groups is shown in Extended
Data Figures 3-2, 3-3, 3-4, 3-5.
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functional differences. For the continuous analysis, we
divided the total number of participants into bins of
five years starting from 18 years, a total of 14 bins, and
the center value was taken to be the representative age
for each bin. For the categorical analysis, we divided
data into the following age stratifications (18–35, 36–50,
51–64, and 66–88 years) to get insights about different
important stages of adult lifespan and comparison with
previous works (Chan et al., 2014; Sahoo et al., 2020).
To clearly delineate the effects of periodic and aperi-
odic features on VSTM features, it was necessary to il-
lustrate the effect in different load conditions. Only set
size 2 and set size 4 are reported in the main manu-
script, where we have categorized the set sizes in two
load conditions: set size 2 as a low load condition and
set size 4 as a high load condition. We have provided
the findings for behavioral features of other set sizes as
Extended Data Figs 9-2, 9-3, 9-4.

Correlation analysis. Depending on the data distribu-
tion, Pearson or Spearman’s correlation was used
to estimate the strength between two variables.
Estimated functional changes (PF, aperiodic, and BR
measures) and VSTM task measures were correlated
with age. Finally, VSTM task measures were correlated
with the functional changes that occurs with aging to
elucidate the role of these functional measures in de-
termining behavioral responses.

Regression analysis. Linear and nonlinear regression
were performed separately considering each power, CF,
BW, slope, offset, and BRs of periodic features, as the es-
timated measures (R) of functional changes and precision,
reaction time (RT), metacognitive awareness (d), and
memory capacity (k), as the estimated measures (R) of the
VSTM behavioral task, while keeping age as an explana-
tory variable:

R ¼ b 0 1 b 1 p ðageÞ (6)

Linear regression was performed using fitlm MATLAB
function. To capture the potential nonlinear effects of age,
we also added second order polynomial terms to the
model, such as:

R ¼ b 0 1 b 1 p ðageÞ p b 2 p ðage2Þ (7)

Linear regression was also performed considering each
VSTM task measure as response variable (R) and the
functional measure as the explanatory variable (E).

R ¼ b 0 1 b 1 p ðEÞ (8)

All regression tables are provided in the supplementary
document (Extended Data Tables 8-1, 9-1, 10-1, 10-2, 11-1,
11-2, 11-3, 11-4). For estimating the significance, first normal-
ity of the data distribution was assessed using the
Kolmogorov–Smirnov test. Based on the data distribution,
parametric (t test) or nonparametric (Wilcoxon rank-sum
test) was performed.

Code accessibility. The codes for all the analysis con-
ducted in this paper is freely available to download from
https://drive.google.com/drive/folders/1__74tFI1_VnHaV_-
kJ46VAGMGiI04T2i?usp=sharing.

Results
Using the FOOOF model, we fitted the PSD, and from

the parametrization model fit, all the simulated Gaussian
peaks were removed to analyze the background signal.
Thereafter, the aperiodic component of the signal was fit-
ted in the log-log space line (Extended Data Fig. 3-2),
from which 1/f Slope and offset were extracted for each
participant. Periodic features, CF, power (PW), BW, were
estimated using peak parameters from the fitted model
(see Materials and Methods). To check whether the pa-
rameterization using the simulated FOOOF model is able
to capture lifespan associated changes, we first simulated
the model for young and old adults. The model well cap-
tured the well-established lifespan associated with slow-
ing down of PAF (Fig. 3). Original spectrum, aperiodic fit
and full model are being depicted in Figure 3B,C for YA
and OA group, respectively (extended analyses are
shown in Extended Data Figs. 3-1, 3-2, 3-3, 3-4, 3-5 for
model’s output parameters of ME and ML groups). To
capture the dynamical changes in the dominant oscilla-
tions (highest power peak across all frequencies) across
the adult lifespan, the CF, PW, and BW of the dominant
oscillations were also extracted for young and old adults.

