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Acute myeloid leukemia (AML) is a common and aggressive hematological malignancy.

Acquisition of heterogeneous genetic aberrations and epigenetic dysregulation lead to

the transformation of hematopoietic stem cells (HSC) into leukemic stem cells (LSC),

which subsequently gives rise to immature blast cells and a leukemic phenotype.

LSCs are responsible for disease relapse as current chemotherapeutic regimens are

not able to completely eradicate these cellular sub-populations. Therefore, it is critical

to improve upon the existing knowledge of LSC specific markers, which would

allow for specific targeting of these cells more effectively allowing for their sustained

eradication from the cellular milieu. Although significant milestones in decoding the

aberrant transcriptional network of various cancers, including leukemia, have been

achieved, studies on the involvement of post-transcriptional gene regulation (PTGR)

in disease progression are beginning to unfold. RNA binding proteins (RBPs) are

key players in mediating PTGR and they regulate the intracellular fate of individual

transcripts, from their biogenesis to RNA metabolism, via interactions with RNA binding

domains (RBDs). In this study, we have used an integrative approach to systematically

profile RBP expression and identify key regulatory RBPs involved in normal myeloid

development and AML. We have analyzed RNA-seq datasets (GSE74246) of HSCs,

common myeloid progenitors (CMPs), granulocyte-macrophage progenitors (GMPs),

monocytes, LSCs, and blasts. We observed that normal and leukemic cells can

be distinguished on the basis of RBP expression, which is indicative of their ability

to define cellular identity, similar to transcription factors. We identified that distinctly

co-expressing modules of RBPs and their subclasses were enriched in hematopoietic

stem/progenitor (HSPCs) and differentiated monocytes. We detected expression of

DZIP3, an E3 ubiquitin ligase, in HSPCs, knockdown of which promotes monocytic

differentiation in cell line model. We identified co-expression modules of RBP genes in

LSCs and among these, distinct modules of RBP genes with high and low expression.

The expression of several AML-specific RBPs were also validated by quantitative
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polymerase chain reaction. Network analysis identified densely connected hubs of

ribosomal RBP genes (rRBPs) with low expression in LSCs, suggesting the dependency

of LSCs on altered ribosome dynamics. In conclusion, our systematic analysis elucidates

the RBP transcriptomic landscape in normal and malignant myelopoiesis, and highlights

the functional consequences that may result from perturbation of RBP gene expression

in these cellular landscapes.

Keywords: RNA binding proteins (RBP), myeloid development, acute myeloid leukemia (AML), hematopoietic stem

cells, leukemic stem cells

INTRODUCTION

Acute myeloid leukemia (AML) is characterized by uncontrolled
proliferation of immature blast cells and is one of the most
common forms of leukemia in adults. The blast cells arise
from leukemic stem cells (LSCs), which are derived from
hematopoietic stem cells (HSCs) that have accumulated genetic
mutations and epigenetic aberrations. Current chemotherapeutic
treatment includes drugs such as cytarabine and anthracycline,
which target the hyper-proliferative blasts but spare the LSCs,
thereby causing AML relapse with poor survival rates. The
transcriptional and epigenetic mechanisms underlying the
onset and progression of different cancers including AML are
being extensively evaluated (1, 2). Post-transcriptional gene
regulation (PTGR), which shapes the transcriptome per normal
differentiation cues and simultaneously prevents aberrant gene
expression has not been extensively studied in the context of
normal and malignant hematopoiesis. RNA binding proteins
(RBPs), which form ribonucleoprotein complexes (RNPs) are
the central players in PTGR and are involved in normal
development, perturbation of which results in various cancers,
including AML (3). Recently, interest in investigating the role of
RBPs as regulators of PTGR in normal myeloid differentiation
and their dysregulation in AML pathogenesisis has increased.
RNA metabolism, including RNA processing, transportation,
modification, and degradation, is largely coordinated by the
conserved RNA binding domains (RBDs) of the RBPs. Despite
the general role of RBPs in RNA biogenesis and processing,
recent findings suggest that a subset of RBPs are also expressed
in tissue-specific manner and are possibly involved in cell fate
decisions (3).

Pan-cancer analysis has revealed common driver mutations,
somatic copy number alterations (SCNA), and altered mRNA
expression of RBPs in various cancers including AML (4).
Neelamraju et al. has reported that 50% of RBPs and transcription
factors (TFs) are mutated in certain cancers. Furthermore,
the mutated RBPs are involved in cellular pathways such as
translation, splicing and apoptosis (4). Wang et al. has reported
cancer-type-specific driver mutations and SCNAs in RBPs (5).
Mutations in various RBPs splicing factors such as SRSF2, SF3B1
and U2AF1 have been reported to contribute to myelodysplasia,
AML and other blood-related disorders owing to altered binding
capacity and dysregulated splicing events (6–9). Mutations in
the ribosomal RBP, RPS14, contribute to myelodysplasia owing
to defective 18S rRNA processing (10). CRISPR/Cas9-mediated

screening of 490 RBPs in AML cell lines revealed 21 RBP
candidates that are upregulated in AML and are essential for
AML cell survival (11).

In the present study, we have systematically utilized high-
throughput transcriptomic data to identify RBPs that are
potential regulators of normal myeloid development and
leukemia. Toward this, we have collated a list of 1,734 RBPs and
analyzed their expression in hematopoietic stem cells (HSCs),
common myeloid progenitors (CMPs), granulocyte-macrophage
progenitors (GMPs), and monocytes during normal myeloid
development, and in leukemic stem cells (LSCs) and blasts during
leukemic cell development. We have identified distinct, as well
as co-expressing RBPs in the hematopoietic stem/progenitor
(HSPCs) and in differentiated monocytes. We further identified
a set of RBPs that were specifically associated with LSCs, and
network analysis revealed densely interconnected ribosomal RBP
(rRBP) gene hubs with significantly lesser expression in LSCs
than inHSCs/blasts. This observation suggests the dependency of
LSCs on altered ribosome dynamics to maintain a cancer-specific
translatome. We also experimentally validated the expression
of a RBP gene, DZIP3, in a cell line and showed that loss of
DZIP3 enhances monocytic differentiation. We also validated
the expression of four important AML specific RBP genes,
CLK4, ERI1, NSUN7 and RBM47. In conclusion, our study
aims to provide a comprehensive picture of the expression and
function of RBPs in myelopoiesis and leukemic transformation
and highlights their importance as potential candidates for
therapeutic intervention toward effective eradication of LSCs
in AML.

MATERIALS AND METHODS

RNA-Sequencing Data Curation and
Processing
A comprehensive list of 1,734 RBPs for this study was
curated from Gerstberger et al. (3) and Bhargava et al. (12)
(Supplementary Table 1). Gene expression data for HSCs
(n = 4), CMPs (n = 4), GMPs (n = 4), monocytes (n = 4),
LSCs (n = 8), and blasts (n = 11) were downloaded from
the Gene Expression Omnibus (GEO), from the dataset
GSE74246 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE74246) using NCBI sratoolkit (v2.8.2-1) (13). The
“.sra” files were converted to fastq format using the “fastq-
dump” function from sratoolkit. Quality checks were run
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using FastQC (v0.11.5) (www.bioinformatics.babraham.ac.uk/
projects/fastqc/), followed by adapter trimming using BBDuk
(v37.58). Sequence alignment was performed using STAR aligner
(v2.5.3a), with default parameters, and Gencode v 21, GRCh38)
(14), was used as the genome reference for annotation purposes.
Post-alignment, duplicates were removed using Picard (v2.9.4)
and the “bam” files were indexed using samtools (v1.4.1). To
generate a count matrix for each comparison, “featureCounts”
(v1.5.3) from the subread-1.5.3 package was used, with Q = 10
for mapping quality. These count files were used as input for
differential gene expression analysis with DESeq2 (v1.14.1) (15).
Read counts < 10 in all the samples were first removed and
the remaining data were regularized log (rlog) transformed
Statistical significance was calculated using default parameters,
and genes were selected based on log2 fold change greater/less
than 1.5 and adjusted p ≤ 0.05. We have compared the RBP
gene expression profile of HSCs with those of CMPs, GMPs and
monocytes (normal myelopoiesis) and those of LSCs with blast
for AML samples.

