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Purpose: To investigate the feasibility of automatic quantifica-

tion of bone marrow edema (BME) on MRI of the wrist in

patients with early arthritis.

Methods: For 485 early arthritis patients (clinically confirmed

arthritis of one or more joints, symptoms for less than 2 years),

MR scans of the wrist were processed in three automatic

stages. First, super-resolution reconstruction was applied to

fuse coronal and axial scans into a single high-resolution 3D

image. Next, the carpal bones were located and delineated

using atlas-based segmentation. Finally, the extent of BME

within each bone was quantified by identifying image intensity

values characteristic of BME by fuzzy clustering and measur-

ing the fraction of voxels with these characteristic intensities

within each bone. Correlation with visual BME scores was

assessed through Pearson correlation coefficient.

Results: Pearson correlation between quantitative and visual

BME scores across 485 patients was r50.83, P<0.001.
Conclusions: Quantitative measurement of BME on MRI of

the wrist has the potential to provide a feasible alternative to

visual scoring. Complete automation requires automatic detec-

tion and compensation of acquisition artifacts. Magn Reson
Med 79:1127–1134, 2018. VC 2017 The Authors Magnetic
Resonance in Medicine published by Wiley Periodicals,

Inc. on behalf of International Society for Magnetic Reso-
nance in Medicine. This is an open access article under
the terms of the Creative Commons Attribution-NonCom-
mercial-NoDerivs License, which permits use and distribu-

tion in any medium, provided the original work is properly

cited, the use is non-commercial and no modifications or
adaptations are made.
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INTRODUCTION

The presence of bone marrow edema–like abnormalities
(BME) has been shown to be a strong predictor of radio-
graphic progression in rheumatoid arthritis (RA) patients
(1–4), and is therefore an important biomarker in early
arthritis. Evaluation of BME is done on MRI, where it is
visually scored based on the Outcome Measures in Rheu-
matology RA-MRI Scoring (RAMRIS) system (5,6). This
scoring method requires a trained reader to visually esti-
mate the volume of BME. Such estimates are challenging
and time-consuming because of the need to assess multi-
ple imaging planes, and slices and are inherently under-
mined by the simultaneous contrast effect (7–9) of the
human visual system, which causes the reader to per-
ceive the same image intensity value differently, depend-
ing on surrounding background intensities.

An automatic and quantitative approach to evaluating
BME on MR scans could overcome the limitations of
visual scoring by offering high-precision measurements
derived directly from 3D image data. It could alleviate
the time burden of training and manual scoring for clini-
cal researchers, and could facilitate the use of MRI in
drug evaluation studies, in which using a trained team
of readers is costly.

Several previous studies on BME quantification in the
wrist joint (10–12) relied on a semi-automatic method
proposed by Li et al. (13). However, this technique
requires an expert to manually delineate non-edema and
edema regions of interest within every bone that needs
to be evaluated. These studies were also limited to a
small sample size of fewer than 20 subjects. One related
study focuses on fully automatic BME quantification in
the knee joint (14), but it is not directly clear how to
extend the bone segmentation method (15) to a joint
with more than two bones, as is the case in the wrist.

In the work presented here, we developed an auto-
matic framework for measuring the fraction of bone vol-
ume affected by BME in the eight carpal bones of the
wrist joint. In contrast to previous methods, we used
atlas-based segmentation to automatically locate and
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delineate the carpal bones. Our aim was to investigate
the feasibility of BME quantification through such atlas-
based approach, and assess the correlation between
quantitative measurements and visual BME scores in a
large cohort of early arthritis patients.

METHODS

Patients

A total of 573 early arthritis patients from the Leiden

Early Arthritis Clinic cohort (16) (mean age, 54.7 years;

age range, 18.1–87.9 years) were studied: 354 female

(mean age, 53.0 years; age range, 18.7–85.3 years) and

219 male (mean age, 57.5 years; age range, 18.1–87.9

years) patients. Inclusion required clinically confirmed

arthritis by physical examination in one or more joints,

and symptom duration of less than 2 years. The MR

scans were obtained for the wrist joint of the most pain-

ful side (or the dominant side in cases of equally severe

symptoms on both sides). The study was approved by

the institutional medical ethics committee and all partic-

ipants provided written informed consent.

