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Introduction
As proteins without any enzymatic activity, lectins are ubiquitous among various kinds 
of living things. These proteins act as adhesion molecules in the colonization processes 
of bacteria, archaea, protists, and fungi. Also, they play an essential role in the defense 
mechanisms and nodulation of Plantae. Interestingly, they are involved in various func-
tions of Animalia, such as cell migration and adhesion, opsonization, immune responses 

Abstract 

In nature, lectins are widely dispersed proteins that selectively recognize and bind to 
carbohydrates and glycoconjugates via reversible bonds at specific binding sites. Many 
viral diseases have been treated with lectins due to their wide range of structures, 
specificity for carbohydrates, and ability to bind carbohydrates. Through hemagglutina‑
tion assays, these proteins can be detected interacting with various carbohydrates on 
the surface of cells and viral envelopes. This review discusses the most robust lectins 
and their rationally engineered versions, such as lectibodies, as antiviral proteins. 
Fusion of lectin and antibody’s crystallizable fragment (Fc) of immunoglobulin G (IgG) 
produces a molecule called a “lectibody” that can act as a carbohydrate‑targeting anti‑
body. Lectibodies can not only bind to the surface glycoproteins via their lectins and 
neutralize and clear viruses or infected cells by viruses but also perform Fc‑mediated 
antibody effector functions. These functions include complement‑dependent cyto‑
toxicity (CDC), antibody‑dependent cell‑mediated cytotoxicity (ADCC), and antibody‑
dependent cell‑mediated phagocytosis (ADCP). In addition to entering host cells, the 
severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) spike protein S1 binds 
to angiotensin‑converting enzyme 2 (ACE2) and downregulates it and type I inter‑
ferons in a way that may lead to lung disease. The SARS‑CoV‑2 spike protein S1 and 
human immunodeficiency virus (HIV) envelope are heavily glycosylated, which could 
make them a major target for developing vaccines, diagnostic tests, and therapeutic 
drugs. Lectibodies can lead to neutralization and clearance of viruses and cells infected 
by viruses by binding to glycans located on the envelope surface (e.g., the heavily 
glycosylated SARS‑CoV‑2 spike protein).
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and phagocytosis, and glycoprotein production. These proteins act as cell-agglutinating 
and carbohydrate-specific proteins and recognition molecules in cell–molecule and 
cell–cell interactions. Regarding these functions of lectins, they play an indispensable 
role in many biological processes and mediate biological recognition events. Therefore, 
they can be a suitable tool for investigating carbohydrate indicators on cell surfaces, 
mainly the modifications occurring in malignancies and isolation and characterization 
of glycoproteins.

Infection with enveloped viruses (e.g., coronaviruses and HIV) is one of the leading 
causes of mortality and morbidity globally, even with the recent development of highly 
effective direct-acting antivirals. These viruses have envelope glycoproteins that are 
heavily glycosylated with a high proportion of high-mannose-type glycans (HMGs), pro-
tecting them from antibody neutralization and enabling them to interact with cell entry 
receptors. However, there is no approved therapeutic targeting this potentially drugga-
ble biomarker.

HMGs are highly rare in eukaryotic cell-surface glycoproteins because of the pro-
cessing steps conducted by the Golgi apparatus that make them hybrid and complex 
glycoforms. Interestingly, despite eukaryotic cells, HMGs are plentiful at the surface 
glycoproteins of various viruses, shielding them against attacks from the host immune 
system. Therefore, glycosylation is pivotal for a broad range of functions in viruses: 
entrance into host cells; protein expression and assembly, and evading the immune 
system, for example, are the significant contributions of glycosylation of virus surface 
proteins. Hence, lectins as agents that identify and neutralize virus-associated glycans, 
particularly HMGs, are valuable tools in antiviral medicine as potent antiviral microbio-
cides. The antiviral lectins that have been used against human viral infections are from 
two origins, endogeneous or exogeneous (endo- and exolectins, respectively), the former 
being animal lectins expressed in a variety of cell types and carrying out a diverse range 
of activities such as the first-line defense in innate immune system, mediation of cellular 
adhesion, regulation of glycoprotein synthesis, and signal transduction, while the latter 
(the focus of this article) are lectins originating from other species. All the exolectins 
assessed herein have the typical, protein nature, except pradimicin A (PRM-A), which is 
an antibiotic with a nonprotein origin [1–4].

Although lectin’s attachment to monosaccharides is weak, in the case of more com-
plex ligands, they employ subsite and subunit multivalency to improve the affinity and 
specificity of their interactions. Bivalent or multivalent lectins reversibly and selectively 
interconnect with their ligands (carbohydrates or glycoproteins) in solution or on the 
cell surface. Therefore, this class of proteins is detectable through agglutination assays. 
In this regard, plant lectins, because of their high stability even in unfadable pH/tem-
perature and exposure to insect/animal proteases, are widely used in clinical and experi-
mental biology and medicine, given their abundant availability; For example, serology 
arrays were the first field of medicine to use lectins, to distinguish human blood types 
based on their carbohydrate indicators [1–3, 5].

Accordingly, the diversity of lectins and their capacity to bind to carbohydrates have 
led to their widespread application in several fields of sciences, including biochemistry, 
cellular and molecular biology, immunology, pharmacology, medicine, and clinical anal-
ysis. Hence, in addition to their antiviral effect, which is the main subject of discussion 
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herein, they can uniquely cause mitogenic stimulation and enforce quiescent lympho-
cytes to grow and replicate. Cancer detection and treatment is another field of appli-
cation of lectins [6–8]. A detailed investigation into the field of lectins would provide 
valuable information for future antiviral investigations. This review aims to present an 
in-depth analysis of the most potent antiviral lectins and to shed light on the drug selec-
tion path for the clinical use of lectins and drug research and development.

Structure and classification of lectins

The primary structure of lectins contains carbohydrate-recognition domains (CRDs) 
with the highest variability, located in their internal repeat sequences. The CRDs are not 
rigidly fixed in position, such that their structural elements orient them in space, leading 
to variations in the specific avidity for the three-dimensional (3D) structures of carbo-
hydrates (Fig. 1a–d). In this respect, the sequence similarity of lectins, primarily found 
in the central region, varies from 10% to 100%. The tertiary structure of different lectins 
shows great variety, along with the identical function of specific recognition and tight 
bindings to their ligands. Moreover, some structural elements, namely disulfide bonds 
and oligomerization, exist in a few lectins but are not prerequisite components. For 
example, disulfide bonds are located as inter or intradomains of cyanovirin (CV-N) and 
actinohivin (AH) lectins [9]. In addition, scytovirin (SVN) is a strictly monomeric lectin, 
consisting of two internal duplicated domains (SD1 and SD2) with 90% identity. These 
domains are separated by a short linker that is dominantly composed of proline residues. 
Ten cysteine residues in the SVN constitute five disulfide bridges [10–12]. An example of 
an intra-disulfide bind is Serpula vermicularis lectin (SVL). SVL is a  Ca2+-independent 
homotetrameric marine invertebrate lectin (Mw = 12,700), comprising two similar 
domains connected via disulfide bridges [13, 14].