Analysis of Gene Expression Profiles
Principal component analysis (PCA) was performed using the
base R function “prcomp.” The first three principal components
explaining more than 50% variance were plotted using the
“scatterplot3d” (v0.3.41) package. Spearman correlation matrix
between cell types was calculated using the base “Rcor” function.
The “corrplot” (v0.84) package was used for clustering and
visualization. Pairwise correlation between genes was calculated
using the “Hmisc” (v4.1-1) package, and the results were used
as input for data clustering and visualization, which was done
using “pheatmap” (v1.0.10). The heat map for unsupervised
hierarchical clustering was plotted using “ComplexHeatmap”
(v1.18.1) package where the expression matrix was transformed
into z-score. UpSet plots were generated using “UpSetR” R-
package for generating intersections of RBP sets and sizes
between different modules and RBPs listed in different
databases (16).

Shortest Path Analysis
The undirected human protein-protein interaction (PPI) was
downloaded from the STRING database (v10.0) (17) and
only interactions with confidence score ≥ 500 were retained.
Differentially regulated genes (DRGs) were annotated with
Ensembl protein IDs (Ensembl Gene74) and assigned with
unique index IDs using custom Perl scripts. Using the R “igraph”
package, all possible shortest paths (SPs) of gene interactions
between the RBP genes [one RBP gene acts as source node and
another RBP gene acts as target node, with intermediate nodes
(genes) in a SP being either an RBP gene or a non-RBP gene] were
obtained. Subsequently, SPs were selected in which each of the
nodes (i.e., genes) in the path showed statistical significance (adj.
p≤ 0.05) in the difference in expression between LSCs and HSCs.
Networks of gene interaction from these SPs were created and the
degree of interaction of each node (gene) with other nodes in the
network was analyzed. Genes with the top 10 percentile of degree
values were identified as “hub” genes within each network.

Cell Culture and Transduction
Human leukemia cell line (HL60) CCL-240TM and U937
cells CRL-1593.2TM were obtained from the American Type
Culture Collection (ATCC) R© and cultured as per ATCC’s
recommendations. The cell density was maintained at 0.3–0.8
× 106 cells/ml. HEK293T cells were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) (Gibco, 31966047) media
supplementedwith 10% FBS (Gibco, 10270106) and 1%Penicillin
Streptomycin (Gibco, 15140122). Cells were seeded at density of
0.3× 106 cells/ml and were spilt upon reaching 80% confluence.

Lentiviral preparation was made in HEK293T cells after
transfection with the pLKO transfer plasmid bearing shRNA
sequences or the empty vector (Sigma) and packaging plasmids
(pMDG.2 and pCMVR) using a modified version of the Cal-
Phos (CaPO4) mammalian transfection kit (Clontech, 631312)
protocol and the method used by Salmon and Trono (18). Briefly,
the culture media was changed after 12 h, and the supernatant
containing the virus was collected after 24 h, followed by
membrane filtration using 0.45µm filter, aliquoting in smaller
volumes, and storage at −80◦C until further use. The U937 cells
(0.6 × 106 cells/ml) were transduced with the viral supernatant
overnight in the presence of polybrene (Sigma, TR-1003),
followed by media change. After 48 h, the cells were subjected
to puromycin (Sigma, P8833) selection for another 48 h and
harvested for protein/RNA or differentiation assays.

Differentiation Assay
HL60 and U937 cells (wild type or transduced) were treated
with 50 nM and 30 nM of 1α,25-dihydroxyvitamin D3 (Sigma,
D1530), respectively for 72 h to differentiate into monocytes,
which was assessed by scoring CD14+ cells (BD Biosciences,
560180) cells using CytoFlex S (Beckman Coulter). Data was
analyzed using CytExpert (Beckman Coulter).

Western Blotting
The crude lysate of U937 cells was prepared by disrupting the
cells via sonication (10 cycles) using a picobioruptor (Diagenode)
in RIPA buffer (140mM NaCl, 1mM EDTA, 1% Triton X-
100, 0.1% SDS, 0.1% sodium deoxycholate, 10mM Tris-Cl pH
8.0, supplemented with 2 X Roche protease inhibitor cocktail,
1mM PMSF, 2X neutrophil elastase inhibitor (Sigma, M0398).
Approximately, 70 µg protein was run in 4–12% Bis-Tris
gradient gel (Invitrogen, NP0322BOX), followed by semi-dry
transfer to polyvinylidene fluoride (PVDF) membrane (Bio-
Rad Transblot). Western blotting was performed using anti-
DZIP3 (Sigma, SAB2701600, 1:2,000) and anti-actin (GeneTex,
GTX26276, 1:5,000) antibodies. Horse radish peroxidase (HRP)-
conjugated anti-rabbit IgG and IR800-conjugated anti-mouse
IgGwere used as secondary antibodies and the blot was visualized
using a Chemidoc system (Bio-Rad).

RNA Isolation and RT-qPCR
For cell lines, total RNA was isolated using a kit from Zymo
Research (R2052) per the manufacturer’s protocol. The quality
and quantity of RNA were assessed using a spectrophotometer.
RNA was converted to cDNA using a cDNA synthesis kit
from Thermo Scientific (Maxima first strand cDNA synthesis
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kit for RT-qPCR; K1672) following the manufacturer’s protocol.
RT-qPCR was performed using SYBR mix (ABI, 4368577) in
Quant6 Studio from ABI Biosystems. The DZIP3 Ct values were
normalized to that of ACTB1 as an internal control. The relative
fold change of DZIP3 over the vector control was calculated using
the 2−11Ct method.

For samples from AML patients, total RNA was isolated
using TRIzol (Life Technologies) according to the manufacturer’s
recommendation. Genomic DNA contamination was removed
using RNase-free DNase I recombinant kit (Roche, 4716728001).
RNA amount was quantified and cDNA was prepared using
TaqMan reverse transcription reagents (Applied Biosystems,
8080234). Gene expression levels were determined using
quantitative PCR with SYBR Select master mix (Applied
Biosystems, 4472908) on a 7500 Fast real-time PCR system
(Applied Biosystems). The reverse transcribed cDNA was used
as the template. GAPDH was used as a housekeeping gene.
Relative expression levels were calculated using the 2−11Ct

method. Supplementary Table 10 shows the list of primers used
in this study.

Patient Cohort
Human (n= 28) bonemarrow (BM) aspirates (1–2ml each) were
obtained from Park Clinic, Kolkata, India, from newly diagnosed,
untreated patients. Informed consent was obtained from all
patients. The study protocol was approved by the Institutional
Human Ethics Committee and following the guidelines set by
the Council of Scientific and Industrial Research–Indian Institute
of Chemical Biology (CSIR-IICB) Institutional Review Board.
Sample collection was part of routine diagnosis, and the inclusion
criterion for this study was histopathological confirmation of
bone marrow aspirates or biopsies and immunophenotypic
analyses as reported earlier (19–21). BM aspirates were also
collected from age-matched normal individuals (n = 7) who
were pathologically negative for AML after obtaining informed
consent. Low density (1.077 gm/cc) nuclear cells from AML
BM or normal BM samples were isolated using Ficoll (Sigma)
separation and cryopreserved in liquid nitrogen.