MRI Sequences

The wrist joint was scanned with an ONI MSK Extreme

1.5 Tesla (T) extremity MR scanner (GE Healthcare, Wau-

kesha, WI) with a 100-mm coil. Before contrast agent

injection, T1-weighted fast spin-echo sequence (T1) was

acquired in the coronal plane with repetition time (TR)

of 650 ms, echo time (TE) of 17 ms, acquisition matrix

388 3 88, echo train length (ETL) 2. After intravenous

injection of Gd-chelate (gadoteric acid, Guerbet, Paris,

France, standard dose of 0.1 mmol/kg), a T1-weighted

fast spin-echo sequence with frequency-selective fat satu-

ration (T1-Gd) was obtained in the coronal plane (TR 650

ms/TE 17 ms, acquisition matrix 364 3 224, ETL 2) and

the axial plane (TR 570 ms/TE 7 ms, acquisition matrix

320 3 192, ETL 2). Coronal sequences were acquired

with a slice thickness of 2 mm and a slice gap of 0.2 mm.

Axial sequences were acquired with a slice thickness of

3 mm and a slice gap of 0.3 mm. The use of a T1-Gd

sequence instead of a T2-weighted fat-saturated sequence

is a validated modification that has been shown to per-

form equally well in the depiction of BME and allows

for a faster scanning protocol (17,18), which in turn

reduces patient discomfort. Safety risk was minimized to

the degree possible by the use of a macrocyclic contrast

agent (19,20).

Visual Scoring of BME

Bone marrow edema was assessed in line with the defi-

nitions proposed by RAMRIS (5) with validated modifi-

cation of substituting T2-weighted fat-saturated sequence

with T1-Gd sequence (17,18). The BME was indepen-

dently scored by two trained readers who were blinded

to clinical data on a 0–3 scale based on the estimated

fraction of affected bone volume: 0, no BME; 1, 1–33%

of bone edematous; 2, 34–66%; 3, 67–100%. The within-

reader intraclass correlation coefficients (ICCs) for the

total inflammation score were 0.98 and 0.93; the

between-reader ICC was 0.95. The mean BME score of
the two readers was considered.

Patients for which at least one reader marked one or
more bones as unscorable (typically a result of fat sup-
pression issues) were excluded (n511). Patients whose
T1-Gd images suffered from incomplete fat suppression,
but still considered scorable by readers based on T1

images showing low signal intensity in the matching
areas with BME on T1-Gd, were retained.

Quantitative Image Analysis Framework

Our automatic framework consisted of three stages. First,
super-resolution reconstruction was applied to fuse coro-
nal and axial T1-Gd scans into a single high-resolution
3D image. Next, the carpal bones were located and delin-
eated using atlas-based segmentation. Finally, the extent
of BME within each bone was quantified by identifying
image intensity values characteristic of BME by fuzzy
clustering, and measuring the fraction of voxels with
these characteristic intensities within each bone. Note
that because the super-resolution reconstruction step
requires a coronal and axial scan of the same sequence
as input, this stage, and therefore the entire framework,
could only be applied to T1-Gd scans. Therefore, pre-
contrast T1 images, which were acquired only in the
coronal plane, were not used in the quantitative image
analysis framework.

Super-resolution Reconstruction

When readers evaluate BME visually, they make use of
two complementary scans: one acquired in the coronal
plane and the second in the axial plane. This is because
the slice thickness in each of the scans (2 mm in coro-
nal; 3 mm in axial) is much larger than the in-plane
spacing between voxels (�0.2 mm). Therefore, one scan
compensates for anatomical detail lost in the other
scan, allowing the reader to perceptually form a more
complete assessment of the anatomy. Naturally, this
raises the question of how to simulate such perceptual
fusion of two images on the computer, to obtain a single
3D image with isotropic voxels and high resolution in
all three viewing planes. This type of problem (ie,
reconstruction of a high-resolution image of an object
from multiple low-resolution images of the same object)
is commonly referred to as super-resolution reconstruc-
tion (SRR).