Topographical distribution of aperiodic 1/f component
of the signal with age
Increase in aperiodic 1/f slope and decrease in 1/f
intercept
Aperiodic 1/f slope increases significantly when age was

treated as a pseudo-continuous variable (b 1= 10.0034901,
R2 = 0.584, p=0.003) whereas 1/f offset does not show
significant decrease across the adult lifespan (b 1 =
�0.0033423, R2 = 0.3, p = 0.03; Table 3, Fig. 4A,B,
Extended Data Fig. 3-3). Categorical analysis also con-
firmed significant difference in the 1/f slope between the
OA versus YA (t(140) = 4.38, p , 0.0001), ML versus YA
(t(140) = 4.07, p= 0.02), ME versus YA (t(140) = 2.7749,
p= 0.007), ME versus OA (t(140) = �2.4581, p= 0.02).
Categorical difference in 1/f offset was also found be-
tween OA versus YA (t(140) = 2.0345, p= 0.0457) and ML
versus YA (t(140) = �2.3441, p= 0.02; Fig. 4A,B).
Aperiodic fit and full model are being depicted in Figure 3 for
YA and OA group, respectively, and within-group analysis re-
vealed more variability in aperiodic features in the OAs (slope:
SEM=0.023; offset: SEM=0.0404) compared with YA
(slope: SEM=0.014; offset: SEM=0.0364; Extended Data
Figs. 3-3, 3-4). Figure 4C,D shows variability in spatial topog-
raphies of aperiodic 1/f slope and offset for young and old.

Topographical distribution of PF with age
Age-associated slowing of central a frequency (CAF) and
b frequency
For each participant, PF was quantified by estimating

the peak power value within the 8–12 and 13–30Hz for a
and b range, respectively. Each participant’s PF was then
averaged to get the group-wise estimation of CAF. Visual
inspection revealed bin 65 to be the outlier (for CAF). After
removing the outlier, significant linear age-related decline
was found (b 1 = �0.010234, R2 = 0.4, p=0.02); however,
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central b frequency (CBF) showed nonlinear decrease
with age (b 1 = �0.024068, R2 = 0.462, p=0.007; Fig. 5A).
Categorical analysis also revealed significant CAF differ-
ences between YA versus OA (t(140) = 4.7551 p = 0.00001),
YA versus ME (t(140) = 3.4198, p=0.001), and YA versus
ML (t(140) = 4.8826, p=0.000001), and for CBF between
YA versus OA (t(140) =1.912, p=0.03). Almost all sensors
were found to be contributing to the decrease in CAF in OA
whereas the decrease in CBF was mainly contributed by the
central sensors (Fig. 5B). No significant difference was
found in the frequencies of dominant oscillation; however,
the power of the respective dominant frequencies was
found to be significantly different between YA and OA (ex-
tended analyses are shown in Extended Data Fig. 5-1).

Age-associated functional power change in a, u , and b
frequency
We found a robust decline of a power with age (b 1 =

�0.0059263, R2 = 0.75, p = 0.00005; Fig. 6A). Visual in-
spection suggests that sensor level a power difference
was mainly contributed by the occipital, parietal and left
temporal sensors (Fig. 6B). Significant difference was
found between OA versus YA (t(140) = �3.038, p=0.003),
OA versus ME (t(140) = �2.2008, p=0.03), and OA versus
ML (t(140) = �2.2252, p=0.029). OAs showed higher u
power (M=0.566 0.04) than younger adults (M =
0.326 0.02; t(140) = 2.4733, p=0.023). Significant age ef-
fect was also observed with increase in u power (b 1=
0.0050947, R2 = 0.363, p=0.022; Fig. 6A), which was
mainly contributed by the temporal sensors. In addition,

aging was also associated with an increase in b power
(b 1= 0.002496, R2 = 0.70, p=0.0001; Fig. 6A). Spatial
topographies showed Central and frontal sensors to be
contributing to this age-related increase in global b
power (Fig. 6B). Categorical analysis revealed significant
differences in b power between the YA versus OA (t(140) =
�4.3693, p=0.00004), YA versus ME (t(140) = �3.0103,
p, 0.003), and YA versus ML (t(140) = �4.4158, p=
0.00003). Extended analysis is shown in Extended Data
Figure 6-1 displaying the sensor-wise distribution of fre-
quency-specific power as a function of age.

Increase in b BWwith age
BW reflects the spread of power in the respective fre-

quency range, which for the b band was found to be in-
creased across the adult lifespan (b 1 = 0.040345, R2 =
0.58 p=0.001; Fig. 7A). Significant group-wise difference
was also seen between YA versus OA (t(140) = �3.1586,
p=0.0024), YA versus ME (t(140) = �1.9843, p=0.049).
Increase in b BW indicates that the b power tends to be
more distributed within the frequency band as we age.
This increase was mainly observed over left temporal and
central sensors (Fig. 7B). BW for a and u frequency band
did not differ across age groups (Extended Data Fig. 7-1).
For sensor topography refer to Extended Data Figure 7-2.