RESULTS

RBPs in Myeloid Development
As key players of PTGR, RBPs modulate the fate of transcripts
and regulates translational output in multiple ways. The
landscape of RBP expression across different solid tumors
has been dissected, which shows their involvement in cancer
pathogenesis (4, 22). Tuschl’s group showed that the co-
expression patterns of RBPs change during fetal ovarian and
hippocampal development, suggesting that the PTGR by RBPs
are crucial during development However, similar studies have
not been performed for hematopoietic development and myeloid
neoplasms such as AML. To understand the role of RBPs in
normal and malignant myelopoiesis, we have compiled a list
of 1,734 RBPs from two studies described in the Methods,
where the authors have classified RBPs as bona fide RBPs, based
on their domain architecture, evolutionary significance, type of
RNA-RBP interaction and their functions (3, 12). The workflow
schema for gene expression analysis of RBPs in normal and

malignant myelopoiesis is summarized in Figure 1A. Briefly, the
myeloid lineage of human hematopoiesis originates from HSCs
and differentiates into CMP and GMP progenitor populations,
which give rise to mature monocytes and granulocytes. However,
in AML, owing to a differentiation block, leukemic blast cells
derived from LSCs do not differentiate further and accumulate
within the bone marrow. The expression profile of the curated
list of 1,734 RBPs was extracted from the high-throughput
transcriptome data of GSE74246 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE74246) for the above-mentioned
cell types (13). Out of the starting set of 1,734 RBPs, 1,661
RBPs were detected in our analysis of the RNA-sequencing
data (Supplementary Table 2), which were subsequently used
for downstream analysis in normal and malignant myeloid
cells (Figure 1A).

RBPs regulate transcript levels within cells in multiple ways
and perform various functions related to RNA metabolism.
As described by Gerstberger et al., the curated RBPs were
subclassified as mRNA-binding proteins (mRBPs), ribosomal
proteins (rRBPs), pre-rRNA-binding proteins (rrRBPs), tRNA-
binding proteins (tRBPs), small nuclear RNA (snRNA)-binding
proteins (snRBPs), small nucleolar RNA (snoRNA)-binding
proteins (snRBPs) and non-coding RNA-binding proteins
(ncRBPs), RBPs with more than one type of RNA as an
interacting partner are categorized as “diverse” RBPs, while RBPs
that harbor more than one conserved RBD, the interacting RNA
partner of which in the human RNA-protein interactome is not
known are categorized as “unknown” [(3, 12); Figure 1B].

Recent studies have shown that somatic copy number
alterations (SCNA), mutations, and alterations in the expression
of RBPs potentially contribute to tumorigenesis (4, 5). We
attempted to determine the abundance of genetic aberrations
in genes encoding RBPs in AML patients. We retrieved data
on genetic alterations associated with the 1,734 RBPs, in 162
patients with AML, from cBioPortal for Cancer Genomics
database (https://www.cbioportal.org/) [(23, 24); Figure 1C].
Deep deletions were the most common form of genomic
alteration in all RBP classes; snoRBP genes, however showed
the highest number of gene amplification. We also curated
information regarding gene mutations in these RBP genes from
COSMIC database (https://cancer.sanger.ac.uk/cosmic), and
observed that 82 of these RBP genes possess mutations that drive
the cancer phenotype (Figure 1D and Supplementary Table 3).
We compared our list of RBPs with the genes reported to be
involved in AML with the LGL database (http://soft.bioinfo-
minzhao.org/lgl/) and identified 134 common genes distributed
across various sub-classes of RBPs (Figure 1E). Next, we detected
an overlap of 43 RBP genes that are reported to be frequently
mutated in cancer between the COSMIC database and the RBP
genes involved in leukemia identified via literature mining in
the LGL database (Figure 1F). This analysis confirms that the
RBP genes are frequently altered in patients with AML and
other cancers.

Expression of RBPs During Myeloid
Differentiation
RBPs perform both diverse and redundant functions in
regulating PTGR. However, some RBPs have been reported
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FIGURE 1 | Overview of RNA binding proteins (RBPs). Flowchart showing hematopoietic hierarchy during normal differentiation and leukemia, followed by the

systematic work plan adapted in this study to understand the potential role of RBPs in normal and malignant hematopoiesis (A). Pie graph showing the classification

of 1,734 RBPs based on their function and RNA counterparts, such as mRNA binding (mRBP), ribosome (rRBP), tRNA binding (tRBP), rRNA binding (rrRBP), ncRNA

binding (ncRBP), snRNA binding (snRBP), and “diverse” targets, and RBPs with “unknown” interacting partner (B). Stacked bar plots showing genetic alteration

frequency of RBP functional classes in AML TCGA dataset comprising of 162 patients (C). Bar plot showing distribution of 82 RBPs across different cancers identified

from Cosmic database; TSG (tumor suppressor gene) (D). Stacked bar plot depicting RBP subclasses reported in LGL database (E). Venn diagram showing overlap

between RBP genes identified from COSMIC database and LGL database (F).

to be expressed in a tissue/cell type-specific manner (3).
Hence, we were interested in correlating mRNA expression
patterns/distribution of transcription factors (TFs) and RBP
subclasses across the spectrum of normal and malignant myeloid
cells. We compared the gene expression patterns of 1,639
human TFs, which are known to be expressed in lineage
and cell type specific manner [(25); Supplementary Table 4]
with that of RBPs in normal and leukemic cell types and
observed that the overall median gene expression of RBPs
was higher than that of TFs (Figure 2A). Comparison of
the curated list of RBPs with that of TFs revealed a small

overlap of 1.4% (Supplementary Figure 1A). Among the RBP
subclasses, ribosomal RBPs (rRBPs) were expressed more
than any other class of RBPs, possibly due to their role
in translation related processes. We also observed that the
transcript read counts of RBPs were low in monocytes
(Supplementary Figure 1B). Interestingly, the overall read
counts of all subclasses of RBPs in LSCs and blasts were similar
to those in HSPCs (Supplementary Figure 1B).

Next, we performed PCA with the gene expression matrices
for the TF and RBP genes to investigate the variance relationship
in the four normal myeloid cell states (HSC, CMP, GMP
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FIGURE 2 | Comparative gene expression profiles of transcription factors (TFs) and RBPs in normal and malignant myelopoiesis. Box-whisker plot showing gene

expression patterns of TFs and RBPs across normal myeloid differentiation (left panel) and leukemia (right panel). The p-values (Wilcoxon test) for the comparisons

between TFs and RBPs for each cell type was <2.22e–16 (A). Principal component analysis (PCA) showing the first three components for normal myeloid cell types

(H-HSC, C-CMP, G-GMP, and M-monocytes) (B,D) and acute myeloid leukemia (L-LSC and B-Blast) (C,E) for TFs (B,C), and RBPs (D,E). Bar graphs showing

percentage cumulative variance in the expression patterns of TFs and RBPs in normal myeloid differentiation and AML (F). Spearman correlation matrix showing heat

map to depict pairwise correlation coefficients for TFs and RBPs in normal and malignant myeloid cells, respectively (G,H). The correlation plots and PCAs are based

on gene expression cohort of 1,639 TFs, and 1,661 RBPs. The AML samples (LSCs and Blast) were compared to normal HSCs.

