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Abstract

Purpose

We compared attenuation correction of PET images with helical CT (PET/HCT) and respira-

tion-averaged CT (PET/ACT) in patients with non-small-cell lung cancer (NSCLC) with the goal

of investigating the impact of respiration-averaged CT on 18F FDGPET texture parameters.

Materials and Methods

A total of 56 patients were enrolled. Tumors were segmented on pretreatment PET images

using the adaptive threshold. Twelve different texture parameters were computed: standard

uptake value (SUV) entropy, uniformity, entropy, dissimilarity, homogeneity, coarseness,

busyness, contrast, complexity, grey-level nonuniformity, zone-size nonuniformity, and high

grey-level large zone emphasis. Comparisons of PET/HCT and PET/ACT were performed

using Wilcoxon signed-rank tests, intraclass correlation coefficients, and Bland-Altman

analysis. Receiver operating characteristic (ROC) curves as well as univariate and multivar-

iate Cox regression analyses were used to identify the parameters significantly associated

with disease-specific survival (DSS). A fixed threshold at 45% of the maximum SUV (T45)

was used for validation.

Results

SUVmaximum and total lesion glycolysis (TLG) were significantly higher in PET/ACT. How-

ever, texture parameters obtained with PET/ACT and PET/HCT showed a high degree of

agreement. The lowest levels of variation between the two modalities were observed for

SUV entropy (9.7%) and entropy (9.8%). SUV entropy, entropy, and coarseness from both
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PET/ACT and PET/HCT were significantly associated with DSS. Validation analyses using

T45 confirmed the usefulness of SUV entropy and entropy in both PET/HCT and PET/ACT

for the prediction of DSS, but only coarseness from PET/ACT achieved the statistical signifi-

cance threshold.

Conclusions

Our results indicate that 1) texture parameters from PET/ACT are clinically useful in the pre-

diction of survival in NSCLC patients and 2) SUV entropy and entropy are robust to attenua-

tion correction methods.

Introduction
Despite significant advances in targeted therapy [1], the prognosis of patients with non-small
cell lung cancer (NSCLC) remains dismal. 18F-FDG PET imaging plays an essential role in the
diagnosis and staging of NSCLC. Recent years have witnessed an increased use of FDG PET
imaging for clinical decision making [2]. Accordingly, maximum standardized uptake values
(SUVmax) [3, 4] and total lesion glycolysis (TLG) [5, 6] have been shown to be clinically useful
for predicting treatment response and clinical outcomes of NSCLC patients. Tumor heteroge-
neity has been generally related to poor prognosis and treatment resistance [7]. Growing evi-
dence indicates that FDG PET texture features reflecting tumor heterogeneity may predict
therapeutic response and survival in NSCLC [8–11] and numerous other malignancies [12–
20]. The mining of a large number of quantitative image features has been referred to “radio-
mics” and holds promise as a method for identifying specific prognostic signatures [10, 21–26].
In this scenario, accurate and reproducible measurements of texture features are essential for
clinical use. Unfortunately, respiratory motion during PET/CT results in degradation of image
quality and hampers the correct quantification of imaging parameters [27–29]. Such deteriora-
tion is caused by the discrepancy of chest position between helical CT (HCT) and PET images
[30, 31]. Rather than a snapshot of the respiration cycle (as in HCT images), PET scans are the
results of the average of respiratory cycles. Notably, the temporal difference between PET and
CT ultimately introduces misalignment artifacts in PET images. To address this issue, attenua-
tion correction of PET images with respiration averaged CT (ACT) has been utilized. Rather
than providing a motionless CT image, ACT simulates the PET acquisition process by averag-
ing the signal during a respiratory cycle from multiple low-dose cine CT images. Previous stud-
ies have shown that ACT correction can improve the quality of PET images by reducing
misalignments and optimizing the quantification of SUV [31–34]. Nevertheless, the utility of
ACT for correcting PET texture features has not been thoroughly investigated. In addition,
data on the potential prognostic impact of different PET texture features in NSCLC patients
remain scarce. Because of the increasing use of 18F-FDG PET/CT in clinical trials, an analysis
of the variability related to attenuation correction is worthy of investigation. We therefore
designed the current study to compare attenuation correction of PET images with HCT and
ACT in NSCLC with the goal of investigating the impact of respiration-averaged CT on FDG
PET texture parameters.