Topographical Distribution of BRs with age
BR measures have been argued to be a marker of vari-

ous cognitive measures in healthy adults as well as in
pathologic conditions (Schutter and Van Honk 2005;

Figure 4. Aperiodic 1/f Slope and Offset. (A) left, 1/f slope as a function of age. Right, 1/f slope for four age groups. (B) left, 1/f offset
as a function of age. Right, 1/f offset for four age groups. r represents the correlation value. The dashed line represents a linear re-
gression fit. Error bar denotes SEM. (C) (D) Aperiodic 1/f slope and 1/f offset spatial topography for young (YA) and old (OA).
Clusters of sensors with significant positive and negative differences in 1/f slope and 1/f offset between the OA and YA group are
represented with black and white dots, respectively.
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Figure 6. Parameterized global power as a function of age. (A) Increase in u and b power whereas decrease in a power with age.
Error bar represents SEM. (B) Spatial power topography of u , a, and b for young (YA) and old adults (OA). Clusters of sensors with
significant positive and negative differences between the OA and YA group are represented with black and white dots, respectively.
Frequency specific power as a function of age across different sensors is shown as Extended Data Figure 6-1.

Figure 5. a And b PF as a function of age. (A) Top: PAF as a function of age. Bottom, b PF with age. r represents the correlation
coefficient. The dashed line represents a linear regression fit. Error bar denotes SEM. (B) Top: Spatial topography for PAF and b PF
for young (YA) and old (OA). Clusters of sensors with negative differences which contribute to the decrease are represented as
white dots. Dominant frequency and power for YA and OA are shown in Extended Data Figure 5-1.
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Kami�nski et al., 2011; Trammell et al., 2017) which also
gets affected by 1/f activity. We investigated how these
global BRs change with age after effectively removing the
background 1/f activity. We looked at u /a, u /b , and a/b
BRs, where the ratio of all periodic features (PW, CF, BW)
was analyzed for each frequency band. For all BR meas-
ures, we calculated correlations between the spectral fea-
tures of each oscillation-band and age. Here, we showed
the global change (averaged across all sensors) in the BR
measures across the lifespan.
The age-associated nonlinear change was mostly ob-

served in frontal and parietal sensors (Fig. 8A). For age
categories, we found a significant difference between OA
versus ME (t(134) = 2.38, p=0.018), OA versus ML (t(134) =
3.19, p=0.0018), YA versus ME (t(138) = 3.30, p=0.0012),
and YA versus ML (t(138) = 4.09, p=0.00007). For the CF
ratio, we found a/b ratio to vary nonlinearly (quadratic)
with age (b 1 = �0.0059138, R2 = 0.61 p=0.005), whereby
first decreases for middle age and subsequently an
increase for older age participants suggesting an overall
U-shaped response of a/b ratio through lifespan (Fig. 8B).
No significant difference was found between the categori-
cal age groups for u /a and u /b peak ratios (Extended
Data Figs. 8-1, 8-2; Extended Data Table 8-1).
Power Ratio of u /a was found to be positively corre-

lated with age (b 1 = 0.0057613, R2 = 0.40, p=0.02)
whereas a/b power ratio was negatively correlated with
age (b 1 = �0.018116, R2 = 0.85, p=0.000001; Fig. 8B).
Significant categorical difference was found for u /a
power ratio between YA versus OA (t(136) = 4.9615,
p=0.000002), YA versus ME (t(138) = 2.75, p=0.0067), YA
versus ML (t(138) = 4.92, p=0.000002), ME versus OA
(t(134) = 2.24, p=0.02). No significant correlation was
found for u /b power ratios with age (R2 = 0.2, p=0.1). For
a/b power ratio, significant categorical difference was

found between YA versus OA (t(76) = �4.6, p=0.00001),
ME versus OA (t(59) = �3.33, p=0.0015), and ML versus
OA (t(62) = �2.46, p=0.01). No significant difference was
found between the categorical age groups for u /b power
ratio.
BW ratio of u /b and u /a was found to be negatively

correlated with age (extended analysis is shown in
Extended Data Figs. 8-3, 8-4). Categorical analysis re-
vealed differences between the YA versus OA (t(80) = 2.21,
p=0.029) for u /b BW ratio. No significant difference was
found between the categorical age group for a/b BW
ratio.
After characterizing the normative pattern of true oscil-

latory changes across age, we tested our hypothesis by
carrying out regression analysis whereby keeping 1/f
noise, periodic features as an explanatory variable and
behavioral measures as response variable (see Materials
and Methods). All correlations were performed after re-
gressing out the age.
We first analyzed the behavioral responses of the same

participants in the VSTM task to replicate the well-estab-
lished cognitive decline with age. Grouping of participants
in the age groups and bins were done similarly.