The classification of lectins is based on the CRD specificity for carbohydrate ligands 
such as glucose, mannose, N-acetylglucosamine, N-acetylgalactosamine, and other gly-
cans. Some important antiviral lectins are presented alongside their detailed properties, 
including origins, structure, and glycan specificity, in Table 1. As mentioned above, the 
spatial orientation of CRDs in the tertiary structure of lectins enhances their affinity for 
complex carbohydrates. In line with this finding, several antiviral lectins merely couple 
with high-mannose oligosaccharides, whereas others possess chitobiose units and high-
mannose lateral branches. Duplication of binding domains is another mechanism lead-
ing to increased avidity for branched-chain carbohydrates. Besides, binding with linear 
oligomannose leads to less affinity than the branched structures. Therefore, the spatial 
position, orientation, and distance of the carbohydrate ligand are essential for the speci-
ficity and classification of lectins [9].

Mechanisms of antiviral lectins

Recognition of glycosylated envelope proteins by cell-surface receptors is the usual 
mechanism for virus recognition and entry. In this respect, lectins coevolved in 
parallel to impede virus entry and activate host defense mechanisms to neutralize 
invading viruses. Virus-neutralizing lectins mainly recognize carbohydrate moieties 
on enveloped viruses in mono- or oligomeric states. They interact with these con-
figurations endowed via CRDs, which are usually repeated in the sequence of lectins, 



Page 4 of 25Nabi‑Afjadi et al. Cellular & Molecular Biology Letters           (2022) 27:37 

thereby inhibiting viral entry into host cells, on the one hand, and helping the host 
defense system to find alien viruses on the other hand. Interestingly, duplication of 
CRDs and multivalent binding features in some lectins are helpful tools by which 
they can bind to branched sugar moieties on the envelope of viruses more strongly. 
All of the antiviral lectins characterized and mentioned herein aim to neutralize dif-
ferent viruses by wrapping envelope glycosylated proteins, thereby creating a bar-
rier between these essential recognition tools and their counterpart receptors on the 
host cell surface [18–22].

Fig. 1 Interaction between lectin griffithsin (GRFT) (PDB ID: 2NU5) that was homodimer (A and B chain) 
with N‑acetylglucosamine (GlcNAc) as ligand. a The interacting domains of the lectin with GlcNAc, depicted 
by BIOVIA Discovery Studio Visualizer, are shown. In the figure, the lectin is shown schematically in blue, 
while ligands are shown in scaled ball‑and‑stick style in red. b–d Residues and atoms participating in 
the interaction between B chain of the lectin and three residues of ligand (GlcNAc 122, 123 and 124), 
depicted by using the  LigPlot+ v.2.2 program [15]. The bonds shown by dashed lines in olive‑green 
color represent hydrogenic bonds, while the bonds shown by radius lines in brick‑red color represent 
hydrophobic bonds. The numbers on the hydrogen bond show bond distances. Note: Two carbohydrates 
of N‑acetylglucosamine and mannose are contained in SARS‑CoV‑2 surface glycan, and the residues are 
exposed to the innate immune system [16]. So, the crystal structure of complexes of antiviral lectin GRFT 
with glucose and N‑acetylglucosamine were solved and refined at high resolution. In both complexes, all 
six monosaccharide‑binding sites of GRFT were occupied, and the mode of binding was similar to that of 
mannose [17]. Therefore, as an example of multiple lectins, the interaction pattern of GRFT with GlcNAc is 
selected to be shown in the figure
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Table 1 General features of antiviral lectins
Source Kingdom Lectin Mw 

(× 1000) 
per 
monomer

Residue 
per 
monomer

Oligomeric 
status

CRDs Structure 
class

Glycan 
specificity

Refs.

Actinomy‑
cete Long-
isporum 
albida

Bacteria AH 12.5 114 Monomeric 3 β‑Trefoil α(1,2)‑Mannose [153–156]

Cyano‑
bacterium 
Nostoc 
ellip-
sosporum

Bacteria CV‑N 11 101 Mono‑
meric–
dimeric

2 Cyanovirin‑
like

α(1,2)‑Mannose [41, 46]

Cyano‑
bacte‑
rium 
Microcys-
tis aerugi-
nosa

Bacteria MVN 14.2 108 Monomeric 1 Cyanovirin‑
like

α(1,2)‑Mannose [47–49]

Cyano‑
bacte‑
rium 
Microcys-
tis viridis

Bacteria MVL 13 113 Homodi‑
meric

4 Cyanovirin‑
like

Man3GlcNAc2, 
Man6GlcNAc2

[176, 177]

Cyano‑
bacte‑
rium Scy-
tonema 
varium

Bacteria SVN 9.7 95 Monomeric 2 Cyanovirin‑
like

Man‑α(1–2) 
Man‑α(1–6) 
Man‑α(1–6) Man

[10–12]

Cyano‑
bacte‑
rium 
Oscil-
latoria 
agardhii

Bacteria OAA 13.9 133 Monomeric 2 OAAH Man‑α(1–6)Man, 
Man‑8/9

[52–55]

Actino-
madura 
hibisca

Bacteria PRM‑
A

8.5 – Dimeric 4 – α(1,2)‑Mannose [58–61]

Griffithsia 
sp.

Protista GRFT 12.7 121 Homodi‑
meric

6 β‑Prism 
type 1

α(1,2), α(1,6), 
mannotetrose, 
man5‑9

[103–107, 
178]

Boodlea 
coacta

Protista BCA 13.8 118 Monomeric 3 β‑Prism 
type 1

α(1,2)‑Mannose [64]

Musa 
acumi-
nata 
cultivars

Plantae Ban‑
Lec

15 141 Homotetra‑
meric

8 β‑Prism 
type 1

α‑1,6 man‑
notetrose 
α‑D manno/
glycosyl, α‑1,3 
mannosyl1/β‑
1,3‑glycosyl

[166–170]

Galan-
thus 
nivalis

Plantae GNA 12.5 157 Homotetra‑
meric

12 β‑Prism 
type 2

α1‑3 or α1‑6 
linked mannose

[125–129]

Hip-
peastrum 
hybrid

Plantae HHA 12.5 157 Homotetra‑
meric

12 β‑Prism 
type 2

α1‑3 or α1‑6 
linked mannose

[125–129]

Polygo-
natum 
cyr-
tonema 
Hau

Plantae PCL 12 110 Dimeric 6 β‑Prism 
type 2

α(1,3)‑
Dimannoside

[179–181]