Materials and Methods

Patients
The Institutional Review Board of the Chang Gung Memorial Hospital at Linkou approved the
study protocol (102-3810B). Written informed consent was obtained from all patients before
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ACT. The study population consisted of patients with pathologically-proven NSCLC who were
scheduled to undergo definitive treatment with curative intent. All of the study participants
underwent 18F-FDG PET for disease staging. The treatment approach was as follows: 1) radical
surgery for stage IA patients, 2) radical surgery plus adjuvant chemotherapy for stage IB and
IIA patients, 3) neoadjuvant therapy (chemotherapy, radiotherapy, or concurrent chemora-
diotherpy [CCRT]) and operation for stage IIB and IIIA patients, and 4) chemotherapy, radio-
therapy, or CCRT and operation (in presence of resectable disease) for stage IIIB patients.
Patients with M1 disease were excluded. Patients were staged according to the 2010 (7th edi-
tion) American Joint Committee on Cancer (AJCC) staging system. We retrospectively
reviewed the clinical charts to extract the general characteristics and the clinical outcomes of
the participants. Disease-specific survival (DSS) − defined as the time from diagnosis to
NSCLC-related death − served as the main outcome measure.

PET/CT imaging protocol
Patients were asked to fast 6 h before examination. According to our institutional policy,
patients with blood glucose levels greater than 200 mg/dL had their scan rescheduled. All par-
ticipants were imaged using the same PET/CT scanner (Discovery ST16, GE Healthcare).
Scans were obtained 50 min after intravenous FDG administration. The injected dose of FDG
was calculated according to body weight and ranged between 370 and 555 MBq. HCT data
were acquired with the following settings: 120 kV, automatic mA (range: 10−300 mA), pitch
1.75:1, collimation 16×3.75 mm, and rotation cycle 0.5 s. Whole-body PET emission scans
were performed in the 2D mode and acquired from the skull to the mid-thigh. Following HCT
and PET acquisition, a low-dose cine CT was performed using the following settings: 120 kV,
automatic mA (range: 10−25 mA according to the patient’s body weight), rotation cycle 0.5 s,
collimation 8×2.5 mm, and cine duration 5.9 s. The goal was to include lung fields bilaterally
from the pulmonary apex to the dome of the liver [32, 35–37]. Ten phases of cine CT images
were averaged to obtain ACT. No intravenous contrast enhancement was used, and imaging
was performed in the free-breathing state. No pre- or in-scan breathing coach for respiratory
control was used. Attenuation correction of PET images was performed with both HCT and
ACT using the same PET data [30, 32, 35]. PET emission data were reconstructed with attenua-
tion correction using both HCT and ACT attenuation maps. Transaxial emission images were
reconstructed using ordered subsets expectation maximization (OSEM) with 4 iterations and
10 subsets. PET images were reconstructed on a 128 × 128 image matrix with a voxel size of
4.46 × 5.46 × 3.27 mm3 for both PET/HCT and PET/ACT. An additional dose of 2.5 mSv (5
mGy) was used for patients with a body weight> 70 kg [38].

PET/CT image data analysis
The PMOD 3.3 software package (PMOD Technologies Ltd, Zurich, Switzerland) was used for
tumor segmentation. We applied two methods for tumor segmentation, i.e. (1) the adaptive
threshold approach in the exploratory analysis and (2) 45% of SUVmax (T45) for validation
purposes. The adaptive threshold was determined by using a mean intensity of voxel contoured
by 70% of the tumor SUVmax (I mean 70%) plus the background mean SUV [39]. The aortic
arch was used for background measurement and none of the study participants had aortic arch
invasion. Two authors (N.M.C. and T.C.Y.) contoured the aortic arch using 1 cm3 cubic vol-
umes of interest (VOI) and results were averaged. Care was taken to exclude calcified regions
in the aortic arch. Finally, the adaptive threshold was calculated according to the following for-
mula: 0.15 × (I mean 70%) + background. The T45 approach has been previously utilized for
delineation of NSCLC tumors [8]. SUVmax, mean SUV, and texture features were determined
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using the tumor VOI. TLG was calculated as follows: TLG = mean SUV × metabolic tumor vol-
ume (MTV) [40]. We did not analyze nodal lesions because of their small size.