Behavioral results: age-related cognitive decline
reflected in performance
Precision
As expected, precision becomes worse with memory

load and age. Overall precision was high for the set size 1
(61.1% SEM 2%) as compared with set sizes 2 (48.7%
SEM 1.9%), 3 (39.6% SEM 1%), and 4 (39% SEM 0.7%).
Continuous analysis revealed significant decrease in pre-
cision with age in both low and high load conditions (low
load, r = �0.85, p , 0.01, high load, r = �0.61, p, 0.05;

Figure 7. Global frequency-specific BW with age. (A) Bar graph for each age group, representing BW for each frequency band. (B)
Spatial topography of b BW for young (YA) and old adults (OA). Clusters of sensors with significant positive and negative differen-
ces between the OA and YA group are represented with black and white dots, respectively. All the extended analyses are shown as
Extended Data Figures 7-1, 7-2.
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Figure 8. Spatial topography of BR measures as a function of age. (A), Spatial topography of a/b PF ratio (a=bCF; top), a/b power
ratio (a/b PW; center), and u /a power ratio (bottom) for young (YA) and old adults (OA). (B), Regression fit model for each of the
ratio measures keeping age as an explanatory variable. Error bar represents SEM. R2 represents goodness of fit, and r represents
the correlation coefficient. All the extended analyses are shown as Extended Data Figures 8-1, 8-2, 8-3, 8-4, 8-5. A detailed regres-
sion table is provided in the Extended Data Table 8-1.

Figure 9. Effect of memory load and age on VSTM. VSTM measures (A) precision, (B) RT, (C) VSTM capacity (k), and (D) mean un-
certainty as a function of age. Low load and high load indicate set sizes 2 and 4, respectively. The dashed line represents the linear
regression fit. Error bar represents the SEM for each age bin. Asterisks indicate significance. All the extended analyses are shown
as Extended Data Figures 9-1, 9-2, 9-3, 9-4 and Extended Data Table 9-1.
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Fig. 9A; extended analysis is shown in Extended Data Fig.
9-1). Categorical analysis between the groups revealed
significant differences in the mean of YA versus OA
(YA=0.486 0.008, OA=0.306 0.005, p, 0.0001), YA
versus ME (YA=0.486 0.008, ME=0.456 0.007, p,
0.001), YA versus ML (YA=0.4860.008, ML=0.436
0.007, p,0.0001), and ME versus OA (ME=0.456
0.007, OA=0.306 0.005, p, 0.0001) groups. Within-
group analysis also revealed significant increase in preci-
sion with increase in memory load (Extended Data Fig. 9-
2; Extended Data Table 9-1).

Reaction Time
Overall RT was higher for the set size 4 (910.26

21.6ms) as compared with set size 1 (878.76 19.9ms), 2
(870.46 19.9ms), and 3 (882.66 21.4ms) but increases
significantly with age [low load (r) = 10.57, p , 0.05, high
load (r) = 10.56, p , 0.05; Fig. 9B]. Group analysis also
revealed significant difference between YA versus OA
(YA=6686 35.4, OA=10096 38.9, p, 0.00001), YA ver-
sus ME (YA=6686 35.4, ME=828.86 41.5, p=0.002),
YA versus ML (YA=6686 35.4, ML=886633.4, p,
0.0001), ME versus ML (ME=828.86 41.5, ML=8866
33.4, p=0.03), ME versus OA (ME=828.86 41.5, OA=
10096 38.9, p, 0.001), ML versus OA (ML=886633.4,
OA=10096 38.9, p=0.05).

VSTM capacity (k)
VSTM capacity was found to decrease with age [low

load (r) = �0.81 p, 0.001, high load (r) = �0.87, p ,
0.001; Fig. 9C]. Categorical analysis between the group
revealed significant difference between YA versus OA
(YA=1.846 0.01, OA=1.666 0.02, p,0.0001), YA ver-
sus ML (YA=1.8460.01, ML=1.796 0.01, p=0.004),
ME versus OA (ME=1.8360.01, OA=1.666 0.02, p,
0.0001), and ML versus OA (ML=1.796 0.01, OA=
1.666 0.02, p, 0.001; results for all the set sizes are re-
ported in Extended Data Fig. 9-4).