Urtica 
dioicia

Plantae UDA 8.7 89 Monomeric 2 Hevein‑like (N‑acetyl‑d‑glu‑
cosamine)3

[182–184]

Nicotiana 
tabacum 
var. 
Samsun 
NN

Plantae NIC‑
TABA

19 165 Homodi‑
meric

2 Unk GlcNAc2Man3 [185–187]
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Lectin action on the surface of enveloped viruses

Lectins and HIV envelope interactions

As an example of an enveloped virus, the human immunodeficiency virus (HIV) surface 
is covered with gp120 and gp41. These heavily glycosylated proteins consist of almost 
50% glycans. Sugar-binding proteins (such as lectins) specifically and strongly interact 
with the glycans on the viral surface and disturb the interactions of such invasive viruses 
with their target receptors on host cells [19, 23, 24]. Mannose oligomers are the central 
part of HIV carbohydrates that are directed against plant lectins. A map of site-specific 
N-glycan processing onto the structures of the HIV-1 envelope is shown in Fig. 2a–c.

Monocotyledonous families are the best to exemplify HIV-inhibitory plant lectins. 
Also, reverse transcriptase (RT), the critical enzyme in the life cycle of HIV, is another 
target of plant lectin. Pholiota adipose mushroom, extralong autumn purple bean, and 
black soybean are the primary sources of plant lectins averting RT activity [26–33]. 
Cyanovirin-N (CV-N), a lectin that has its origin in blue–green algae, controls a wide 
range of antiviral properties. Envelope glycoprotein gp120 on the HIV surface is one 
suggested target for CV-N. CV-N consists of 101 amino acids (Mw = 11,000) with two 
sequence repeats, exhibiting even specialty toward α-(1–2)-mannose moieties but dif-
ferent affinities for their carbohydrate binding. In this regard, domain B has higher affin-
ity (Kd = 14 nM) compared with domain A with a lower affinity (Kd = 1.5 µM) [34–36]. 

Fig. 2 Map of site‑specific N‑glycan processing onto the structure of HIV‑1 envelope: a JR‑FL strain, b 
BG505 strain, and c B41 strain. The fully glycosylated models were created with JR‑FL ΔCT (PDB: 5FUU), 
BG505 SOSIP (PDB: 5FYK), and B41 SOSIP. The surfaces of the trimers are represented in grey, and the 
glycans are represented as spheres colored by the proportion of oligomannose content at that site. The 
glycans are shown in ball‑and‑stick representation: > 75% high mannose (green), > 75% complex type 
glycosylation (purple), mixture of high mannose and complex type glycosylation (25% < high‑mannose 
glycosylation < 75%) (yellow), and the glycosites that were not detected (gray) [25]

(See figure on next page.)

Source Kingdom Lectin Mw 
(× 1000) 
per 
monomer

Residue 
per 
monomer

Oligomeric 
status

CRDs Structure 
class

Glycan 
specificity

Refs.

Pha-
seolus 
vulgaris

Plantae PHA  ~ 30 – Homo/
heterotetra‑
meric

4 β‑Sandwich Galβ‑(1–4)
GlcNAcβ‑(1–2)
Man

[135–138]

Lens 
culinaris

Plantae LCA  ~ 25 – Homodi‑
meric

2 β‑Sandwich FucMan3Glc‑
NAc2, Man5‑9, 
GlcNAc

[140–144]

Serpula 
vermicu-
laris

Animalia SVL  ~ 12.7 – Homotetra‑
meric

– Unk N‑acetyl‑d‑glu‑
cosamine

[13]

Creno-
mytilus 
grayanus

Animalia CGL 18 150 Homodi‑
meric

6 β‑Trefoil GalNAc/Gal [65–73]

AH actinohivin, CV-N cyanovirin, MVN microvirin, MVL Microcystis viridis lectin, SVN scytovirin, OAA Oscillatoria agardhii 
agglutinin, PRM-A pradimicin A, GRFT griffithsin, BCA Boodlea coacta agglutinin, BanLec banana lectin, GNA Galanthus nivalis 
agglutinin, HHA Hippeastrum hybrid agglutinin, PCL Polygonatum cyrtonema lectin, UDA Urtica dioicia agglutinin, NICTABA 
Nicotiana tabacum agglutinin, PHA phytohemagglutinin, LCA Lens culinaris agglutinin, SVL Serpula vermicularis lectin, CGL 
Crenomytilus grayanus lectin

Table 1 (continued)
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Fig. 2 (See legend on previous page.)
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It has been demonstrated that each domain individually does not have sufficient avid-
ity toward gp120 and dissociation constants in the micrometric range, resulting in loss 
of the virucide function [37–39]. The lectin exists in monomeric and domain-swapped 
dimer forms, with the latter being unstable at physiological temperatures. However, 
structure-guided design of CV-N aided the production of a stable domain-swapped 
dimer form (in a head-to-tail manner), which exhibited elevated anti-HIV activity com-
pared with wild-type CV-N [40].

Multivalency is a common feature of lectins to bind with higher affinity to carbo-
hydrates. In the case of CV-N, the antiviral activity is not enhanced due to geomet-
ric constraints when increasing the number of CRDs. Interestingly, Woodrum et al. 
(2016) reported an increased anti-HIV-virus action  (IC50 value of 7.5 nM compared 
with 0.5 nM for WT CV-N) by engineering a flexible dimer of CV-N (called “nested 
CV-N”), lacking rigidity and spatial constraints [41].

The specific viral targets of CV-N are not limited to HIV and retroviruses. Gen-
erally, due to its stable binding, CV-N can inhibit the cytopathic effects of different 
viruses. For example, CV-N inhibits human influenza A/B strains and the Ebola virus, 
respectively, by binding to hemagglutinin surface glycoprotein and surface envelope 
glycoproteins [42–45].

O’Keefe et  al. (2003) reported the neutralizing functions of CV-N against viruses 
at three levels. At level 1, there was no antiviral activity against enteric viruses and 
rhinoviruses in the first studied category. At level 2, moderate antiviral activity was 
shown for the second category encompassing herpesviruses and flaviviruses. Finally, 
at level 3 (which consisted of influenza A and B strains), viruses were susceptible to 
CV-N except for NWS/33 (H1N1) and A/PR/8/34 (H1N1), which were resistant to 
even high concentration of CV-N. The results of this study indicate that CV-N hin-
ders viral infection through direct binding and inactivating the invasive virus [43].

Additionally, Maier et  al. (2021) designed various domain-swapped dimers differ-
ing in the number of B and A domains, then tested their binding affinities against the 
envelopes of HIV-1, influenza, and Ebola. For the first two, the 2B + 1A form showed 
higher Kd values than the other forms including 1B + 1A, 2A, and 1H, suggesting a 
significant role for multivalency in these bindings. The Kd values for all the forms 
against the Ebola envelope protein GP1,2 were similar (Kd = 26–72 nM) [46].