Histogram analysis, normalized grey-level co-occurrence matrix (NGLCM) [41, 42],
neighborhood grey-tone difference matrix (NGTDM)[43], and grey level size zone matrix
(GLSZM) [44] were applied for calculation of PET texture features. Because numerous tex-
ture features have been reported [12, 45, 46], we specifically focused on those utilized for
predicting survival in patients with malignancies. Several texture parameters, including
entropy, uniformity, homogeneity and dissimilarity from NGLCM [11, 14, 47, 48], grey-
level nonuniformity (GLNU), zone-size nonuniformity (ZSNU), high grey-level large zone
emphasis (HGLZE) from GLSZM [14, 19], and NGTDM based coarseness, busyness, con-
trast and complexity [8] have been used for survival prediction in patients with NSCLC,
esophageal cancer, and head and neck malignancies. In addition, we evaluated SUV entropy
based on histogram analysis because of its robustness due to different reconstruction set-
tings [45, 49]. A total of 12 different texture features were examined. The intensity values of
the recorded VOIs were initially resampled into 64 bins to normalize images and reduce
noise for the calculation of texture features [13]. The computations for texture features were
performed using the Chang-Gung Image Texture Analysis toolbox (CGITA) implemented
under MATLAB 2012a (Mathworks Inc., Natick, MA, USA). The details on mathematical
models for texture matrices and the calculation process have been previously described in
detail [14, 50].

Statistical analysis
Because most texture features showed a skewed distribution, the non-parametric Wilcoxon
signed-rank test was used for paired comparisons of PET/HCT and PET/ACT parameters. The
reciprocal associations of texture features in PET/HCT and PET/ACT were examined using
intraclass correlation coefficients (ICC). Precision was defined by half of the width of the 95%
confidence intervals (CIs) and used as an indicator of reliability. Bland-Altman analysis was
used for comparing two measurements. The differences between the two parameters (i.e., PET/
ACT values minus PET/HCT values) were plotted against their average (e.g. mean of PET/
HCT and PET/ACT values) and reported as percentage. The lower and upper reproducibility
limits (LRL and URL, respectively) were calculated as ± 1.96 standard deviations (SD). Varia-
tions were defined as the range between LRL and URL. In an exploratory analysis, the evalua-
tion of texture parameters was based on a step-forward process. The median follow-up time in
the entire study cohort was 26.2 months (range: 2.5−74.8 months), whereas it was 59.0 months
(range: 40.4−74.8 months) in patients who survived. Because all of the enrolled cases were fol-
lowed up of at least 3 years or until death, receiver operating characteristic (ROC) curves were
initially used to identify the image features associated with 3-year DSS. All of the parameters
with an area under curve different from 0.5 were selected for further analyses. The optimal cut-
off values were identified by determining the point where the sum of sensitivity and specificity
(Youden’s index) was maximum. Dichotomizing patients according to the optimal cutoff val-
ues were used in subsequent univariate and multivariate Cox regression analyses. Because of
the high collinearity among different texture features, we constructed multivariate Cox regres-
sion models to include only one texture parameter and the following covariates: age, cell type
(adenocarcinoma vs. non-adenocarcinoma), AJCC stage (stage I, II vs. stage III), and radical
surgery (yes vs. no). All calculations were performed with the PASW Statistics 18 software
package (SPSS Inc., Chicago, IL, USA). After application of the Bonferroni correction, a P
value< 0.017 (i.e., 0.05/3) was considered statistically significant.
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Results

Patients
Between July, 2007 and June, 2009, a total of 56 consecutive patients (36 males, 20 females;
median age: 68 years; age range: 34−84 years) were enrolled. The median follow-up time in the
entire study cohort was 26.2 months (range: 2.5−74.8 months), whereas it was 59.0 months
(range: 40.4−74.8 months) in patients who survived. The clinical characteristics of the study
participants are shown in Table 1. The most common histological type was adenocarcinoma
(n = 31, 55.4%), and the majority of patients were diagnosed at advanced stages (stage IIIA or
IIIB, n = 36, 64.2%). Twenty-two (39.3%) tumors were located in the lower pulmonary lobes,
whereas 34 (60.7%) were located in the upper or right middle lobes. A total of 29 patients
(51.8%) received radical surgery. The median glucose level before FDG PET imaging was 93
mg/dL (range: 65−151 mg/dL). There were no significant interobserver differences in back-
ground activity for both PET/HCT (observer 1 vs. 2: 1.60 ± 0.30 vs. 1.62 ± 0.31, P = 0.325) and
PET/ACT (1.65 ± 0.34 vs. 1.65 ± 0.32, P = 0.960). No differences were noted in the values of
resulting adaptive thresholds (2.88 ± 0.80 vs. 2.91 ± 0.81, P = 0.318 and 2.96 ± 0.82 vs.
2.96 ± 0.83, P = 0.954 for PET/HCT and PET/ACT, respectively). Using the mean threshold
for tumor delineation, the median MTV for PET/HCT and PET/ACT were 26.19 cm3 and
26.58 cm3, respectively (Wilcoxon signed-ranks test, P = 0.426).