Mean uncertainty (metacognitive measure)
Subjective uncertainty was higher in set 4 (29.76 1) as

compared with set size 1 (11.86 0.39), 2 (15.66 0.5), and
3 (20.76 0.67). After performing regression and correla-
tion analysis, we found that subjective uncertainty

significantly decreases with age in low load condition [low
load (r) = �0.56, p , 0.05; Fig. 9D]. Suggesting that OAs
tend to be more confident about their erroneous answers
when the load is less. Categorical analysis revealed signif-
icant differences in the mean of YA versus OA
(YA=18.56 0.97, OA=146 1, p, 0.001), YA versus ME
(YA=18.56 0.97, ME=16.076 0.95, p=0.02), YA versus
ML (YA= 18.56 0.97, ML=14.856 1.05, p,0.001), and
ME versus OA (ME=16.0760.95, OA=146 1, p=0.003).
Within-group analysis also revealed significant increase in
subjective uncertainty with increase in memory load
(Extended Data Fig. 9-3)

Aperiodic 1/f slope: predictive of all measures of
VSTM
We then assessed whether the VSTM performance was

impacted by 1/f slope. As hypothesized, RS aperiodic 1/f
noise was found to be predictive of decreased precision
(low load: r = �0.74, p=0.002, high load: r = �0.48,
p=0.08), memory capacity (low load: r = �0.68,
p=0.0007, high load: r =10.82, p=0.0003), mean uncer-
tainty (low load: r = �0.58, p = 0.03, high load: r = �0.6,
p=0.02) and increased RT (low load: r = 10.56,
p=0.00005, high load: r = 10.57, p=0.00005) in VSTM
task (Fig. 10). However, we did not find any correlation be-
tween 1/f offset and behavioral measures (Extended Data
Tables 10-1, 10-2). As aperiodic 1/f noise mediated a
global effect on the VSTM performance, we further
wanted to investigate how different oscillatory compo-
nents mediate changes in the specific behavior measures
in VSTM performance through lifespan.

Precision increases with increase in a power and a/b
power ratio
Precision was found to be positively correlated with the

a power for both low (b 1 = 0.28 077, R2 = 0.425,
p=0.0115) and high (b 1 = 0.17 617, R2 = 0.38, p=0.0186)
load condition (Fig. 11A). a=b
Power ratio was also found to be a significant predictor

of precision in low (b 1 = 0.11 906, R2 = 0.69, p=0.0002)
and high load (b 1 = 0.063459, R2 = 0.4, p=0.008) condi-
tions across lifespan (Fig. 11B). All the regression analysis

Figure 10. Aperiodic 1/f slope mediating VSTM performance. Linear regression model for VSTM measure (A) precision, (B) RT, (C)
VSTM capacity (k), and (D) mean uncertainty as a response variable and aperiodic 1/f slope as an explanatory variable, after regressing
out the age effect. The dashed line represents linear regression fir. Error bar represents SEM. Low load and high load indicate set sizes 2
and 4, respectively. r is Pearson’s coefficient. All the extended analyses are shown as Extended Data Table 10-1, Table 10-2.
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Figure 11. VSTM measures predicted by different oscillatory features and 1/f offset. (A) (B) Precision predicted by global a power
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results are shown for specific oscillatory features with
VSTMmeasures in Extended Data Table 11-1.

Speed of processing predicted by a speed
Speed of a is often related to the speed of processing

which is generally measured as RT. As we observed that
speed of a decreases and RT increases with age, we wanted
to investigate whether this decrease in a speed affected the
speed of processing in OAs. a Speed significantly predicted
the speed of processing for both low (b 1 = �340.82, R2 =
0.43, p=0.0108) and high (b 1 = �352.41, R2 = 0.39,
p=0.0158) load conditions (Fig. 11C).