and monocyte) and the two leukemic cell states (LSCs and
blasts). The first three components of PCA scores incorporate
maximum variance, which segregated different normal myeloid
and leukemic cells based on TF and RBP gene expression. The
expression patterns of TFs and RBPs yielded distinct clusters

between HSCs, progenitors and differentiated monocytes in
normal myeloid development and between HSCs and LSCs
(Figures 2B–F). However, the leukemic blast cells did not form
distinct clusters and were scattered in different components for
both TF and RBP PCAs (Figures 2B–E). This result suggests
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that the transcriptional program goes “haywire” during LSC to
blast transformation (26). We further observed that the RBP
genes show distinct clusters between HSCs, CMP and GMP,
with higher cumulative variance compared to TFs in component
1 (Figures 2D,F). Finally, we computed pairwise Spearman’s
rank correlation along with hierarchical clustering to determine
the correlation between normal and AML cell types in terms
of gene expression. The correlation plots between TFs clearly
distinguished monocytes from HSPCs in normal myeloid cells,
whereas HSCs and LSCs showed distinct correlation in the AML
cohort. On the other hand, RBPs showed a higher correlation
coefficient; however, compared to TFs, the distinction between
the clusters was reduced in normal and AML myeloid cells
(Figures 2G,H). Although RBPs perform ubiquitous functions,
distinct cell type-specific expression clusters were still observed
during myeloid differentiation. These results indicate that
analysis of the expression profiles of RBP genes may provide
important clues for understanding hematopoiesis and leukemia.
In addition, this analysis suggested that RBPs are expressed in cell
type specific manner both in normal myeloid development and
in leukemia.

RBP Gene Expression Can Distinguish
RNA Dependent Processes During Normal
Myeloid Differentiation
To understand changes in RBP gene expression during normal
myelopoiesis, we have used two approaches, differential gene
expression (DGE) analysis and gene-gene correlation analysis.
DGE has been the method of choice to dissect transcriptome
data; its major drawback is that only genes that are differentially
expressed with an arbitrary fold change cut-off are considered
relevant. Furthermore, DGE considers genes as individual
independent functional units. In contrast, co-expression analysis
is based on gene-gene correlation, and has been widely used to
identify co-expressing/associating modules. Genes within a co-
expression module, based on their co-relation indicates, that they
might work in concert or possess opposing functions in similar
biological processes (27, 28).

Using the co-expression analysis, we have identified four
distinct modules, I–IV, comprising 206, 273, 167 and 144
RBPs, respectively (Figures 3A–F and Supplementary Table 5).
Expression of these RBPs in each module is shown in a heat
map, which clearly demarcates the distinct cell type specific
expression patterns of the RBP genes in different modules
(Figure 3B). Furthermore, to understand the expression pattern
of the modules within different cell states, we used non-
parametric Wilcoxon rank test and plotted box-whisker graphs
depicting the p-values for each comparison (Figures 3C–F). We
observed that the expression of RBP genes was significantly
higher in progenitors (CMP and GMP), HSC/progenitors and
monocytes in modules I, II and III respectively, indicating
their functional significance in a cell-type specific manner.
Surprisingly, module IV consists of RBP genes with no significant
difference in median expression. Pathway analysis using the
reactome database (https://reactome.org/) revealed that RBPs
in module IV were associated with RNA metabolism and

translation-related processes (data not shown). Furthermore,
we compared the expression of different classes of RBPs in
the various modules. In module I, the majority of the classes,
includingmRBPs, rrRBPs and tRBPs, showed variationwithin the
stem/progenitor compartment, with higher median expression in
CMP and GMP than in HSCs and lower median expression in
monocytes, emulating the overall module I expression pattern.
Similarly, subclasses within module II are more consistent, with
a comparable median in the stem progenitor compartment
and low expression in monocytes. rrRBPs and tRBPs are
the major contributors to module III and all the subclasses
show higher expression in monocytes than in HSC, CMP and
GMP (Figure 3G).

Simultaneously, we performed DGE analysis where we
systematically compared HSCs with CMPs, GMPs and
monocytes to identify differentially expressed RBPs (≥1.5
log2 fold change and false discovery rate (FDR) <0.05; ≥1.2
log2 fold change was considered for HSC and CMP comparison)
(Supplementary Table 6). Unsupervised hierarchical clustering
of DGE revealed four separate clusters (C1-C4) of RBPs with
distinct expression patterns (Supplementary Figure 2A). The
clusters have been named according to the type of myeloid
cells with significantly higher RBP expression than other
cell types in that particular cluster. C1, the hematopoietic
stem/progenitor-specific cluster, consists of 109 RBPs and
the C2, monocyte-specific cluster, contains 88 RBPs. The
two smaller clusters, C3 and C4, with subsets of 12 RBPs
showed progenitor-specific gene expression patterns, suggesting
that these RBPs are potentially important for the progenitor
phenotype (Supplementary Figure 2B). We compared the list
of RBPs identified in a specific module with its corresponding
cluster (by definition), to identify independent and overlapping
information from co-expression analysis and DGE analysis
(Supplementary Figures 3A,B). The majority of the genes
identified in DGE clusters overlapped with the corresponding
module. RT-qPCR validation of selected RBPs (from module I,
II and III) in the HL60 cell line differentiation model showed
that the expression patterns of several RBPs were similar to
RNA-seq data (Supplementary Figure 4). Our systematic
bioinformatics approach for understanding the potential
functions of RBPs during normal myeloid differentiation led
to the identification of several cell-type specific RBP. Next, we
evaluated the functional relevance of these RBP genes within
specific modules by curating information regarding these genes
from existing literature.

Functional Significance of the Distinct
Expression of RBPs in Hematopoietic Stem
Cells and Progenitors
Modules I (206 RBP genes) and II (273 RBP genes) consisted
of RBPs specifically expressed in the HSC, CMP and GMP
compartments, such as the previously reported hematopoietic
stem cell regulators Musashi-2 (MSI2) and pseudouridylate
synthase 7 (PUS7). MSI2 is highly expressed in HSCs and its
expression decreases during differentiation into mature cells
(29). In a similar manner, we observed a gradual reduction in
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FIGURE 3 | Normal myeloid cell-specific modules obtained from gene-gene correlation studies. Heat map showing Spearman correlation plot based on RBP gene

expression values, and the black boxes show four modules that were considered for further studies (A). Heat map representation of unsupervised clustering of RBP

gene expression in different modules (B). Box-whisker plots represent overall gene expression patterns of RBPs in HSC, CMP, GMP, and monocytes across four

modules. Wilcoxon rank test shows p-values for each comparisons (C–F). Box-whisker plots represent the gene expression pattern of RBP classes within modules I,

II, and III; p-values for comparing the difference in each RBP class for different cell types is listed in Supplementary Table 5 (G). Expression profile of DZIP3 was

plotted from the bloodspot database using BLUEPRINT RNA-seq data (H). Genome browser plots of DZIP3 from RNA-seq data analyzed in this paper

(I). Experimental workflow to identify the role of DZIP3 in U937 promyelocyte differentiation (J). U937 cells were treated with 30 nM vitamin D3 for 72 h and DZIP3

transcript levels were assessed using qRT-PCR and plotted relative to actin levels in two biological replicates (K). U937 cells were transduced with lentivirus containing

shRNA against DZIP3, and 48 h post-puromycin selection, knockdown was confirmed both at the transcript level using qRT-PCR (relative to actin) (L) and at protein

level using immunoblotting; actin was used as the loading control (M) from three independent experiments; error bars are mean ± s.e.m. *P < 0.05 per two-tailed

Student’s t-test. Representative histograms showing expression of monocyte-specific marker CD14 of three independent experiments. CD14 expression was

assessed using flow cytometry, after vitamin D3 induction for 72 h in, vector control (VC) U937 (upper panel), and shdzip3 transduced U937 (lower panel) (N).
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the expression of MSI2 as HSCs differentiated into monocytes
(log2 FC=−3.8), supporting their role in stem cell maintenance
(Supplementary Figure 2C). Similar to MSI2, PUS7, a tRBP, is
expressed more in HSPCs (log2 FC = −1.8), which decreases
upon differentiation, strongly indicating its involvement
in maintaining cell identity by regulating translation (30)
(Supplementary Figure 5A).We also identified TLR3 and
MEX3A as potential candidates for HSPCs maintenance
and proliferation (Supplementary Figure 2C) which were
downregulated with log2 FC of −7 and −7.8, respectively).
In the developing brain, TLR3 is expressed in neuronal
stem/progenitor cells and acts as a negative regulator of their
proliferation by modulating sonic hedgehog signaling (31, 32).
In contrast, MEX3A is required for maintaining intestinal stem
cell homeostasis and it hinders differentiation by negatively
regulating the expression of the TF, CDX2 (33, 34). Interestingly,
CDX2 is ectopically expressed in patients with AML but not in
HSPCs of normal individuals (35). These observations indicate
that MEX3A and CDX2 are involved in normal and malignant
myelopoiesis, which require further investigation.