Another bacterial-derived lectin with high similarity to CVN is a 108-amino-acid 
lectin with molecular weight of 14,200, specific for Manα-(1–2) Man configurations, 
named microvirin (MVN). This lectin shows a monodisperse monomer in solu-
tion with only one carbohydrate recognition site, very similar to its counterpart in 
domain A of CV-N [47]. The lectin has slight antiviral potency compared with CV-N, 
but a narrower antiviral profile (50-fold lower cytotoxicity), which may make it a 
higher priority for rational engineering to boost its antiviral potency [48, 49]. It can 
be concluded that the avidity between lectins and mono- and oligosaccharides can 
be augmented by increasing the number of binding units, thus Yuan-Qin Min et al. 
(2017) produced oligomer types of MVN, then investigated their binding activities 
against hepatitis C virus (HCV). All of the oligomers showed higher binding activi-
ties compared with the natural monomer type (tetra > tri > di > monomers), while long 
peptide linkers displayed better anti-HIV binding activity [50]. Munazza Shahid and 



Page 9 of 25Nabi‑Afjadi et al. Cellular & Molecular Biology Letters           (2022) 27:37  

coworkers (2020) recently engineered an MWN lectin, named LUMS1, by duplicat-
ing domain A, which, as a result, is predicted to have higher activity (2CRDs). How-
ever, the engineered lectin exhibited less potential against HIV-1 and HCV compared 
with the unmanipulated lectin  (EC50 values for HIV-1 and HCV of 32.8–41.6 and 
6.6–9.4 nM versus 26.7–63.9 and 31.6–39.5 nM, respectively), apparently indicating 
the need for further optimization and structures suitable for interaction with carbo-
hydrate moieties [51].

Oscillatoria agardhii agglutinin (OAA) is a single polypeptide (133 residues, 
MW = 13,900) composed of one domain and two CRDs with β-barrel-like topology. 
The lectin has no affinity for monosaccharides, and its recognition of a pentasaccharide 
[Man-α-(1–3) Man-α-(1–6) Man-β-(1–4) GlcNAc-β-(1–4) GlcNAc] is pivotal for its 
binding to Man-α-(1–6) Man disaccharide units [52, 53].

In comparison with all other antiviral lectins, recognizing Man-9 by OAA is unprec-
edented, while this lectin also has a unique amino acid composition with roughly 20% 
glycine residues in its amino acid sequence [54, 55]. OAA is a potent anti-HIV-1 lectin 
with reported  EC50 values of 30–45 nM [56, 57].

Pradimicin A (PRM-A), an antifungal nonpeptidic benzonaphthacenequinone anti-
biotic (Mw = 8500), is the first archetype of this class containing d-alanine, d-xylose, 
4,6-dideoxy-4-methylamino-d-galactose, and a substituted 5,6-dihydrobenzo[a]
naphtacenequinone.

PRM-A acts like a c-type “artificial lectin” and predominantly binds to α-(1–2)-
mannose configurations. Two molecules of PRM-A cooperate in the carbohydrate-bind-
ing processes. First, the binary complex  [PRM2/Ca2+] forms due to the  Ca2+ bridging 
effect (i.e., assembly of two molecules of PRM). Next, the ternary complex  [PRM2/Ca2+/
Man2] organizes by incorporating two molecules of Man with high affinity. Ultimately, 
the final complex  [PRM2/Ca2+/Man4] forms by binding two more Man molecules with 
low affinity. Thus, PRM-A makes water-insoluble aggregates by cross-linking glycans at 
the surface of virus particles [58, 59].

PRM-A would be a promising lead for treating various viral infections, particularly 
HIV. The main advantages of PRM-A include its small size, lack of steric hindrance, 
that it is unaffected by proteases, chemical stability, neither cytotoxicity nor mitogenic-
ity, quick large-scale production, long-term storage, easy modification, and high genetic 
barrier [60, 61]. There are numerous binding sites on the gp120 envelope of HIV for 
PRM-A, following the deletion of some glycans by the virus, i.e., insensitivity to lectin 
binding. Therefore, not only would the antiviral potential of the lectin not decline but 
this also makes the virus vulnerable to immune system recognition and elimination. 
PRM-A inhibits HIV1/2 and simian immunodeficiency viruses (SIVs) with  EC50 values 
of 1.6–10 and 5 µM, respectively [62, 63].

Boodlea coacta agglutinin (BCA) is a monomeric protein composed of 118 amino acids 
(Mw = 13,800). Its single domain is separated into three subdomains, whose primary tar-
gets are oligosaccharides of α-(1–2)-mannose residues at the non-reducing end (the D1 
arm of gp120) with no affinity for internal ones. Studies have shown that influenza H3N2 
is the strain that is most affected by BCA (with  EC50 values of 18.8–74.2 nM). This lec-
tin has also been shown to potently inhibit HIV-1 infection  (EC50 of 8.2 nM) by binding 
directly to the gp120 subunit of the virus [64].
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Two animal-derived lectins, SVL and CGL, were recently evaluated for their anti-HIV 
infection properties. Serpula vermicularis lectin (SVL) is a  Ca2+-independent homo-
tetrameric marine invertebrate lectin (Mw = 12,700) comprising two similar domains 
connected via disulfide bridges. SVL is specific for N-acetyl-d-glucosamine monosac-
charides and inhibits HIV-1 infection through an unclear mechanism (with an  EC50 
value of 2.8 µM and no cytotoxicity up to > 16 µM) [13, 14]. Crenomytilus grayanus lectin 
(CGL) is a  Ca2+ independent, dumbbell-shaped, homodimeric protein (Mw = 18,000) 
whose subunits contain three similar (64–73% identity) tandem subdomains (150 resi-
dues per monomer), folded into a β-trefoil configuration. Since the lectin lacks cysteine 
amino acid, its oligomeric state, presumably, results from hydrophobic interactions [65–
70]. CGL has some similarities, such as glycan preferences, with galectins, some of the 
common animal lectins, but its amino acid sequence is entirely unique. The lectin rec-
ognizes O-glycans containing GalNAc/Gal of the nonreducing ends such as mucin-type 
glycoproteins [71–73]. Regarding recent studies, CGL inhibits the HIV-1 virus  (EC50 
value of 2.5 µM) and has not shown any cytotoxicity (up to a  CC50 value of 14.6 µM) [14].