Table 1. Clinicopathological characteristics of the study patients.

Characteristic n (%)

Sex

Male 36 (64.3)

Female 20 (35.7)

Age (years)

Range 34−84

Median 68

Sites of tumors

Lower lobe 22 (39.3)

Other lobes 34 (60.7)

TNM stage

T1 5 (8.9)

T2 28 (50.0)

T3 3 (5.4)

T4 20 (35.7)

N0 20 (35.7)

N1 10 (17.9)

N2 19 (33.9)

N3 7 (12.5)

AJCC Stage

IA 3 (5.4)

IB 11 (19.6)

IIA 2 (3.6)

IIB 4 (7.1)

IIIA 11 (19.6)

IIIB 25 (44.6)

doi:10.1371/journal.pone.0150509.t001
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PET image analysis
The results of Wilcoxon sign-ranks tests revealed that PET/ACT yielded significant higher
SUVmax, SUV mean, and TLG values. However, all of the texture parameters did not show sig-
nificant differences (Table 2). Specifically, SUVmax of tumors located in the lower lung were
significantly higher in PET/ACT, but similar values were noted for tumors arising in other sites
(S1 Table). Despite differences in SUVmax, SUV mean, and TLG between PET/HCT and PET/
ACT, ICC analysis revealed a high degree of correlation and good precision (ICC: 0.993, 0.994,
and 0.993; precision: 0.35, 0.35, and 0.40% for SUVmax, SUV mean, and TLG, respectively).
HGLZE showed the lowest levels of correlation and precision (0.919 and 4.35%, respectively).
High correlation coefficients (ICC> 0.95) were generally noted for other texture features
(Table 3). The variations of SUVmax and SUV mean in Bland-Altman analysis were 25.4% and
18.1%, respectively. The lowest level of variation was evident for SUV entropy (9.7%) followed
by entropy (9.8%), as revealed in Fig 1. Among NGTDM and GLSZM parameters, coarseness
and GLNU had the lowest degree of variation (33.0% and 45.2%, respectively). The highest lev-
els of variation were noted for contrast (104.9%) and HGLZM (80.6%), S1 Fig. Variation values
greater than 50% were evident for uniformity (56.6%), busyness (52.9%), complexity (67.1%),
ZSNU (74.4%), and HGLZE (80.6%). High degrees of correlation between texture parameters
(│ρ│ = 0.614–0.993 for PET/HCT and │ρ│ = 0.567–0.993 for PET/ACT, all P< 0.001) were
evident for both PET/ACT and PET/HCT.

Survival analysis
At the end of study, 36 patients died (35 of NSCLC and one of acute myocardial infarction). A
total of 47 patients (83.9%) had disease progression during follow-up. Three methods (ROC
curve analyses, univariate Cox regression analysis, multivariate Cox regression analysis) were

Table 2. Results of Wilcoxon signed-ranks tests for PET/HCT and PET/ACT parameters.