VSTM capacity predicted by h power and h/a band
power ratio
We found a significant negative correlation of VSTM ca-

pacity with u power (low load: r = �0.729, p=0.004, high
load: r = �0.679, p=0.01) and u /a power ratio (low load:
r = �0.64, p=0.01, high load: r = �0.75, p=0.001), sug-
gesting that these two play an important role in storing
items in working memory. Regression analysis also re-
vealed a significant role of u power and u /a power
ratio in predicting VSTM capacity in low (u power: b 1=
�0.63 163, R2 = 0.53, p = 0.0046, u /a: b 1= �1.5827,
R2 = 0.569, p=0.002) and high load conditions (u power:
b 1=�1.8862, R2 = 0.46, p=0.011, u /a: b 1=�0.35435,R2 =
0.42, p=0.01; Fig. 11D,E; Extended Data Tables 11-2, 11-3,
11-4).

Discussion
Using three different measures (aperiodic 1/f slope and

offset, PF, and BR of power in various frequencies), we
have systematically investigated the spontaneous tempo-
ral dynamics and dynamical changes during resting state
associated with healthy adult lifespan. Subsequently, we
have demonstrated how these measures potentially link
distinct behavioral responses during short-term working
memory processing. Many previous studies in aging liter-
ature have demonstrated that task-relevant oscillatory
changes accurately demarcate task performance in vari-
ous cognitive domains (Clark, 2004; Cummins and
Finnigan, 2007; Tóth et al., 2014; Proskovec et al., 2016;
Rondina et al., 2019). As the resting-state serves as a
baseline/control for the diverse task-related changes, it is
crucial to characterize how specifically aging alters the
normative brain network dynamics to impact cognition.

The domain general effect of age-associated
aperiodic 1/f activity
To track systematically healthy aging associated changes

in neuronal oscillations through lifespan, a substantial number
of previous studies have used narrowband power analysis

that presumes that spectral power implies oscillatory
power, without precisely separating the 1/f activity
which in itself is dynamic and it impacts the oscillatory
power which can lead to misinterpretation of the re-
sults. Extended analysis in Extended Data Figure 3-5
shows the relation between 1/f slope and dominant
periodic features, indicating the interdependence of
these two components and the necessity to detangle
these. We approached this problem by applying a pa-
rameterization model (Donoghue et al., 2020), which
detangles the periodic and aperiodic 1/f component.
Recent studies have considered 1/f slope as an index of

noise in the brain (Ouyang et al., 2020; Donoghue et al.,
2020). Ageing is associated with an increase in cortical
neural noise, where studies have previously used RT as a
proxy for the neural noise (Welford, 1981; Salthouse and
Lichty, 1985; Cremer and Zeef, 1987). We observed 1/f
slope of the MEG spectral power increases with age (flat-
tening of PSD), which is suggestive of increased de-
synchronized neuronal activity (Hong and Rebec, 2012;
Podvalny et al., 2015). Voytek and colleagues had sug-
gested that this flattening of PSD slopes which they in-
dexed for noise might be a hallmark of age-related
cognitive decline (Voytek et al., 2015). Also, aperiodic 1/f
noise is found to be very dynamic in nature and it has
been shown to be predictive of performance in working
memory tasks (Voytek et al., 2015), N400 lexical predic-
tion (Dave et al., 2017), and in grammar learning (Cross et
al., 2020). Our results depict the association between
global change in the 1/f slope with capacity, speed, preci-
sion, and metacognition in short-term working memory
processing. As 1/f activity is associated with several dis-
tinct domains of cognition, we further suggest that age-
related increase in aperiodic 1/f slope does not necessar-
ily mediate any domain-specific processing rather it af-
fects domain general processing (Fig. 12).
Additionally, the increase in 1/f slope follows a mon-

otonic nonlinear relationship with age suggesting that
the rate of change in desynchronized neural activity is
not necessarily constant across adult lifespan. We
observe some deviation from the normal trend for both
1/f slope and offset in age-group 60–80, which might
be because of the observed increased variance in the
older group. Besides, aperiodic 1/f features were
found to not only vary across subjects (more for el-
derly) but also across different sensors indicating sub-
stantial variability and idiosyncrasy. Although 1/f slope
shows spatial heterogeneity in the young group, such
as being less negative in the anterior sensors com-
pared with the posterior sensors, older participants
display a more homogenous distribution of less nega-
tive 1/f slope values. The broadband offset shows no
significant deviation with age, but significant between-
group differences were observed.