Lectins as potential molecules in coronavirus treatment/recognition

Like the mentioned enveloped viruses, severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) has a glycoprotein envelope around the virion particle. Also, SARS-
CoV-2 has glycoproteins on its envelope, suggesting opportunities to use lectins as 
a treatment strategy [74, 75]. The host cell provides a two-layer envelope for the virus 
during budding, making its compounds dependent on the cell membrane of origin [76]. 
Host enzymes glycosylate some of the proteins in the layers of the SARS-CoV-2 enve-
lope. These glycoproteins participate in the adhesion, invasion, and entry of the virus 
and the formation/modulation of immune system responses. The spike and membrane 
proteins, called S-protein and M-protein, respectively, are examples of glycoproteins on 
the envelope of SARS-CoV-2 with important roles in its pathogenesis (Fig. 3) [77–81].

Fig. 3 Overlay of snapshots from molecular dynamics (MD) simulation of SARS‑CoV‑2 S glycoprotein with 
site‑specific glycosylation. The glycans are shown in ball‑and‑stick representation: high mannose (green), 
paucimannose (dark yellow), hybrid (orange), and biantennary complex (purple) [82]
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The S-protein arranges as trimers and mediates adhesion between SARS-CoV-2 and 
the host cell through an interaction with angiotensin-converting enzyme 2 (ACE2) [24, 
83–87]. The number of potential glycosylation sites localized in subunits S1 and S2 is 
3 for O-glycosylation and 22 for N-glycosylation. In this regard, the S1 glycoprotein of 
SARS-CoV-2 exhibits ligands for several innate immune receptors, particularly C-type 
lectin receptors (CLRs), which are known to bind specific glycans mainly in a manner 
dependent on C-type lectin [88]. CLRs, such as macrophage mannose receptor (MMR), 
macrophage galactose-type lectin (MGL), dendritic cell-specific intercellular adhesion 
molecule-3-grabbing non-integrin (DC-SIGN), lymph node-specific intercellular adhe-
sion molecule-3-grabbing integrin (L-SIGN), and Dectin-2, are widely expressed by 
immune system cells such as macrophages, dendritic cells (DCs), and monocytes, which 
can exert their role as the first line of defense against viruses and pathogens, including 
SARS-CoV-2 [89].

There is a D614G substitution in the spike protein of all SARS-CoV-2 variants clas-
sified as variants of concern (B.1.1.7/alpha, P.1/gamma, B1.351/beta, B.1.617.2/delta, 
and the newly emerged omicron/B.1.1.529) and variants of Interest (B.1.427/epsilon, 
B.1.429/epsilon, B.1.525/eta, B.1.526/iota, B.1.617.1/kappa, B.1.617.3, and P2/zeta) 
called S-D614G, that results in an altered conformation that enhances ACE2 binding 
and increases transmission and infectivity.

Data show that half of the N-glycosylation sequences changed their distribution of 
glycans in the S-614G variant. The S-D614G variant shows a reduction in the relative 
level of complex-type glycans (up to 45%) and an increase in oligomannose glycans (up 
to 33%) in all altered sequences [90]. Han and coworkers [91] also showed different 
degrees of binding affinity caused by different S glycoprotein mutations, thus indicating 
that the 501Y.V1 variant yielded the highest enhancements in binding affinity (increased 
by 36.8%), followed by the N439K variant (increased by 29.5%) and the 501Y.V2 variant 
(increased by 19.6%). Moreover, N165A and N234A mutations led to glycan deletions at 
the respective sites, reducing binding of the mutated virus to the ACE2 receptor. This 
observation suggests that these glycans are actually important for the conformational 
plasticity of the spike protein receptor binding domain (RBD) of SARS-CoV-2 and hence 
its ACE2 interaction [92]. Another study investigated the effect of five common SARS-
CoV-2 RBD mutations (K417N, K417T, N501Y, E484K, and S477N) on the RBD–ACE2 
interaction. They demonstrated that S477N and E484K mutations enhanced trans-
mission primarily by enhancing binding of RBD and ACE2, while K417N and K417T 
mutations decreased this affinity. It was also indicated that N501Y, E484K, K417N and 
K417T mutations facilitated immune escape [93]. So, mutations in spike protein S1 of 
SAR-CoV-2 improve its affinity with ACE2 and, consequently, increase its infectivity and 
pathogenicity.

On the other hand, through the Janus-activated kinase (JAK)/signal transducer and 
activator of transcription (STAT) signaling pathway, interferon-stimulated genes (ISGs) 
are activated by binding interferins to their receptors on the cell surface, leading to 
immune responses [94]. In this regard, ACE2 is one of the ISGs, and its expression lev-
els correlate with type I interferons. Reduced levels of ACE2 in the lung are beneficial 
for the host in controlling viral replication and transmission. Nevertheless, if there is 
insufficient ACE2 for a prolonged period of time, angiotensin II would not be properly 
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converted into ang1-7 by the function of ACE2. The resulting accumulation of angioten-
sin II will have a negative impact on immune activation and may eventually cause lung 
disease. After binding of SAR-CoV-2 spike protein S1 to ACE2, it downregulates ACE2 
and type I interferons, which may directly contribute to SARS-CoV-2-associated lung 
disease [95]. It has also been indicated that induction of ACE2 and type I interferons 
by poly I:C, an interferon inducer, is suppressed by S1 protein in primary cells of lung 
bronchoalveolar lavage (BAL) from naive rhesus macaques. Thus, the S1 and S2 glyco-
proteins are golden targets for the host immune system and drug and vaccine design, 
including the lectibodies discussed in the next section. In this regard, glycosylated non-
structural proteins (e.g., the 3a protein, which plays a pivotal role in SARS-CoV-2 viru-
lence) are also suitable targets for lectibodies [78, 96–102].

In this regard, griffithsin (GRFT) is a potent antiviral lectin (121 amino acids, 
Mw = 12,700) with domain-swapped dimer folding. High-resolution crystallographic 
experiments have revealed three identical carbohydrate-binding sites per monomer, 
resembling a β-prism-1 motif. Each CRD recognizes one terminal mannose monosac-
charide on N-linked Man5-9GlcNAc2 configurations. Indeed, GRFT shows antiviral 
activity against a broad range of viral infections, including HIV  (EC50 values of 0.03–
1.3 nM), HCV (6.7–13.9 nM), and SARS-CoV (48 nM) [103–107].

This property is attributed to its favorable preclinical features such as lack of toxicity 
and mitogenicity, synergistic effect with various other lectins and drugs, and inexpensive 
bulk production [108, 109]. In this regard, GRFT has been the subject of two phase I 
clinical studies investigating its toxicity in healthy populations. One part of a two-part 
study looked at the safety of GRFT injected intravaginally for a single dose, followed by 
14 consecutive days of use in healthy women. The second part of the study involved 30 
subjects receiving placebo and 30 subjects receiving GRFT gel. The results of cell-based 
assays and cervical explants showed that GRFT was safe for vaginal use up to 14 days 
with potent anti-HIV activity [110, 111].