Variables PET/HCT PET/ACT P

Mean SD Range Mean SD Range

SUVmax 11.12 5.95 3.03–36.05 11.29 6.03 3.08–36.74 0.009

SUV mean 5.05 2.16 2.01–13.03 5.16 2.22 2.01–13.80 <0.001

TLG 273.5 378.5 2.7–1802.8 287.0 403.3 2.6–1846.7 <0.001

Texture parameters

SUV entropy 3.71 0.26 2.66–4.02 3.72 0.26 2.74–4.01 0.516

Uniformity 0.003 0.004 0.001–0.02 0.003 0.003 0.001–0.02 0.853

Entropy 6.35 0.82 3.76–7.30 6.35 0.81 3.97–7.28 0.734

Dissimilarity 8.83 2.71 4.85–19.13 8.84 2.76 4.65–19.21 0.766

Homogeneity 0.19 0.04 0.12–0.27 0.19 0.04 0.12–0.28 0.969

Coarseness 0.030 0.022 0.002–0.09 0.030 0.02 0.002–0.09 0.780

Busyness 0.222 0.296 0.021–1.528 0.224 0.303 0.020–1.503 0.411

Contrast 0.081 0.335 0.0004–2.336 0.075 0.307 0.0004–2.136 0.382

Complexity 52.35 68.94 0.98–277.8 51.26 64.22 0.95–273.4 0.256

Grey-level nonuniformity 9.67 11.78 1.00–67.36 9.73 11.89 1.12–66.15 0.714

Zone-size nonuniformity 214.9 231.6 10.2–1231.3 214.1 232.8 15.1–1262.4 0.914

High grey-level large zone emphasis 2564 1461 1012–7223 2685 1652 891–10488 0.154

SUV, standardized uptake value; TLG: total lesion glycolysis.

doi:10.1371/journal.pone.0150509.t002
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used to investigate the prognostic role of texture parameters. The results of ROC curve analyses
(S2 Table) revealed that SUV entropy, uniformity, entropy, coarseness, contrast, GLNU, and
ZSNU from PET/HCT and PET/ACT were statistically significant. When patients were dichot-
omized according to the optimal cutoff values, we found a high consistency of texture parame-
ters derived from PET/HCT and PET/ACT. Identifcal stratification results were obtained with
regard to entropy and coarseness; 55 of 56 cases (98.2%) were based on the cut-off for GLNU;
54 (96.4%) for ZSNU; 53 (94.6%) for uniformity and 50 (89.3%) for SUV entropy. ICC, preci-
sion, and variation did not show significant associations with stratification consistency (Spear-
man’s ρ = -0.211, 0.266 and -0.248, P = 0.559, 0.457 and 0.490, respectively). Subsequently
analyses using univariate and multivariate Cox models confirmed the significant role of SUV
entropy, entropy, and coarseness from both PET/HCT and PET/ACT in the prediction of DSS
(Table 4). The complete results of univariate and multivariate Cox regression analyses are
shown in S5 Table. Kaplan-Meier estimates of DSS for PET/HCT and PET/ACT parameters
are shown in Fig 2.

Validation data
MTV and TLG delineated using the T45 method were significantly lower than those obtained
using the adaptive threshold approach (Wilcoxon signed-ranks test, both P<0.001). Signifi-
cant higher SUVmax, SUV mean and TLG were also evident (S3 Table), whereas all of the tex-
ture parameters showed no statistically significant differences. High ICCs were identified. SUV
entropy and entropy revealed the lowest degrees of variation between PET/ACT and PET/
HCT, whereas contrast and HGLZE continued to show large variations (S4 Table). Using the
T45 method for validation purposes, the predictive role of SUV entropy and entropy from
both PET/HCT and PET/ACT for DSS was confirmed using all of the three methodologies

Table 3. Intraclass correlation coefficients and Bland-Altman analyses of PET parameters.

Variables Intraclass Correlation Coefficient (ICC) Bland-Altman analysis

ICC 95% CI Precision (%) Mean Variation (%) LRLa
–URLb (%)

SUVmax 0.993 0.989–0.996 0.35 1.5 25.4 -11.2–14.2

SUV mean 0.994 0.990–0.997 0.35 2.3 18.1 -6.7–11.4

TLG 0.993 0.988–0.996 0.40 3.5 43.8 -18.4–25.4

Texture parameters

SUV entropy 0.949 0.915–0.970 2.75 0.1 9.7 -4.7–5.0

Uniformity 0.956 0.926–0.974 2.40 0.2 56.6 -28.1–28.5

Entropy 0.987 0.978–0.992 0.70 0 9.8 -4.90–4.90

Dissimilarity 0.975 0.964–0.987 1.15 -0.1 22.7 -11.4–11.3

Homogeneity 0.977 0.962–0.987 1.25 -0.4 16.7 -8.7–8.0

Coarseness 0.982 0.970–0.990 1.00 -0.6 33.0 -17.1–15.9

Busyness 0.996 0.993–0.998 0.25 -0.6 52.9 -27.1–25.8

Contrast 0.983 0.971–0.990 0.95 -2.3 104.9 -54.8–50.1

Complexity 0.975 0.958–0.986 1.40 -1.0 67.1 -34.5–32.6

Grey-level nonuniformity 0.998 0.997–0.999 0.10 -1.5 45.2 -24.1–21.1

Zone-size nonuniformity 0.997 0.994–0.998 0.20 -1.2 74.4 -38.4–36.0

High grey-level large zone emphasis 0.919 0.865–0.952 4.35 4.5 80.6 -35.4–44.8

aLRL: lower reproducibility limit
bURL: upper reproducibility limit.