A variety of SRR methods have been proposed for MRI
(21–24). In this study, we applied the method developed
by Poot et al. (24). This algorithm belongs to the family
of spatial domain SRR methods, which construct a linear
model of the image acquisition system and reconstruct
the high-resolution image by solving a system of linear
equations. This system is often underdetermined, as in
our case, and is solved by applying regularization. We
used Laplacian regularization with parameter l ¼ 0:05.
This value was optimized in an experiment by two
expert radiologists (M.R. and J.L.B.) to provide satisfac-
tory balance between image noise/artifacts and visual
clarity of BME, synovial tissue, cartilage, and fluid
around tendons. Before applying SRR, the axial scan was
spatially aligned to the coronal scan using the Elastix
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software package (25,26), axial image intensity was line-

arly matched to the coronal image intensity, and the

field of view of both images was restricted to the over-

lapping physical space between the two scans. Figure 1

shows an example of applying SRR to a pair of coronal

and axial scans.

Segmentation of Carpal Bones

The carpal bones were located and delineated using

atlas-based segmentation (ABS) (27). The atlas consisted

of 13 early arthritis patients. For each atlas patient, the

carpal bones were manually segmented in the coronal

and axial T1-Gd images, yielding two segmentation

images. The voxels of these manual segmentation images

were assigned an integer bone label value ranging from 1

to 8 in locations corresponding to one of the eight carpal

bones, or otherwise the value 0 in locations outside the

bones. Then, separately for each bone, the two manual

segmentation images were fused using SRR. Voxels with

values above 78% of the bone label value were assigned

the bone label value, and the remaining voxels were
zeroed to discard noise. The resulting eight images were
superimposed to obtain the complete segmentation
image in high-resolution space.

The first phase of the ABS routine consisted of image
registration between each of the 13 atlas images and the
target image being segmented. Image registration (using
Elastix (25)) was done in two stages (28): first, a similar-
ity mapping to account for global translation, rotation
and scaling, followed by a B-spline mapping to account
for local deformations. After spatially mapping carpal
bone segmentations from every atlas image onto the tar-
get image, a majority vote was applied across all map-
pings, determining whether a voxel was labeled as
background or as one of the carpal bones.

It should be noted that all atlas images contained the
right wrist joint. For segmentation of the left wrist, atlas
images were horizontally mirrored before registration. To
avoid biased measurements, patients that were part of
the ABS atlas were excluded from optimization and vali-
dation phases.

FIG. 1. Coronal, axial, and super-resolution images (top to bottom rows, respectively) and their coronal, axial, and sagittal viewing

planes (left to right columns, respectively). The original scans exhibit high resolution only in one plane, whereas the super-resolution
image exhibits high resolution in all three planes.
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Assessment of ABS Accuracy

To assess the accuracy of ABS, a leave-one-out cross-val-

idation was performed. In each of the 13 runs, 12 out of

13 atlas images would constitute the atlas set, and the

remaining image would be used as the target image to be

segmented. The result was validated against manual seg-

mentation of the coronal T1-Gd image. Segmentation

accuracy was evaluated by computing precision and

recall rates for each carpal bone. Here, “precision rate”

refers to the fraction of voxels segmented by ABS that

overlap with the manual bone segmentation, whereas

“recall rate” refers to the fraction of voxels within the

manual bone segmentation that were correctly segmented

by ABS.

Bone Marrow Edema Quantification

Bone marrow edema is characterized by high signal

intensity on T1-Gd images as a result of contrast

enhancement and the suppressed normal fatty bone mar-

row. The precise intensity values vary per acquisition,
depending on the strength of contrast enhancement and

fat suppression. The variation of these values is further

broadened by inherent magnetic field inhomogeneities of

the MR scanner. To account for these acquisition-

specific intensity ranges of edematous versus non-

edematous bone marrow, fuzzy C-means clustering

(29,30) was applied to the intensity values of all voxels

in each image, assuming two clusters. This yields two

probability map images (one per cluster), in which each

voxel contains the probability of that voxel belonging to

the respective cluster. Let C2 be the cluster whose center

value is the higher of the two computed cluster centers.

As Figure 2 illustrates, high probabilities (bright voxels)
within the C2 probability map correspond to locations of
high fluid content, such as BME and synovium.