Another phase I clinical study on GRFT (PREVENT, pre-exposure prevention of viral 
entry) has been conducted since 2014. GRFT was studied for the purpose of providing a 
comprehensive dataset that would facilitate an informed decision on whether the topical 
microbicide should proceed. Study students who were HIV-1 seronegative and engaged 
in unprotected receptive anal interactions (URAI) in this double-blind, randomized, 
phase 1 study were given GRFT enema rectally [112].

However, a recent preformulation study on GRFT by Kramzer et al. (2021) revealed 
that slow oxidation of GRFT occurs following long-term storage (at methionine 78, in 
particular). Hence, more studies are required to protect GRFT from oxidation [113–
123]. GRFT also shows synergy when used together with other antivirals. Cai et  al. 
(2021) reported that the combination of EK1 (which binds to the HR1 in the S2 subu-
nit of SARS-CoV-2) and GRFT (which binds to the RBD in the S1 subunit of the same 
virus) potently inhibits the SARS-CoV-2 virus. In this respect, the  EC50 values of GRFT 
and EK1 alone were 511 and 2459 nM, respectively, while the  EC50 for GRFT-L25-EK1 
(where L25 refers to the 25-mer linker) was 20  nM, demonstrating the efficacy of the 
synergism [124].

Galanthus nivalis agglutinin (GNA) and Hippeastrum hybrid agglutinin (HHA) are 
two lectins that highly resemble each other, in terms of their monomeric molecular 
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weight (12,500), oligomeric status (homotetrameric, resulting from noncovalent inter-
actions among four monomers), number of sugar-binding sites per monomer (three 
CRDs), and secondary structure (β-prism-type 2). Nevertheless, they show distinct 
potential binding targets; while GNA exclusively binds to α-(1,3)-mannose ends, HHA 
CBAs can corecognize internal and external α-(1,3)-or α-(1,6)-linked mannose moieties. 
In addition to binding to mannose termini, GNA also recognizes some other carbohy-
drates, including lactosamine structures found on N- and/or O-glycans [125–127]. These 
lectins have dual antiviral activity: First, by their numerous carbohydrate-recognition 
sites, they bind to several target sugars, then force the target virus to eliminate some gly-
cans on its envelope. Second, now that mutant virus strains expose their protein motifs 
to the immune system, Nab can now simply trigger immune responses against the invad-
ing virus [128, 129]. Both GNA and HHA have demonstrated potent antiviral activities 
against SARS-CoV (6.2 and 3.2 µg/ml, respectively) [130–134].

Moreover, phytohemagglutinin (PHA) shows affinity toward N-glycans of complex 
type, but not monosaccharides. PHA is considered to be a “complex-type” specific lectin, 
recognizing the Gal-β-(1–4)GlcNAc-β-(1–2)Man structure [135]. There are two types of 
subunits, named E (because of binding to erythrocytes and then agglutinin activity) and 
L (owing to its association with leukocytes and then mitogenic activity), that assemble 
into five different types of tetramers (Mw = ~ 120,000), i.e., E4, E3L1, E2L2, E1L3, and L4 
[136, 137]. Despite the 70% sequence similarity between the E and L subunits, they have 
different glycan-binding preferences. Indeed, while PHA-E prefers terminal Gal and Glc-
NAc glycans, PHA-L recognizes Man residues through interaction with both α1–3 and 
α1–6 branches [138].

Wang et al. (2021) recently investigated the antiviral potency of PHA-E and L against 
SARS-CoV-2 pseudovirus and reported no cytotoxicity with  EC50 values of 141–200.1 
and 184.9–217.9 nM, respectively [139].

Lens culinaris agglutinin (LCA) is a homodimeric lectin in solution, where each mon-
omer is composed of two distinct polypeptides, viz. α (the light chain with 52 amino 
acids) and β (the heavy chain with 180 residues), which assemble to an α2β2 composi-
tion (with molecular mass of 49,000) with a β-sandwich structure [140–142]. Binding to 
one metal ion (usually  Mn2+) and one Ca2+ per subunit is obligatory for sugar binding 
(one CRD per monomer) [143, 144]. Lentil lectin needs a FucMan3GlcNAc2 core for 
its binding; it can bind to N-glycan oligosaccharides of Man-5 to Man-9 with the high-
est affinity, as well as GlcNAc residues at the nonreducing terminals with lower affinity. 
LCA has been shown to increase HIV infection and transmission to  CD4+ cells through 
an unknown mechanism, likely due to the high expression level of fucosylated glycans on 
the surface of eukaryotic cells [145]. More recently, Wang and colleagues (2021) showed 
for the first time that LCA has potent antiviral activity against SARS-CoV-2 pseudovirus 
(with  EC50 values of 152.3–186.6 nM) with no cytotoxicity effect [139]. A list of antiviral 
lectins with their cytotoxicity and mitogenicity properties and effective concentrations 
used to treat enveloped viruses is presented in Table 2.

New generation of lectins: lectibodies

Besides their size limitations, short stability in the body environment, vulner-
ability to proteolytic lysis, and challenges regarding bulk production, the cytotoxicity, 
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mitogenicity, and proinflammatory properties of lectins raise several questions regard-
ing their valuable usage as antiviral agents. In this regard, several protein engineering 
techniques have been applied to produce modified lectins, such as lectibodies, to over-
come these issues [146, 147].

Fusion of lectin and antibody’s crystallizable fragment (Fc) of immunoglobulin G 
(IgG) produces a molecule called a “lectibody” that can act as a carbohydrate-target-
ing antibody (Fig. 4a). Lectibodies can bind to surface glycoproteins via their lectins, 
neutralize viruses or cells infected by viruses, and perform Fc-mediated antibody 
effector functions that include complement-dependent cytotoxicity (CDC), antibody-
dependent cell-mediated cytotoxicity (ADCC), and antibody-dependent cell-medi-
ated phagocytosis (ADCP) (Fig. 4b) [148].

Table 2 Toxicity and antiviral activity of lectins

HIV human immunodeficiency virus, HCV hepatitis C virus, EBOV Ebola virus, SIV simian immunodeficiency virus, SARS-CoV 
severe acute respiratory syndrome coronavirus, JEV Japanese encephalitis virus, HSV herpes simplex virus, HPV human 
papillomavirus, NiV Nipah virus, ANDV Andes orthohantavirus, FIV feline immunodeficiency virus, FIPV feline infectious 
peritonitis virus, MSV maize streak virus, RSV respiratory syncytial virus, DENV dengue virus

Lectin Cytotoxicity Mitogenicity Activity (nM unless otherwise noted) Refs.