doi:10.1371/journal.pone.0150509.t003
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(ROC curves as well as univariate and multivariate Cox regression analyses). However, the role
of coarseness remained significant only from PET/ACT (Table 5). Kaplan-Meier estimates of
DSS for these analyses are reported in Fig 3.

Fig 1. Dot-and-line diagrams of SUV entropy (A), entropy (B), and coarseness (C). Results of Bland-Altman analysis of SUV entropy (D), entropy (E), and
coarseness (F).

doi:10.1371/journal.pone.0150509.g001

Table 4. Univariate andmultivariate Cox regression analyses of disease-specific survival using PET parameters.

Variables Univariate analysis Multivariate analysisa

HR (95% CI) P HR (95% CI) P

PET/HCT

SUV entropy 2.69 (1.37–5.29) 0.004 2.69 (1.32–5.45) 0.006

Entropy 2.81 (1.34–5.92) 0.006 2.69 (1.23–5.89) 0.013

Coarseness 0.38 (0.19–0.76) 0.007 0.34 (0.15–0.79) 0.012

PET/ACT

SUV entropy 2.49 (1.24–4.99) 0.010 2.77 (1.32–5.83) 0.007

Entropy 2.81 (1.34–5.92) 0.006 2.69 (1.23–5.89) 0.013

Coarseness 0.38 (0.19–0.76) 0.007 0.34 (0.15–0.79) 0.012

HR: hazard ratio; CI: confidence interval.
aAdjusted for age, cell type, radical surgery, and AJCC stage (see text).

doi:10.1371/journal.pone.0150509.t004
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Discussion
The quantification of PET images relies on accurate attenuation correction maps. However,
respiration motion continues to remain a major challenge for PET/CT imaging. PET/HCT
misregistration occurs when HCT imaging is performed during the inspiration [27–29, 51].
Accordingly, a displaced diaphragm by air-filled lung tissues results in an underestimation of
the attenuation coefficient. Because PET/ACT can effectively reduce this issue, higher SUVmax

values were identified in PET/ACT (especially for lesions located in the lower where a more
marked respiratory motion was expected). In contrast, SUVmax values did not differ significant
at sites different from the lower and background. Notably, texture indices obtained from PET/
ACT and PET/HCT were largely similar even in the lower lung fields. Texture features are cal-
culated using whole-tumor sampling and are useful for assessing the relationships between
multiple voxels and their neighborhood (rather than a single voxel). Therefore, they are gener-
ally consistent even when different attenuation correction methods are used.

Fig 2. Kaplan-Meier estimates of disease-specific survival (DSS) from PET/HCT (A-C) and PET/ACT (D-F) parameters. Kaplan-Meier estimates of
DSS stratified according to distinct cut-off values of PET/HCT and PET/ACT parameters. Cut-off values are shown in S2 Table. Log-rank test P values are
also reported.

doi:10.1371/journal.pone.0150509.g002
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PET entropy has been shown to predict survival in patients with early-stage NSCLC [48]. In
the current study, we were not only able to replicate this finding but we also showed that het-
erogeneous PET images were associated with unfavorable DSS. Heterogeneous images were
characterized by larger values of SUV entropy and entropy. Notably, SUV entropy and entropy
based on NGLCM from both PET/HCT and PET/ACT were significant predictors of survival.
Moreover, SUV entropy and entropy remained consistent regardless of different PET recon-
struction parameters (iteration number, FWHM, and pixel size) [49] and attenuation correc-
tion methods. NGTDM was originally developed to quantify human visual perception. A
coarse image reflects the presence of a uniform intensity distribution, e.g. a homogeneous
image. Although a previous study demonstrated a prognostic role of coarseness [8], this
parameter shows a high extent of variation according to different segmentation methods, PET
acquisition modes, and image reconstruction settings [45, 49, 52, 53]. As expected, coarseness
values in this study were characterized by a marked extent of variation according to the attenu-
ation correction method (33.0% and 55.0% for the adaptive threshold and T45 methods,
respectively). Notably, coarseness was significantly associated with DSS using the adaptive
threshold method. However, only a marginal association was observed when the T45 delinea-
tion without motion compensation was applied. In contrast, SUV entropy and entropy (which
were characterized by a lower extent of variation) were significant in both PET/ACT and PET/
HCT.