continued
and a=bpower ratio. (C) Speed of processing (RT) well predicted by global a speed (PAF). (D) (E) VSTM capacity predicted by
global u power and u =apower ratio. Age is regressed out. Low load and high load indicate set sizes 2 and 4, respectively. The
dashed line represents the regression line. Error bar represents SEM, r corresponds to Pearson’s coefficient. All the extended analy-
ses are shown as Extended Data Tables 11-1, 11-2, 11-3, 11-4.
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Aperiodic 1/f activity, self-organized criticality, and
nonlinear relationship with adult lifespan
At a more fundamental level, 1/f scale reflects the self-

similar temporal properties of the self-organized critical
states. Although the aim of this study is not to resolve this
debate, however, we argue that 1/f activity could arise
from potentially number of factors, e.g., altered tissue
properties or self-organized criticality and transient stabil-
ity with aging and change in underlying excitation-inhibi-
tion (E/I) balance (Bédard et al., 2006; Voytek et al., 2015;
Gao et al., 2017; Naik et al., 2017; Naskar et al., 2021).
Criticality hypothesis, which proposes that the brain op-

erates in a critical state, and alteration in criticality could
be symptomatic or causative for certain pathologies
(Hesse and Gross, 2014) seems to be operative here in
terms reorganization of brain dynamics based on 1/f
slope and offset and their relationship with cognitive per-
formance. Literature suggests that neural networks at crit-
icality exhibit properties for optimal performance such as
information transmission and storage, metastable state,
dynamic range and computational power (Beggs, 2008;
Shew and Plenz, 2013). However, 1/f scale cannot alone
be explained by criticality; rather emergence may lie in
the local tissue properties (Bédard et al., 2006).
Healthy aging is consonant with alteration of physio-
logical properties in brain tissue (Aalami et al., 2003;
Peters, 2006), therefore, it seems plausible to say that
change in 1/f scale and increase in 1/f slope exhibiting
nonlinear relationship with aging has its origin in the
local tissue properties.
Subsequently, the association of 1/f slope with cogni-

tive and metacognitive aspects of VSTM demonstrate the
domain general effects of local tissue properties affecting

self-organized criticality of functional brain states which in
turn affects behavior.

PF, BR relates to distinct aspects of memory
processing
In oscillatory dynamics, we observe a significant decline

in PAF with age as shown by previous studies (Voytek et
al., 2015; Sahoo et al., 2020). This decrease in PAF was
not found to be localized to specific sensors, rather a
global significant decrease was observed (Fig. 5B). The
speed of a is often associated with the speed of informa-
tion processing therefore, higher a speed is needed for
optimal performance in cognitive tasks (Surwillo et al.,
1961) and determine the temporal resolution of visual per-
ceptual integration (Samaha and Postle, 2015). Figure
11C shows that the RT of the participants or speed of
memory retrieval is well predicted by global a speed.
Hence, higher the speed of a, fast is the retrieval, and
consequently lesser RT for younger adults. As aging is
characterized by attentional difficulties in particular, a re-
duced capability to inhibit irrelevant information (McNab
et al., 2015), therefore, a band power may have an impor-
tant role in determining how accurately older individual’s
recall the memorized items. However, a study by Vaden et
al. (2012) demonstrated that older people do not use a
power suppression to inhibit distractor’s information. In
this work, we found that a power decreases with age, par-
ticularly over occipito-parietal sensors (Fig. 6), which sig-
nificantly predicts the precision (Fig. 11A), along with a/b
power which decreases with age (Griffiths et al., 2019;
Fig. 8B). It plays a crucial role in suppressing irrelevant in-
formation, therefore, not being able to ignore distractions

Figure 12. Left: Aperiodic 1/f slope index behavior in distinct cognitive domain: aperiodic 1/f slope increases globally which is re-
flected in performance in different cognitive tasks which includes VSTM task precision, cognitive capacity, RT, and metacognition
and in other cognitive tasks (N900 lexical prediction, working memory, grammar learning) reported previously. r represents the
Pearson’s correlation coefficient. Right: Periodic features index task-specific behavioral measures: periodic features (CF, BW, PW,
BR) are more task-specific in nature. After regressing out the age, a band power, a/b BR index for precision; u /a BR, u power
index for cognitive capacity; a CF index for RT. r represents the Pearson’s correlation coefficient.
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might be one of the reasons for low VSTM capacity found
in OAs.
The relevance of u CF in determining VSTM capacity in