Functional Significance of the Distinct
Expression of RBPs During Monocyte
Differentiation
The monocyte-specific module III consists of 167 RBP genes,
the expression of which increases concomitantly from HSPCs
to monocytes (Figures 3E,G and Supplementary Figure 5). The
regulatory RBPs enriched in this module has been previously
reported to be involved in cellular differentiation during
developmental processes. For example, SMAD7 (log2 FC = 2.6),
a pleiotropic RBP that negatively regulates TGF-β signaling
promotes myeloid commitment at the expense of lymphoid cells
in cord blood multipotent progenitor cells that are enriched
in this cluster [(36, 37); Supplementary Figure 5B]. ZFP36L1
(log2 FC = 3.4), a member of the ZFP36 zinc finger protein
family member is a positive regulator of monocyte/macrophage
differentiation (Supplementary Figure 5C). Mechanistically, it
binds to AU-rich elements in the 3′ untranslated region (UTR)
of the CDK6 mRNA and represses CDK6 expression, which is
a negative regulator for monocytic differentiation (38). RNAse
I and IV endoribonuclease and DICER1 were the other RBPs
enriched in monocytes (Supplementary Figures 2C, 5D,E).
HELZ and RRP12 are among the RBPs that potentially regulate
monocytic differentiation were identified in this study (log2 FC of
0.6 and 2.01, respectively), but have not been reported previously
for myeloid differentiation (Supplementary Figures 2C, 5F). We
also detected RBP genes essential for immune-related functions
of monocyte, such as IFIT2 (log2 FC= 1.9), which recognizes the
5′-triphosphate RNA and is required for generating an antiviral
response [(39); Supplementary Figure 5G]. TLR7/TLR8 (log2
FC = 11 and 9.7, respectively comparison), which recognizes
single-stranded viral RNAs and OAS1/OAS3 (log2 FC of
3.5 and 1.2, respectively), which recognizes double-stranded
RNAs, the that are crucial for host immune responses [(40,
41); Supplementary Figures 5H,I]. Diverse classes of RBPs
such as RNASE1 and RNASE4 (log2 FC = 4.8), which are

associated with anti-viral and immune responses, are also
upregulated in monocytes [(42); Supplementary Figures 5H,I]
Taken together, these data suggest that cell stage-specific
expression of key regulatory RBPs can potentially modulate
myeloid differentiation program.

DZIP3, a Potential Hematopoietic Stem
Cell Factor
DZIP3 is a multifunctional RBP that contains RNA binding and
E3 ubiquitin ligase RING domains. It represses differentiation-
responsive genes in mouse embryonic stem cells by mediating
changes in 3D chromatin conformation via H2AK119
ubiquitination (43). In our study, we observed DZIP3 to be
a part the of HSPCs module II and is highly expressed in
HSPCs and its expression decreased as HSCs differentiate into
monocytes (2.3 log 2 fold upregulated). We selected DZIP3 for
experimental validation as it has diverse functions as well as
context-dependent roles as an epigenetic factor, transcriptional
and post-transcriptional regulator. Importantly, the function
of DZIP3 in hematopoiesis has not been investigated. We
checked the expression of DZIP3 in “BloodSpot” database using
BLUEPRINT RNA-seq data with default parameters, which
showed a similar gene expression pattern [(44); Figure 3H].
Integrative genome plots of our analyzed RNA-seq further
confirms this observation (Figure 3I). To validate the role of
DZIP3 in cell proliferation and differentiation, we have used an in
vitroU937 promyelocytic leukemic cell line-based differentiation
model. The U937 cells were differentiated into monocytes by
inducing the cells with vitamin D3 for 72 h (Figure 3J) and
the level of DZIP3 transcripts in uninduced and differentiated
U937 cells was determined. We observed that DZIP3 expression
decreases upon induction, which corroborated the RNA-seq data
of the primary cells where DZIP3 expression decreased in more
differentiated cell progenies (Figure 3K). To understand the
functional relevance of DZIP3 in HSPCs, we knocked down (KD)
DZIP3 using a lentivirus-based shRNA system in U937 cells and
confirmed the reduction of DZIP3 expression at both transcript
and protein level (Figures 3L,M). The KD cells were subjected to
vitamin D3-induced differentiation along with their respective
controls. Cells expressing CD14, a monocytic differentiation
marker, were scored using fluorescence-activated cell sorting
(FACS). We observed significant enhancement of CD14 (2-fold)
expression in DZIP3-depleted cells compared to the vector
control cells (Figure 3N). The uninduced cells did not show any
difference in CD14 marker expression. Our observations clearly
indicate a role of DZIP3 in HSPCs maintenance, as loss of DZIP3
results in abrogation of the differentiation block upon induction.

Expression of RBPs During Leukemic
Transformation
LSCs sustain their leukemic nature by rewiring transcriptional
and post-transcriptional programs and pose a major hurdle
during therapeutic interventions. Considering the complexity
of the RBP expression profile during normal myeloid
differentiation, it is apparent that dysregulation of this axis
will contribute to leukemic transformation and maintenance.
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FIGURE 4 | AML specific modules obtained from gene-gene correlation studies. Heat map showing Spearman correlation plot based on RBP gene expression values,

and the black boxes show two major modules that were considered for further studies (A). Box-whisker plots represent overall gene expression patterns of RBPs in

HSC, LSC, and blasts across two modules Wilcoxon rank test shows p-values for each comparisons (B,C). Unsupervised clustering of RBP gene expression in

different modules (D). Box-whisker plots showing expression of different classes of RBPs in module I (left) and module II (right); p-values for comparing the difference

in each RBP class for different cell types is listed in Supplementary Table 7 (E). qRT-PCR validations of the expression of selected RBPs, CLK4 (p = 0.0018), ERI1

(p = 0.1892), NSUN7 (p = 0.0001), and RBM47 (p = 0.1869) in samples from AML patients together with age-matched normal samples as controls (F). Genome

browser plots of CLK4, ERI1, NSUN7, and RBM47 in individual samples of HSC, LSC, and blasts (G). Box-whisker plot depicting the expression profiles of the same

genes (H) in AML cohorts of TCGA and GTEx visualized in a GEPIA2 platform using default parameters (one-way ANOVA, p < 0.01). *p < 0.01.

Recent reports showed that dysregulation of the PTGR networks
on RBP genes contributes to oncogenesis in leukemia (9, 11). To
understand the RBP gene expression landscape during leukemic
transformation, we performed both gene-gene correlation
and DGE analysis in the context of normal myelopoiesis and
compared HSCs with LSCs and leukemic blast cells. Gene-gene
correlation studies revealed two major modules, I (303 genes)
and II (394 genes) (Figure 4A and Supplementary Table 7).