For each carpal bone, the fraction of bone affected by
BME was estimated as the fraction of voxels (out of the
total number of voxels within the bone’s segmentation)
whose probability of belonging to C2 was higher than
the threshold value TC2 (numeric value optimized
below). The resulting quantitative BME measurement
(BME-QM) takes any fractional values between 0 and 1.

Optimization

To optimize the TC2 threshold parameter based on corre-
lation with visual BME scores, a training set of patients
was defined. The number of patients with low-moderate
BME in our cohort is much larger than the number of
patients with severe BME. Therefore, random sampling

FIG. 2. The SRR image of the
wrist (a), its C2 probability map
image (b), and C2 image with

carpal bone segmentation over-
lay from ABS (c).

Table 1
Training Set Sampling Categories

Patient category index Rmax interval

Number

of patients

0 Rmax ¼ 0 189

1 0 < Rmax � 1 208
2 1 < Rmax � 2 42
3 2 < Rmax � 3 29

Note: Random sampling across all categories would form a training
set that consists primarily of patients with Rmax�1. In contrast, ran-

domly selecting 15 patients from category 3, for example, guaran-
tees that the training set will include 15 patients, with at least one
bone that received a visual BME score greater than 2. Thus, random

sampling from individual categories helps to ensure that TC2 is opti-
mized with respect to the entire range of the visual BME score.
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of the cohort does not guarantee inclusion of patients

with severe BME in the population sample. To ensure

that patients with a high degree of BME were repre-

sented in the training set, we categorized a set of 468

patients by the maximum visual BME score (Rmax) across

the carpal bones. Four sampling categories were defined

corresponding to four intervals within Rmax range. Table

1 lists the defined categories and the number of patients

that fall into each category. Next, 15 patients were ran-

domly selected from each category to form a training set

of 60 patients.
To avoid training errors, three patients whose MR

scans suffered from incomplete fat suppression and one

patient for which ABS failed were excluded from the

obtained training set. This brought the final training set

size to 56 patients. The optimal value of TC2 was found

by maximizing the Pearson correlation coefficient r

between the sum of visual BME scores across all carpal

bones and the sum of BME-QM across all carpal bones.

Validation

After optimizing and locking the value of TC2, the

method was validated on 502 patients who were not part

of the training set.

Statistical Analysis

The Pearson correlation coefficient r between the sum of

visual BME scores across all carpal bones and the sum of

BME-QM across all carpal bones was evaluated. P values

below 0.05 were indicative of statistical significance.

The MR scans that suffered from incomplete fat suppres-

sion were noted and excluded from the correlation com-

putation. Scans with other acquisition artifacts, such as

noise patterns and incomplete field of view, were

excluded from the analysis. Patients in which one or

more bones were not segmented by ABS yielded unde-

fined values for BME-QM. Because undefined values

cannot be included in the correlation computation, these

patients were excluded from statistical analysis. The sta-

tistics were computed using MATLAB R2015b (The

MathWorks Inc, Natick, MA).

RESULTS

Assessment of ABS Accuracy

The mean bone-level recall and precision rates of ABS

with respect to manual segmentations across 13 patients

are shown in Figure 3. Recall rates were lowest in the

pisiform (mean of 0.58 6 0.09 SD) and highest in the cap-

itate (mean of 0.82 6 0.03 SD). Precision rates were high

in all bones, with mean values ranging from 0.92 to 0.96

and SD values ranging from 0.02 to 0.05.

Optimization

The maximum Pearson correlation (r ¼ 0.86, P < 0:001),

over 56 training set patients, between the sum of visual

BME scores across all carpal bones and the sum of BME-

QM across all carpal bones, was achieved at threshold

value TC2 ¼ 0.83 (Figure 4). The scatter plot of the data

is shown in Figure 5.

Validation

Out of 502 patients, BME-QM was undefined in six

patients because of failed segmentation. Three patients

FIG. 3. Mean ( 6 standard deviation) bone-

level recall and precision rates of ABS
with respect to manual segmentations
across 13 patients.