AH No No HIV‑1 (2–110), HIV‑2 (3–14), [148, 157–164]

CV‑N Yes Yes HIV (0.1–33.7), HCV (1.6), Ebo (100) [34–40]

MVN No No HIV‑1 (2–167), HCV (31–39) [50, 51]

MVL Yes Unk HIV‑1 (30–37), HCV (14–34) [188, 189]

SVN No Unk HIV‑1 (0.3–22), EBOV (41) [190–194]

OAA Yes Unk HIV‑1 (30–45) [56, 57]

PRM‑A No No HIV‑1/2 (1.6‑10 µM), SIV (5 µM) [62, 63]

GRFT No No HIV (0.03–1.3), HCV (6.7–13.9), SARS‑Cov (48), JEV 
(20), HSV‑2(230), HPV (0.4–1.39 µM), NiV (20–60), 
ANDV (180–230)

[104–109, 113–124, 
178, 195, 196]

BCA No Unk HIV‑1 (8.2), influenza H3N2 (18.8–74.2) [64]

BanLec Yes Yes HIV‑1 (0.8–14), HIV‑2 (3.7) [171–174]

GNA No Unk HCV (11.1–25.5), influenza A H1N1 (0.1–268), 
influenza A H3N2 (0.4–6.4), influenza B (0.016–
0.89), HIV‑1 (0.3–4.7 μg/ml), HIV‑2 (0.1–0.2 μg/
ml), SIV (2.7 μg/ml), FIV (0.09 μg/ml), SARS‑COV 
(6.2 μg/ml), FIPV (3.9 μg/ml)

[130–134]

HHA No Unk Influenza A H1N1 (0.05–121), influenza A 
H3N2 (0.10–3), influenza B (0.015–1.8), HIV‑1 
(0.3–3.2 μg/ml), HIV‑2 (0.1–0.2 μg/ml), SIV (0.6 μg/
ml), FIV (0.1 μg/ml), SARS‑COV (3.2 μg/ml), FIPV 
(2.6 μg/ml)

[130–134]

PCL No Unk HIV‑1 (0.05–0.08 μg/ml), HIV‑2 (0.08–0.1 μg/ml) [179, 197]

UDA Yes Yes HIV‑1(100–180), HIV‑2 (240–420), HSV‑
1(9.6‑ > 11 µM), HSV‑2 (1.1–1.3 µM), SIV (130–190), 
MSV (> 20 µg/ml), SARS‑CoV (0.9–2.6 µg/ml), 
influenza A H1N1 (5–435), influenza A H3N2 
(5.8–83), and influenza B (0.64–14)

[182–187, 198–203]

NICTABA No Unk HSV‑1 (171–263), HSV‑2 (41–64), influenza A H1N1 
(21–43), influenza A H3N2 (13–23), influenza B 
(11), RSV (105), and DENV type 2 (323–729)

[107, 176–178]

PHA No Yes SARS‑CoV‑2 (141–217.9), HIV‑1 (50 µg/ml) [116, 122]

LCA No Unk SARS‑CoV‑2 (152.3–186.6) [116]

SVL No Unk HIV‑1 (2.8 µM) [14]

CGL No Yes HIV‑1 (2.5 µM) [14]
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The CDC mechanism is activated by binding of C1q to Fc-bound virus-infected 
cells, initiating the cascade. By releasing C3 and C5 molecules, immune effector cells 
are recruited and activated, while C3b binds to pathogens and infected cells to initi-
ate immune complex clearance and phagocytosis. Following assembly of a membrane 
attack complex, infected cells undergo lysis.

The ADCC response is triggered by the binding of Fc gamma receptor (FcγR) 
on natural killer (NK) cells to Fc domain on antibodies bound to viral antigens on 
infected cells [149]. Upon release of cytotoxic granules, infected cells are killed. Liu 
et  al. demonstrated that anti-Ebola monoclonal antibodies have predominantly NK 
cell ADCC activity [150].

During ADCP, phagocytic cells ingest virus–antibody or antibody–infected cell com-
plexes. The antigen is then processed and presented on major histocompatibility com-
plex (MHC) molecules on cell surfaces, or transferred to lysosomes to be degraded. 
ADCP has been shown to reduce SARS-CoV infection when anti-SARS-CoV antibodies 
were administered to mice [151, 152].

Fig. 4 a Fusion of lectin and antibody’s crystallizable fragment (Fc) of immunoglobulin G (IgG) produces 
a molecule called a “lectibody.” b Lectibodies can bind to surface glycoproteins via their lectins, neutralize 
viruses or cells infected by viruses, and help the innate and adaptive immune systems function against 
pathogens through functions including complement‑dependent cytotoxicity (CDC), antibody‑dependent 
cell‑mediated cytotoxicity (ADCC), and antibody‑dependent cell‑mediated phagocytosis (ADCP)
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CVN-Fc, as a lectibody, has an intense inhibiting activity on free enveloped viruses. 
CVN-Fc prevents virus attachment and entrance into the target infection cell and attracts 
host defense cells to the virus war zone. HCV, HIV, Ebola, and influenza are among the 
list of CVN-Fc’s target viruses. In addition, actinovirin (AH), an actinomycete-derived 
lectin, is a single polypeptide with 114 residues (Mw = 12,500) that folds into a β-trefoil 
structure. This structure has three highly conserved tandem repeats (HMG-binding 
pocket) specific toward α-1,2-mannose oligomers (D1) of high-mannose-type glycans 
(HMTGs) on the HIV envelope [153–156]. Chiba et al. (2004) reported the inhibitory 
activity of AH against T- and M-tropic HIV-1 strains (with  IC50 values of 2–110 nM and 
38 nM, respectively) and HIV-2 (with an  IC50 value of 3–14 nM). They also found that, 
although three CRDs in AH recognize gp120 on the env-expressing cells specifically and 
cooperatively, they have no significant affinity toward chemokine receptor-expressing 
cells such as  CD4+ [157]. Besides the antiviral properties of AH, it is highly hydropho-
bic and prone to aggregate. Therefore, Hamorsky et  al. (2019) produced a soluble AH 
variant in Nicotiana, with more efficient biochemical and pharmaceutical properties, 
named avaren (AV). They also fused AV to the fragment Fc fragment of IgG1 to create 
the avaren-Fc (AvFc) lectibody. Avaren-Fc (AvFc) is a binding neutralizing lectibody for 
HIV and simian immunodeficiency virus (SIV) strains, without affecting normal human 
blood cells, which attaches to the HMGs on the gp120 of HIV envelope. AvFc exhibited 
an extended serum half-life in rats and macaques, whereas repeated systemic adminis-
tration in mice did not result in any noticeable toxicity. Moreover, surface plasmon reso-
nance (SPR) analysis revealed that AvFc has tenfold higher affinity to the gp120 of HIV 
relative to AH, indicating the high selectivity and specificity of the lectibodies. Currently, 
no pharmaceutical agent chooses HMG selectively as a target. Therefore, developing 
AvFc and/or lectibodies in general may be unprecedented for selectively rendering HIV 
and SIV ineffective subtypes [158].