The RBP genes were extracted from the modules and their
expression was plotted, which revealed that module I consisted
of genes enriched in LSCs compared to HSCs and blasts,
while module II consisted of genes that were downregulated
in LSCs (Figures 4B,C). Heat map representation of the RBP
genes from modules I and II showed high and low expression
in LSCs respectively, and suggested that RBPs are involved
in leukemogenesis (Figure 4D). We further analyzed the
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representation of different classes of RBPs in modules I and
II to identify how the expression of different classes of RBP
genes compare across HSCs, LSCs and blasts (Figure 4D).
Interestingly, the median expression values of all RBP classes
followed a trend similar to that shown in the box plots generated
from average RBP expression values (Figures 4B,C,E).

Next, we validated the expression of selected RBPs, CLK4,
RBM47 and ERI1 from module I, and NSUN7 from module
II, in samples from patients with AML (n = 28) using qRT-
PCR and compared the results with those obtained using
age-matched normal bone marrow samples (Figure 4F). The
results of qRT-PCR corroborated the expression pattern of these
genes observed in the RNA-seq results (Figure 4G). Literature
survey indicated that CLK4 and RBM47 are involved in RNA
splicing, NSUN7 methylates enhancer RNAs, and ERI1 is a 3′-5′

exoribonuclease (45–47). CLK4 and NSUN7 showed significant
upregulation and downregulation in samples of patients with
AML, respectively, whereas ERI1 and RBM47 showed moderate
changes (Figure 4E). The moderate differences in the expression
levels of these genes between the results of qRT-PCR and RNA-
seq can be attributed to the cellular heterogeneity within patient
samples, which comprises blast cells, or to the purity of the FACS-
sorted samples that were used for RNA-sequencing. Furthermore,
we analyzed the expression of these genes in TCGA and GTEx
cancer data sets from Gene Expression Profiling Interactive
Analysis 2 (GEPIA2) (http://gepia2.cancer-pku.cn), along with
the corresponding control RNA-seq data using default parameter
(48). Results showed that all the genes followed similar expression
pattern with significant upregulation of CLK4, ERI1 and RBM47
in AML cases compared to that in the control (Figure 4H).

DGE analysis of RBPs where HSCs were compared with
LSCs and blasts revealed 332 differentially expressed RBPs (log2
fold change ≥1.5 and FDR ≤ 0.05) forming four distinct
clusters based on expression (Supplementary Table 8). Heatmap
representation of unsupervised clustering of these genes revealed
four different clusters of genes (Supplementary Figure 6A).
Boxplots of Cluster C1 (30 RBPs) showed an increasing trend
in the mean expression of RBPs from HSCs to LSCs and
blasts. Cluster C2 (37 RBPs) was enriched in LSCs and Cluster
C3 (48 RBPs) was enriched in RBPs expressed in HSCs.
However, the largest Cluster C4 (217 RBPs) consisted of RBPs
specifically downregulated in LSCs (Supplementary Figure 6B).
This distinct pattern suggested extensive dysregulation of
RBP gene expression during leukemic transformation. Overlap
between RBP genes in the co-expression modules and the
corresponding clusters are shown in Supplementary Figure 7.

AML-Specific RBPs
We further investigated the RBP expression patterns of
LSCs from module I, which contains a set of genes that
are highly expressed in LSCs compared to in HSCs and
blasts (Figures 4B–D). We detected expression of RBP genes
such as CLK1, CLK4, TRIM71, and DYNLL1 (1.6, 1.6, 1.75,
and 2 log2 fold upregulated in LSCs, respectively), which
have not been previously reported to associated with LSCs
(Supplementary Figure 6C). The splicing kinases CLK1 and
CLK4 were highly expressed in all the replicates of LSC,

suggesting that this battery of splicing kinases might play
essential roles in regulating the LSC-specific splice variants.
Literature suggests that among these genes, TRIM71, encoding
an E3 ubiquitin ligase, is highly expressed in undifferentiated
ESCs and interacts with miR-302 and miR-290 to promote
G1-S transition resulting in increased proliferation of ESCs
(49). DYNLL1 is reported to be a critical regulator of B cell
development and its overexpression is linked to Myc-driven
B-cell lymphoma in a mouse model (50, 51). The biological
functions of TMR71 and DYNLL1 in leukemic stem cell or AML
blast cells are yet to be studied and hence these genes are potential
candidates for further investigation.

The larger module II contained genes that are less enriched
in LSCs, which was expected considering their significantly
higher expression in HSCs and blasts. This module included
RBP genes such as SETD1A, PUF60, TRAP1 and XAB2 (3.04,
2.9 and 3.7 log2 fold downregulated in LSCs, respectively)
(Supplementary Figure 6C). SETD1A is a H3K4 methyl
transferase harboring an RNA recognition motif and is essential
for maintaining homeostasis of HSCs and for activation of
DNA repair genes (52, 53). Other important candidates such
as splicing factors PUF60 and XAB2 and TRAP1, a chaperone
upregulated in various cancers and essential for maintaining
mitochondrial homeostasis (54) were downregulated in LSCs.

RBP genes upregulated in blast cells compared to HSCs
included PIWIL4, LGALS3, and CPEB4 (3.5, 4.2 and 1.8 log2 fold,
respectively) (Supplementary Figure 6C). PIWIL4 is involved in
silencing of transposable elements via epigenetic modifications.
Lack of PIWIL4 has been shown to induce differentiation in
mouse erythroid leukemia (55). LGALS3 or galactin 3 is an
endogenous lectin and regulates RNA splicing (56). A clinical
study conducted on a cohort of 280 patients revealed negative
correlation of galactin3 expression with poor outcome and
overall survival (57). CPEB4 is essential for terminal erythroid
differentiation, where it represses translation of several mRNAs
including CDK6 and its own mRNA in a feedback loop (58).
However, upregulation of CPEB4 in blasts suggests that it might
play antagonistic roles in leukemic conditions. Another putative
regulatory RBP, HEXIM4, was also found in this cluster and
has been reported to interact with the long non-coding RNA
NEAT1 to form RNP complexes and regulate dsDNA-mediated
innate immune responses and activation of type-I interferon
(IFN) genes (59). Overall, RBPs enriched in this cluster may be
important for understanding the mechanisms of differentiation
block and uncontrolled proliferation, which are characteristic of
blast cell physiology.

RBP genes that are enriched in module II may plausibly
be involved in maintaining cellular functions in normal
myelopoiesis and are dysregulated in leukemia. Examples
include genes encoding ribosomal proteins RPL11, PSIP1
and membrane protein PTRF (1.54, 0.7, and 3.65 log2 fold
downregulated in LSCs compared to in HSCs, respectively)
(Supplementary Figure 6C). RPL11 is a ribosomal protein and
PSIP1 forms a fusion transcript with NUP98 in myelodysplastic
syndrome with t(9, 11, 60). Deletion of PTRF increases the
number of LSKs and LT-HSCs in mice; however, these HSCs
could not differentiate into mature cells (61). Overall, this
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suggests that RBP expression is significantly altered in normal
hematopoiesis and leukemia, as indicated by the dysregulation in
ribosomal and rRNA-related RBPs in the LSC compartment.