Different from our results, Yip et al. [54] reported significant differences between PET/HCT
and 4D PET/CT for coarseness and busyness values. In 4D-PET/CT, 4D-CT images of five dif-
ferent respiratory phases are selected to match those of the corresponding 4D-PET acquired
following PET/HCT. Consequently, the count of 4D-PET photons is different from that of
PET/HCT, with a higher noise being evident for 4D PET (which may hamper the precise calcu-
lation of the texture features). The question as to whether such differences may have an impact
on survival prediction remains open. Differently from 4D-PET/CT, PET/ACT uses the same
PET images and all of the phases of PET signals are utilized. This observation may explain the
limited differences in terms of texture parameters between PET/HCT and PET/ACT.

Our findings emphasize the importance of using a standardized approach for PET texture
analysis [55] in NSCLC patients. It may be argued that the diversity of PET texture parameters
(resulting from differences in target segmentation, rebin process, reconstruction settings, and/
or terminology) may hamper the application of texture-based analysis in clinical practice [53].

Table 5. Univariate andmultivariate Cox regression analyses of disease-specific survival using PET
parameters with tumor segmented with the T45 approach.

Variables Univariate analysis Multivariate a

HR (95% CI) P HR (95% CI) P

PET/HCT

SUV entropy 3.16 (1.58–6.35) 0.001 3.26 (1.52–6.99) 0.002

Entropy 4.52 (1.74–11.78) 0.002 3.87 (1.47–10.22) 0.006

Coarseness 0.46 (0.20–1.05) 0.066 0.42 (0.18–1.02) 0.056

PET/ACT

SUV entropy 2.47 (1.20–5.09) 0.014 2.81 (1.29–6.09) 0.009

Entropy 3.74 (1.54–9.09) 0.004 3.13 (1.27–7.73) 0.013

Coarseness 0.28 (0.11–0.72) 0.008 0.26 (0.10–0.69) 0.007

HR: hazard ratio; CI: confidence interval.
aAdjusted for age, cell type, radical surgery and AJCC stage (see text).

doi:10.1371/journal.pone.0150509.t005
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However, technical advances and the implementation of randomized clinical trials will hope-
fully be helpful in overcoming such challenges [2, 56]. It is also possible that texture parameters
(especially SUV entropy and entropy) can be useful in guiding radiotherapy. In this regard, it
would be clinically relevant to assess the value of dose painting using unfixed radiation dose
distribution to the tumor (based on image-guided stratification of high-risk target volumes).
Although dose painting based on PET images with high SUV does not seem to be clinically use-
ful for predicting outcomes [57], the identification of high-risk subvolumes based on PET tex-
ture parameters or multiparametric imaging [58] may warrant further investigation.

Several limitations of our study merit comment. Because of the retrospective nature of the
study, a selection bias cannot be excluded. Our results related to the predictive value of SUV
entropy and entropy need to be independently validated in longitudinal studies. Another
caveat inherent in our study is the use of two methods (i.e., adaptive threshold and T45) for
tumor delineation. Further studies are necessary to clarify the potential impact of the tumor
delineation method on the prognostic significance of the indexes. Finally, we did not

Fig 3. Kaplan-Meier estimates of disease-specific survival (DSS) for PET/HCT (A-C) and PET/ACT (D-F) parameters segmented by T45. Kaplan-
Meier estimates of DSS rates stratified according to distinct cut-off values of PET/HCT and PET/ACT parameters. Cut-off values are shown in S2 Table. Log-
rank test P values are also reported.

doi:10.1371/journal.pone.0150509.g003
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specifically investigate the impact of the reconstruction algorithms on the texture features [45]
and their effect on survival.

Conclusions
The results of our study indicate that texture features obtained with PET/HCT and PET/ACT
showed limited differences and good levels of agreement regardless of the delineation method
used. We also showed that texture parameters from PET/ACT are clinically useful in the pre-
diction of survival in NSCLC patients and that SUV entropy and entropy are robust attenua-
tion correction methods.
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