a task is well known in the literature. A study by Moran et
al. (2010) shows that both slow and fast u frequencies
correlated to the high memory capacity, distributed
across different networks. In the context of aging, we ob-
serve that u CF slightly increases for older subjects as
compared with younger adults which may itself affect the
storing capacity. There are studies which have observed
an increase in RS u power in OAs (for review, see
Klimesch, 1999; Klass and Brenner, 1995) others have re-
ported u power decrease in resting as well as in the task
with age (Babiloni et al., 2006; Cummins and Finnigan,
2007; Leirer et al., 2011; Vlahou et al., 2014). However, we
found an increase in u power with age, which significantly
predicted the VSTM capacity (Figs. 6A, 11E) along with
u /a power ratio (TAR), which also significantly increases
with age (Fig. 8). Few studies including the study by
Trammell et al. (2017) found decreased performance in
RM correlated with increased TAR in old adults. We found
substantial variability in the presence of u power in partic-
ipants. For instance, in young groups, the u was not ob-
served over frontal and left temporal sensors, whereas in
older participants the u power was observed only over
temporal sensors. Additionally, we also observed an in-
crease in b power with age which is well reported in the
literature, generally associated with the movement-re-
lated activity (Ishii et al., 2017; Sahoo et al., 2020) but we
also observed a significant decrease in b PF with age
which was more localized to the central-parietal sensors
(generally found in depression and other psychological
disorders’ patients in open-eye condition; Roohi-Azizi et
al., 2017). In the BWmeasure, only b BW was found to in-
crease significantly with age which indicates higher vari-
ability in b frequency (Fig. 7). This increase was mostly
observed in the central and temporal sensors. Differences
in the regional attenuation of absolute and relative b
power within specific high frequency bands may reflect
the disparate neuropathologic processes of mild cognitive
impairment associated with age, as well as the extent of
brain dysfunction. We can further speculate the amount
of spread of power in a particular frequency range that in-
creases with age may suggest a state of fractured syn-
chronization in elderly compared with younger adults.
Mechanistically, this can be a result of decreased myeli-
nation in long-range fibers across aging, which introduces
time delays in the resultant dynamical system governing
such processes. Time delays are known to introduce
phase lags in a group of coupled (and synchronized) oscil-
lators resulting in lowering of synchronization indices
such as increased bandwidth.
In conclusion, our results suggest that the age-associ-

ated change in aperiodic 1/f activity affects the global in-
formation processing and links with speed of information
processing, cognitive capacity, precision, and metacogni-
tive awareness (all behavioral measures). In contrast, peri-
odic features; PF and BR of different frequency bands
relate to more local processing and selective behavioral
measures in VSTM task crucially impacting distinct

aspects of memory processing with age. On that account,
we suggest that the change observed in local tissue prop-
erties with aging is reflected as the global increase in ape-
riodic 1/f slope. This increase in 1/f slope seems to impact
distributed processes of cognition as it alters the self-or-
ganized critical functional brain states, whereas oscilla-
tory features mediate localized processing, that is
relevant for the specific task (Fig. 12).
An important limitation of our study is that we have only

tested aperiodic 1/f slope-offset, and periodic features PF
and BR based on VSTM task; therefore, further investiga-
tion is warranted relating the RS 1/f slope-offset, PF, BR
with the performance in different cognitive tasks (e.g., lex-
ical processing, episodic memory encoding and retrieval,
emotion regulation, fluid and crystallized intelligence).
Additionally, we have also not looked at these three meas-
ures trial-wise instead related resting state brain dynam-
ics (periodic and aperiodic) with behavioral responses
from the same participants. Another major limitation was
posed by the Cam-CAN dataset, because of the presence
of harmonics of lower frequencies in higher frequencies,
we were not able to systematically tease apart the effect
of 1/f activity on g-frequency band. From a recent study
employing visual steady state response task it has been
shown g band power systematically weakens with age
which may have a crucial impact on attentional process-
ing (Murty et al., 2020). Lastly, we still do not know which
sources are responsible for 1/f baseline shift and is cur-
rently investigated in a separate future work, where
source reconstruction and applying computational mod-
eling on the source level data give us mechanistic under-
standing about the generative processes.
Despite these limitations, we think there is no loss of

generality by focusing on visual short-term working mem-
ory processing task alone as age-associated change in
aperiodic 1/f activity is pervasively present in all goal di-
rected tasks and same for oscillatory changes quantified
by PF and BR. Therefore, all these three normative meas-
ures proposed in this study together can track vast major-
ity of alterations associated with healthy and atypical
neurodevelopment and healthy and pathologic aging con-
ditions under a variety of task settings which is important
for developing non-invasive biomarker in future clinical
applications.
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