Network Analysis Reveals Hubs of
Ribosomal RBP Genes in LSCs
Gene interaction networks provide systematic understanding
regarding the mechanisms via which genes communicate with
each other and relay functional information within the network.
The shortest path approach is used in these gene networks to
prioritize vertices i.e., hubs which might be important in the
biological system to predict functional modules and pathways
and to predict functions of the vertices, i.e., genes within the
network (62–66). To understand how RBP genes communicate
with one another, we performed network analyses of gene
interactions and traced the shortest paths of interactions between
two RBP genes. The resulting networks consisted of the shortest
possible routes via which RBP genes can communicate with
each other via several intermediate genes (or nodes), many of
which were non-RBP genes. We identified the “hub” genes with
significant central importance in the network, which were highly
connected to many other genes within the interactome. The
higher the degree of connectivity of a hub gene, the more is
its influence within the network and on the various associated
biological processes. Many of the RBP genes were identified as
hub genes in the networks and were shown to interact with
multiple non-RBP genes (Supplementary Table 9). Several of
these hub RBP genes have also been reported as important
functional regulators of normal and malignant hematopoiesis
(9). We highlighted the direct interacting neighbors (also called
the 1-hop neighbor) of hub RBPs in the networks. Majority
of the hub RBPs consisted of ribosomal RBPs (rRBPs) (30
out of 55 total hub RBPs), which included both cytoplasmic
large and small ribosomal subunit proteins (Figures 5A–C).
Heat map and box-whisker plots of all the ribosomal RBPs
present in module II depict uniform downregulation of these
RBPs in all individual LSC patient samples compared to
in HSCs (Figures 5D,E). Hence, we mined the literature to
understand how rRBPs potentially affect normal myelopoiesis
for leukemic transformation. Cai et al. (67) have shown that
RUNX1 deficiency is associated with proliferative advantage for
HSPCs, transforming them into pre-leukemic stem cells. Further
analysis revealed that RUNX1 directly binds to the promoter
of ribosomal genes and activates them. Thus, in the absence
of RUNX1, ribosome biogenesis is disrupted, which decreases
translational rate along with acquisition of resistance to genotoxic
and endoplasmic reticulum stress (67). This study provides direct
evidence that low expression of ribosomal genes observed in data
might correspond to reduced ribosomal biogenesis and protein
synthesis. This could be a general mechanism for acquiring stress
resistance by LSCs of different origins or genetic backgrounds.
Next, we asked how the expression profiles of representative hub
rRBPs are downregulated in LSCs of the larger AML cohort.
We observed significant downregulation of RPL35 and RPL36,
structural proteins of the large ribosomal subunit, in TCGA and
GTEx data compared to the controls in the GEPIA2 platform

using default parameters [(48); Figure 5E]. We also observed
a similar trend of downregulation of ribosomal and splicing
related hub RBPs namely, RPL7A, RPL11, RPL18 and RPS11
compared to that in the control (Supplementary Figure 8A).
HSCs are characterized by lower protein synthesis rate than
committed progenitors and differentiated cells (68). LSCs might
utilize similar mechanisms for their survival and contribute to
disease relapse.

In addition to rRBPs, a significant number of RBP genes
related to the splicing machinery (14 out of 55 total hub RBPs)
were identified in network analysis. The heat map and box
whisker plot show low expression of these genes across all the
LSC samples with respect to HSCs (Figures 5F,G). We wanted to
see if these splicing factors which were identified as hubs show
any significant difference between HSC and LSC comparison.
Therefore, we categorized hub genes from HC2 into low and
high expression groups, which were determined from the lower
and upper interquartile range and non-parametric test for both
the groups. We found 8 RBP genes in the low expression
group show significant differences in the mRNA levels with
p < 0.05. These RBPs were associated with either U1 (SNRPA
and SNRNP70) or U2 (SF3A2, SF3B5 and SNRPB) snRNP
complex, which is essential for all U1/U2-dependent splice site
recognition of the spliceosomal complex (69). We interrogated
the AML data cohort of TCGA and GTEx in GEPIA2 platform
and observed significant downregulation of SF3B5 and SNRPB
in AML patients compared to control (one-way ANOVA,
p < 0.01) (Figure 5H). We also observed a decreasing trend in
the median expression of SF3A2, CD2BP2, SNRPA and U2AF2
(Supplementary Figure 8B). Similar analysis was carried out
with RBPs present in module I, where most of the RBPs have high
mRNA levels in LSC. The hub RBPs present from module I were
of different classes as shown in Supplementary Figure 9.

DISCUSSION

In this study, we have elucidated a comprehensive landscape
of RBP expression across myeloid developmental stages and
discussed their dysregulation during leukemic transformation.
Similar to transcription factors, RBP expression profiles can
segregate normal myeloid cell types (HSCs, progenitor cells
and monocytes) and leukemic cells (HSCs, LSCs and blasts),
indicating that their functions are myeloid development stage-
specific. We performed DGE and gene-gene correlation analysis
to uncover the distinct RBP gene expression profiles in normal
myelopoiesis and AML. The unbiased gene-gene correlation
analysis revealed cell/stage-specific modules containing different
classes of RBPs and provided information regarding both their
abundance and expression patterns in different myeloid cells.
This analysis revealed several RBPs, the functions of which have
been previously implicated in normal myelopoiesis and AML
biology. At the same time, we also detected RBPs that have
not been implicated in normal or malignant hematopoiesis and
may therefore act as novel candidates for further investigations
regarding their function in myelopoiesis. Network analysis
identified several rRBP genes as hubs within the gene interaction
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FIGURE 5 | RBP interaction network and ribosomal RBP hubs in LSC. Shortest path gene interaction network of RBP and non-RBPs from module II; RBP hub genes

are highlighted with bold yellow borders, and the color of the nodes depict the mode of expression of the gene in LSC compared to in HSC. Red denotes upregulated

and blue indicates downregulated in LSC compared to HSC. Magnified view of a network depicting cluster of ribosomal proteins (hub-cluster 1 as HC1) and splicing

related RBPs (hub-cluster 2 as HC2) (A). Bar plot showing the percentage of hubs for different classes of RBPs; “n” represents number of RBPs (B) Heat map

showing ribosomal RBP gene expression (n = 30) across individual LSCs compared to in HSCs (averaged expression values) (C). Box-whisker plot (Wilcoxon rank

test p-values) depicting overall downregulation of ribosomal proteins in LSCs (D). Box-whisker plots showing significant downregulation of ribosomal hub RBPs

RPL35 and RPL36 in AML from TCGA, GTEx data cohort visualized in GEPIA2 using default parameters; (one-way ANOVA, p < 0.01) (E). Heat map and box-whisker

plot (Wilcoxon rank test p-values) showing downregulation of splicing related RBPs (n = 14) in LSCs compared to HSCs (F,G). Box-whisker plots showing significant

downregulation of splicing related hub RBPs SF3B5 and SNRPB in AML from TCGA, GTEx data cohort visualized in GEPIA2 using default parameters; (one-way

ANOVA, p < 0.01) (H). *p < 0.01.

network, the expression of which is lower in LSCs than in HSCs.
Finally, we strengthened our observations by investigating the
expression profiles of RBP genes in other data cohorts and
experimental verification of the expression of selected RBP genes

using leukemic cell line differentiation models. We showed that
DZIP3 is essential for HSCs, as loss of its expression enhanced
differentiation of leukemic cells to monocytes upon induction.
In addition, we validated the gene expression of CLK4, NSUN7,
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ERI1 and RBM47 in samples from AML patients. Taken together,
our study highlights the importance of RBPs in normal and
malignant myelopoiesis; furthermore, this study will act as a
resource for the scientific community for further investigations
on the mechanism of action of RBPs.