FIG. 4. Pearson correlation coefficient r, over 56 training set patients,

between the sum of visual BME scores across all carpal bones and
the sum of BME-QM across all carpal bones, as a function of TC2.
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were excluded as a result of noise artifacts (n52) and
incomplete field of view (n51) in their images. The MR
scans of eight patients suffered from incomplete fat sup-

pression. For the remaining 485 patients, the Pearson
correlation between the sum of visual BME scores across
all carpal bones and the sum of BME-QM across all car-

pal bones was r ¼ 0.83, P < 0:001. The scatter plot of the
data is shown in Figure 6. Most patients formed clusters
of steadily increasing BME-QM values, as the visual

score value increased. Some outliers from this general
trend were clearly visible for visual score value of 0 and
BME-QM values between 1 and 2. These high quantita-
tive values were the result of inaccurate segmentation of

the carpal bones. Several patients whose images suffered
from incomplete fat suppression produced BME-QM val-
ues that were largely deviating from the observed regres-

sion fit.

DISCUSSION AND CONCLUSIONS

In this study, we investigated the feasibility of automatic

quantification of BME on MRI of the wrist in patients
with early arthritis through an atlas-based approach. We
chose to focus on the carpal bones, as they provide a
complex multi-object scenario for exploring the feasibil-

ity of an atlas-based quantification framework. The
advantage of this framework is that it can be straightfor-
wardly expanded to other areas of the wrist and other

joints by adding these areas of interest to the atlas. Vali-
dation results across 485 early arthritis patients indi-
cated good correlation between BME-QM and visual

BME scores. It should be noted that perfect correlation is
inherently not achievable because of the coarse grading
scale of the visual score and the fine grading scale of
BME-QM.

Our training strategy helped to ensure that during vali-

dation BME-QM correlated well across the entire range
of the visual BME score. The fact that the correlation

curve in Figure 4 is relatively flat for TC2 values between

0.75 and 0.9 suggests that there is a range of TC2 values

in this interval that result in good agreement between

quantitative and visual scores. Furthermore, because

BME-QM measures the fraction of voxels with C2 proba-

bility above TC2, this appears to indicate that locations

considered as BME in visual scoring often result in C2

probability values around 0.9. We also examined the

effect of a smaller training set on TC2 optimization (data

not shown), with five patients randomly selected from

each Rmax category forming a training set of 20 patients.

We observed a similarly stable high correlation for TC2

values between 0.75 and 0.9, suggesting that the optimi-

zation step is not overly sensitive to training set size, as

long as patients from all categories of BME severity

(Rmax) are represented in the training data.
The time required to execute the BME-QM framework

for one patient on an Intel Xeon E5-1620 v3 CPU was

approximately 58 min (SRR, �20 min; ABS, �35 min;

BME quantification �3 min). Atlas-based segmentation is

the most time-consuming step, but it can be accelerated

10-fold by running image registrations between all atlas

images and the target image in parallel. Because registra-

tions are independent of each other, this can be easily

achieved given sufficient computing power. However, in

large cohort studies, in which evaluation of image data

is often carried out days or weeks after the image is

acquired, such acceleration may be irrelevant; an auto-

matic framework can be executed immediately after

image acquisition in an integrated fashion, thus ensuring

quantitative results are available by the time a research

project enters the evaluation phase.
Atlas-based segmentation provided satisfactory seg-

mentation for the vast majority of patients. In practice,

failed segmentation cases will require manual

FIG. 5. Scatter plot of sum of BME-QM across all carpal bones

versus sum of visual BME scores across all carpal bones for 56
training set patients. Each data point represents a single patient.
r 5 0.86, P < 0:001, TC2 ¼ 0.83. Dashed black line represents lin-

ear regression fit.

FIG. 6. Scatter plot of sum of BME-QM across all carpal bones
versus sum of visual BME scores across all carpal bones for 493

validation set patients. Each data point represents a single
patient. Linear regression fit (dashed black line) and Pearson cor-
relation r were computed over 485 patients whose MR scans did