HCV is another enveloped virus that is densely glycosylated with HMGs. In addi-
tion to facilitating cell entry through surface receptors, these HMGs act as an armor-
like shield in front of neutralizing antibodies. Previous studies have shown the affinity 
of AvFc to a recombinant HCV E2 envelope glycoprotein and its ability to prevent viral 
infection of Huh-7-hepatocyte-derived cellular carcinoma cell by cell culture-derived 
HCV (HCVcc).

Although the antiviral function of AH is not the strongest when compared with other 
lectins, it does not show any cytotoxicity and mitogenicity, which are common side 
effects among lectins. Takahashi et  al. (2011) demonstrated that, via dimerizing AH 
proteins, its activities against various HIV strains can be increased due to the “cluster 
effect” of lectin (with  IC50 values of 12–290  nM) [159–161]. Hydrophobic nature and 
high aggregation rate are the major drawbacks of AH. Hence, developing a more efficient 
recombinant product is necessary to make lectin a potent anti-HIV drug. Its soluble var-
iant Avaren was obtained by structure-guided mutations and fused to Fc of human IgG1. 
As a result, the “lectibody” AvFc was created, which is more active against HIV infection 
(with  IC50 values of 5.6 and 0.3 nM for HIV-1 and 2, respectively) compared with AH 
(with  IC50 values of 60.4 and 156.3 nM against HIV-1 and 2, respectively). It was also 
reported that AvFc might inhibit SIV (with  IC50 values of 3.8–15.3 nM) and HCV (with 
 IC50 values of 1.69–2.85 nM) [148, 158, 162–164]. These results suggest that lectibodies 
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can act as inhibitors of viral entry into host cells and represent a potential solution to 
reduce the mortality rate of hepatitis C [165].

Banana lectin (BanLec) is a 141-residue plant-derived lectin (Mw = 15,000). Native 
mass spectrometry (MS) demonstrated that BanLec assembles as a homotetramer in 
solution, with each subunit folding into a β-prism-1 topology, characteristic of Jacalin-
related lectins (JLRs). There are two sugar-binding sites in each subunit (octavalent for 
native tetrameric BanLec), recognizing 1,3-sugar moieties, particularly α/β-d-mannosyl/
glycosyl configurations at the reducing ends, plus internal α-1,3-linked glucosyl residues. 
Concomitantly, the lectin recognizes numerous N-glycans on different HIV trimers, 
making the virus particles cross-link and aggregate [166–170].

The major drawback of BanLec is its mitogenic effect on T-cells. However, it has been 
shown previously that an engineered type of this lectin (BanLec H84T) avoids any mito-
genicity while retaining the broad-spectrum antiviral functions. The rationally engi-
neered lectin inhibits HIV-1 and HIV-2 with  EC50 values of 0.4–4.1  nM and 0.3  nM, 
whereas the  EC50 values for the wild type are 0.8–14 nM and 3.7 nM, respectively [171–
173]. Moreover, a fluorescently labeled BanLec (BanLec-eGFP) was produced recently 
by Lopandic et al. (2021) and exploited as a versatile detection tool to investigate tissues 
and pathological processes structurally and functionally [174].

In recent years, IgG monoclonal antibodies have played an essential role in producing 
therapeutic drugs (> 70 antibody drugs) for many diseases, such as cancer, autoimmune 
illnesses, and viral infections. The Fc domain in IgG is constituted from two constant 
domains CH2 and CH3, which are responsible for the ADCC and complement activa-
tion produced by IgG. Previously, lectibodies were produced by fusing a lectin and Fc 
domain genetically. However, such production of full-length antibodies in large quanti-
ties in bacterial systems is challenging because disulfide bonds needed for proper fold-
ing cannot be created. Moreover, large-scale production of antibodies in mammalian 
expression systems is expensive and slow, and also needs more time for optimization, in 
addition to the problem of heterogeneous expression of foreign proteins from different 
organisms. More recently, Jaakkonen et al. (2020) exploited an off-the-shelf approach as 
a solution for the production of Fc fusions, where each domain of a bivalent lectibody 
preproduced in their ideal host organism and expression system is then ligated to pro-
duce engineered bispecific antibodies. This approach avoids the time-consuming opti-
mization of the expression and purification steps, while only the ligation step needs to be 
optimized. Indeed, the heavy-chain antibodies in camelids, which bear only two heavy 
chains, inspired this novel approach. They used in  vitro protein trans-splicing (PTS) 
to replace the antigen-binding domains of IgG with the SVN lectin to produce a lectin 
fusion protein, i.e., lectibody, that can specifically attach to the HMGs on the surface 
of diverse virus particles such as HIV, SARS coronavirus, and Ebola virus, on the one 
hand, and call the immune system to wipe out these viruses out, on the other. They also 
documented that the size of the Fc domain and its separate valency could, respectively, 
enhance the stability and binding capacity of the small protein SVN [175].



Page 18 of 25Nabi‑Afjadi et al. Cellular & Molecular Biology Letters           (2022) 27:37 

Conclusions and perspectives
Lectins are potent antiviral agents with a promising future for the treatment/recognition 
of viral infections. Unlike most antiviral compounds that inhibit virus replication, anti-
viral lectins target the entry of viruses into cells, leading to lower toxicity in topical use. 
However, since various obstacles prevent their clinical use, future investigations should 
focus on these. The risks or limitations to the significant use of antiviral lectins are their 
size, short stability in the body environment, cytotoxicity and mitogenicity (for some 
lectins), the potential for awakening the immune system (thereby resulting in deleterious 
responses), vulnerability to proteolytic lysis, and challenges regarding affordable bulk 
production. Fortunately, computational tools or gene manipulation can produce more 
effective derivatives of these valuable proteins, such as lectibodies, to improve their 
stability and robustness and remove their mitogenic potential. In this regard, lectibod-
ies can be considered to represent a new and promising approach, with high specificity 
and cost-effectiveness, to treat viral infections by identifying and neutralizing carbohy-
drates on the surface of the viral envelope. Lectibodies can not only neutralize the virus 
and inhibit its entry into the host cell through specific cell surface receptors but also, 
with the assistance of immune system mechanisms such as CDC, ADCC, and ADCP, 
induce the clearance of the virus or infected cells. Virus envelope glycans may be able to 
exert their role as a shield to reduce the normalizing function of antibodies against the 
virus. However, lectibodies may be superior in this respect, especially in terms of the 
performance of vaccines against newer variants of a virus that is consistently developing 
new mutations. However, because lectibodies have recently provided new insight into 
viruses, particularly SARS-CoV-2 and HIV, further studies and accurate clinical trials are 
needed to investigate their tissue distribution and effect on tissue metabolism and con-
firm their specificity and engagement of cell receptors, to prevent their possible binding 
to unwanted glycosylated targets or undesirable local immune responses.
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