RBPs are the guardians of the post-transcriptional gene
regulatory machinery and are involved in the regulation of all
biological processes, alterations of which are associated with
various malignancies. McKee et al. used in situ hybridization
to show that 323 of 380 RBPs were expressed in a region-
specific manner in the post-mitotic and proliferative zones
of the brain (70). Recent studies have shown that RBPs
are frequently mutated and are mostly downregulated across
a diverse array of cancers (71). Several reports show that
RBPs are involved in fine-tuning of self-renewal, lineage
choices and differentiation of HSCs. Therefore, dysregulation
of this axis manifests as blood-related disorders such as
myelodysplasia and leukemia. We evaluated our analysis by
comparing the RBPs in normal and AML modules with that
in the COSMIC and LGL databases (Supplementary Figure 10

and Supplementary Table 3). Interestingly, most of the RBPs
described in the Results are unique to normal and AML modules
and are not listed in the databases. RBP genes such as DICER1,
BRCA1 and PSIP1 were associated with all the intersections.
Thus, the overlapping intersections revealed several RBPs that
have previously not been implicated in AML pathogenesis and
warrants further investigations.

PTGR by RBPs adds another level of regulatory complexity
that dictates the fate of transcripts and translation efficiency.
Gerstberger et al. (3) showed that 6% RBPs of the mRBP and
ncRBP category show tissue specificity. They also identified
several classes of RBPs to be co-expressed during brain and
ovary development, which suggests that RBPs can be cell/tissue-
specific (3). In this study, PCA analysis provided the first
indication regarding the specificity of RBPs, where distinct
clusters of HSCs, progenitors and monocytes were observed in
normal myelopoiesis and of HSCs, LSCs and blasts in AML
samples. Furthermore, the box plots for normal myelopoiesis
showed modules I, II and III with high expression of RBPs in
progenitors, HSPCs and monocytes, respectively, whereas the
two modules identified in AML samples had either higher or
lower expression of RBPs in LSC than in HSCs and blasts.
Differential gene expression analysis also identified distinct
expression profiles of RBPs with several distinct clusters. These
findings support our hypothesis that RBPs perform distinct
functions in myeloid development and AML pathogenesis, which
warrants further investigations.

Bioinformatics analysis for normal myelopoiesis revealed
that several RBP genes were involved in HSPCs maintenance
or monocyte differentiation. In agreement with the results of
previous studies, we observed that MSI2 expression was high
in HSCs. MSI2 binds to the 3′ UTR of mRNA and acts as a
translational repressor that is highly expressed in hematopoietic
stem cells; its expression decreases with differentiation of HSCs
into mature cells (29). In mice, lack of MSI2 significantly
reduces the number of bone marrow HSCs and combined with
severe defects in engraftment upon serial transplantation, this
suggests that MSI2 is essential for self-renewal and maintenance

of long term (LT)-HSCs in mice (72). Higher expression of
MSI2 is linked with aggressive cancer and poor prognosis
of AML patients with normal karyotype (26). Another RBP,
PUS7 was enriched in HSPCs suggesting it to be an important
stem/progenitor factor. PUS7 mediates the pseudouridylation
of small RNA derived from tRNAs and releases 5′ terminal
oligoguanine (TOG), which is a potent translational repressor.
PUS7 knockout in HSPCs (CD34+) impairs translation and
reduced differentiation, which was rescued by addition of
TOG to the system. Furthermore, reduced expression of PUS7
has been implicated in hematological malignancies and clonal
disorders. DZIP3, a multifaceted RBP was also enriched in HSCs,
similar to MSI2 and PUS7. We show that DZIP3 knockdown
enhanced monocytic differentiation, which was in agreement
with the results of a published report showing DZIP3 to be
critical for the repression of differentiation-related genes (43).
In a separate study, the RBD of DZIP3 has been reported to
interact with HOTAIR lncRNA to regulate senescence in human
fibroblasts by ubiquitinating and degrading Ataxin-1. In addition
to domain-specific functions, DZIP3 interacts with coactivator-
associated arginine methyltransferase 1 (CARM1) and acts as
transcriptional co-activator of ERα-responsive genes (73). Till
date the functions of DZIP3 in myeloid differentiation have
not been studied and hence it warrants further investigation.
The monocyte-specific RBP, module III, also contains several
RBPs one of which is DICER1, an essential component of
miRNA biogenesis. Our observation was supported by the
results of a previous study showing that DICER1 ablation in
the myeloid progenitor compartment (GMP) leads to myeloid
dysplasia and impaired monocytic/macrophage differentiation
by regulating differentiation-associated miRNA (74, 75).These
support our observations but also highlight the contribution of
RBPs in myelopoiesis by shaping the transcriptome of cells via
stabilization or degradation of specific transcripts concurrent
with stage-specific cues.

Owing to perturbations in their transcriptional and post-
transcriptional program, LSCs constitute a major challenge
to the success of therapeutic interventions and is the cause
of chemoresistance and disease relapses. LSC-specific gene
expression correlates with poor prognosis in AML (9). Several
snRBPs, mRBPs (splicing factors) and post-transcriptional
RNA modifiers have been strongly implicated in leukemic
transformation (76, 77). Here, we have identified 303 and
394 RBPs with LSC signature (high expression) and anti-
signatures (low expression) respectively in AML. Interestingly,
these signatures were primarily present within mRBPs, ncRBPs,
rRBPs, rrRBPs and tRBPs, suggesting that these RBPs play major
roles in leukemic transformation. However, the mechanism via
which these RBPs regulates the onset and maintenance of AML
is not known, which is also the limitation of this study. Enhanced
expression of splicing kinases CLK1, CLK4 and RBM47 in LSCs
indicates that they can be potential therapeutic targets for drug-
resistant and recurring cases of AML.

Network analysis uncovers unknown regulatory circuits
within a gene interactome. In this study, we identified a densely
connected module of rRBPs and U1/U2 snRNP related RBPs,
several of which act as hubs within the network. Compared to
HSCs, we observed downregulation of these rRBPs and splicing

Frontiers in Oncology | www.frontiersin.org 14 August 2019 | Volume 9 | Article 692

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Saha et al. Expression of RBPs in Myelopoiesis

related RBPs in LSCs, which is indicative of a cancer stem cell-
specific, post-transcriptional gene regulatory network coupled
to low protein synthesis, low profile translatome and altered
splicing events. Reduction in protein synthesis can contribute
to cancer stem cells in different ways; for example, it can
affect protein turnover and lower the chances of producing
tumor antigens, thereby evading the immune system (67). Low
ribosomal activity has been shown to promote translation of
a pool of oncogenic mRNA transcripts required for sustaining
the oncogenic program (78). Thus, our study highlights that the
RBP-mediated circuit of gene interactions is a critical functional
axis in LSCs, dysregulation of which disrupts various oncogenic
programs essential for LSC function. Overall, we have cataloged
several RBPs essential for normal and malignant myelopoiesis,
with focus on LSCs. This study lays a framework for studying
the mechanisms via which RBPs may regulate normal or
malignant hematopoiesis. Although our study has given vital
insight into the potential role of RBPs in hematopoiesis, the
study also has certain limitations. First, co-expression analysis for
determining gene function is associated with computational and
bioinformatics limitations. For example, co-expressed genes may
not have related functions, and conversely, genes with related
functionmay not be co-expressed because of post-transcriptional
regulation. In addition, the threshold of expression similarity
used may lead to over or underrepresentation of co-expressed
genes. Second, the type, size and number of datasets used for the
comparative analysis may also affect the output. Finally, owing
to the large number of clustering algorithms that are currently
in use, there is no single best method and parameter choice
may affect the types of co-expression clusters obtained (79). It is
essential to incorporate various layers of “omics” analyses, such
as comparison of cross-linking immunoprecipitation (CLIP)-
seq data together with transcriptome data to completely
deconstruct the intricate architecture of transcriptional and
post-transcriptional gene regulation by RBPs and enhance our
understanding of normal myeloid differentiation and leukemia.
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