not suffer from incomplete fat suppression (circular data points):
r ¼ 0.83, P < 0:001, TC2 ¼ 0.83.
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adjustment by an expert in order for BME-QM to be com-
puted. Oversegmentation of bones or shifted segmenta-
tions that include synovium voxels increase the value of
BME-QM as a result of contrast enhancement in the
synovium. It is preferable to slightly undersegment the
bone to ensure the exclusion of synovium while retain-
ing most of the bone marrow within the segmentation.
That said, significant undersegmentation may lead to an
upward bias in BME-QM. Quantitative assessment of
ABS accuracy in 13 patients revealed the tendency of
ABS to undersegment bones (midrange recall rates and
high precision rates). Therefore, the current framework
may raise false alarms when bone volume is underesti-
mated in the presence of moderate BME. The midrange
recall rates also suggest unwanted variability in BME-
QM as a result of incomplete bone segmentation. The
fact that the lowest recall rates were observed in the pisi-
form while the highest in the capitate, is likely because
the pisiform is the smallest of the carpal bones, whereas
the capitate is the largest of the carpal bones. An addi-
tional challenge during registration is the varied inten-
sity and pattern of BME across patients. It is therefore
advisable to avoid using very fine grid spacing during
the B-spline registration step, as alignment between
images on a coarser scale should be less sensitive to
these local variations. Another potential pitfall is inclu-
sion of erosions in the segmentation result. Erosions may
contain high intensities that will mistakenly contribute
to the value of BME-QM. To address these possible pit-
falls and improve bone-level recall rates, an automatic
refinement step should follow ABS in the future. In
addition, to ensure robustness of the atlas to variations
in MRI acquisition protocols and scanners at different
sites, it may be necessary to form a larger atlas set con-
sisting of subatlases of wrist scans acquired under differ-
ent echo/repetition times and magnetic field strengths.
The most suitable subatlas can then be automatically
identified based on the acquisition parameters of a spe-
cific target image.

Incomplete fat suppression during acquisition of MR
scans has an adverse effect on the accuracy of BME-QM.
Bone marrow fat signal that is not properly suppressed
results in high intensities that are mistaken for edema
voxels by the clustering algorithm. Fat suppression qual-
ity requirements for BME-QM are higher compared with
visual scoring. This is because of the availability of pre-
contrast image data in visual scoring and pattern recogni-
tion during visual assessment of increased signal
intensity secondary to insufficient fat suppression.
Although fat suppression issues are relatively rare, they
must be identified before applying BME-QM to reduce
false positives. The possibility of identifying and com-
pensating fat suppression issues automatically should be
investigated. In addition, more robust fat suppression
techniques that are less sensitive to bulk susceptibility,
such as Dixon techniques, may be beneficial when BME-
QM is used.

A limitation of the current study is that the quality of
carpal bone segmentation in training and validation set
patients was judged subjectively. Quantitative assess-
ment of segmentation accuracy was not possible, as no
ground truth, manual segmentations were available for

these patients. Quantification of segmentation accuracy
would allow to supplement the BME measurement with
a confidence measure. Another limitation is that pre-
contrast image data could not be included in the frame-
work, as pre-contrast T1 scans were acquired only in the
coronal plane, whereas SRR requires a coronal and axial
scan of the same sequence as input. Therefore, a straight-
forward voxel-to-voxel comparison between SRR T1-Gd
images and pre-contrast T1 images was not possible.
Inclusion of pre-contrast data would allow to explore a
subtraction methodology as a means of quantifying BME,
and could facilitate the detection of fat suppression
issues.

Recently, another framework aimed at automatically
quantifying RA-related biomarkers, called quantitative
RAMRIS, was proposed by Bowes et al. (31,32) and used
in a treatment effects study by Conaghan et al. (33).
These studies focus on measuring change over time,
demonstrating higher sensitivity of quantitative measure-
ments compared with RAMRIS. In contrast, we focused
on validation of quantitative measurements at a single
time point. In the future, it would be interesting to use
BME-QM for measuring change over time and evaluate
its sensitivity.

We conclude that BME-QM has the potential to pro-
vide a feasible alternative to visual scoring of BME on
MRI of the wrist in patients with early arthritis. Com-
plete automation requires further refinement of carpal
bone segmentation and automatic detection and compen-
sation of acquisition artifacts. Future work should also
add more locations of interest relevant to RA to the atlas
and extend this framework to other types of inflamma-
tion, such as synovitis and tenosynovitis. These develop-
ments can save time and manual effort for clinical
researchers and help assess the value of MRI both for
diagnosing RA and monitoring its treatment.
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