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The protein quaternary structure is very important to the biological process. Predicting their attributes is an essential task in
computational biology for the advancement of the proteomics. However, the existingmethods did not consider sufficient properties
of amino acid. To end this, we proposed a hybrid method Quad-PRE to predict protein quaternary structure attributes using the
properties of amino acid, predicted secondary structure, predicted relative solvent accessibility, and position-specific scoringmatrix
profiles and motifs. Empirical evaluation on independent dataset shows that Quad-PRE achieved higher overall accuracy 81.7%,
especially higher accuracy 92.8%, 93.3%, and 90.6% on discrimination for trimer, hexamer, and octamer, respectively. Our model
also reveals that six features sets are all important to the prediction, and a hybrid method is an optimal strategy by now.The results
indicate that the proposed method can classify protein quaternary structure attributes effectively.

1. Introduction

As is well known, the prediction of protein quaternary struc-
ture attributes (such as monomer, dimmer, trimer, tetramer,
pentamer, hexamer, heptamer, and octamer) plays an impor-
tant role in the structure bioinformatics. It can confirm how
many subunits form the protein. It is the real requirement
for the Anfinsen’s dogma [1]. A variety of experimental tech-
niques can determine protein quaternary structure. However,
most methods are time-consuming and expensive. Moreover,
the oligomers may be homooligomers or heterooligomers;
the former consist of identical polypeptide chains, whereas
the latter are nonidentical. Many computational methods are
proposed.

As far as we know, the earliest work to study the quater-
nary structure type was in 2001 [2]. In this paper, Garian
proposed a method named Quaternary Structure Explorer
(QSE), which just judges whether or not a given protein is a

homodimer. In 2003, Zhang et al. [3] first introduced support
vector machine (SVM) to discriminate the differences of the
primary sequences of both homodimer and nonhomodimer.
Chou and Cai [4] solved the 2-state problem by using the
pseudo amino acid composition. In 2006, Shi el al. [5]
classified homooligomers based on amino acid composition
distribution (AACD) and showed that the 2DPCA was an
effective approach to decrease the high dimension of feature
vector. In 2007, Carugo [6] proposed a method which is
able to predict the quaternary structural type of hetero
oligomeric proteins. Levy [7] proposed the PiQSi to get the
annotations of about 15,000 proteins in PDB, which can
be used as the benchmark dataset to test the quality of a
method to predict the quaternary structure type. In 2009,
Xiao and Lin introduced the grey incidence degree measure
[8] to predict the protein quaternary structure attributes.
The method is implemented as a web-server called Quat-2L
[9], which firstly identifies the protein as homooligomer or
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heterooligomer and secondly justifies how many subunits.
In 2012, Sun et al. utilized discrete wavelet transform [10]
based on Chou’s PseAAC to identify the protein quaternary
structure attribute. All these methods to predict the quater-
nary structure attributes are based on one set of features, and
mostly for 2 states.

In this paper, we proposed a new method Quad-PRE to
predict protein quaternary structures attributes among 6
states only based on the primary sequences, removing both
pentamer and heptamer because of insufficient data. With
10 fold cross validation, our models achieved higher overall
accuracy 81.7%, especially higher accuracy 92.8%, 93.3%, and
90.6% on discrimination for trimer, hexamer, and octamer,
respectively. Our method could be an effective tool to predict
the protein quaternary structure attributes.

2. Materials and Methods

2.1. Benchmark Dataset. The dataset is from the quaternary
structure library PiQSi (http://www.PiQSi.org/) built by Levy
[7]. Our original dataset was downloaded on December 12,
2011. Firstly, we download a whole annotated list including
about 15,000 protein sequences and a nonredundant set
including 1755 sequences (30% sequence id.) from the library
and then remove sequences which are not in the nonredun-
dant set from the whole annotated list. In order to use a set
of “good” PDB files, we use the subset of those annotated as
“NOT” or “PROBABLY NOT” being errors. In addition, the
number of pentamer and heptamer is too little to analyze and
we also removed them. Finally, we get a protein quaternary
structure dataset with primary sequence as shown in Table 1.

2.2. Features. In this paper, we used three traditional meth-
ods and three tools (BLAST, GLAM2, and GIBBS) to select
632 features only based on unique primary sequences and
denoted them as six terms: ART 1 feature, ART 2 feature,
ART 3 feature, BLAST feature, GLAM2 feature, and GIBBS
feature). The summary of the considered features is shown
in Table 2 (See Tables S1–S3 in Supplementary Material
available online at http://dx.doi.org/10.1155/2014/715494 for
more detailed information).

Firstly, we use three traditional methods to get the three
feature sets, that is, the ART 1 feature by [12], ART 2 feature
by [13], and ART 3 feature by [11], respectively.The sources of
data used to generate the features from the original sequence
include the protein sequence, the position-specific scoring
matrix (PSSM) generated by PSI-BLAST [14], the secondary
structure predicted by PSI-Pred [15], the solvent accessible
surface area (ASA) values predicted using Real-SPINE [16],
and the relative solvent accessibility (RSA) defined as the
ratio of ASA of a residue observed in its three-dimensional
structure to that observed in an extended (Gly-X-Gly or Ala-
X-Ala) tripeptide conformation [17].

Secondly, we generate other three features sets by BLAST,
GLAM2, and GIBBS, respectively. The three methods can
describe the inherent properties of sequences. Primarily, we
divide equally the feature set into 10 portions randomly,
making sure that every portion contains at least one element

Table 1: The numbers of monomer, dimmer, trimer, tetramer, hex-
amer, and octamer in our benchmark dataset.

Total Monomer Dimer Trimer Tetramer Hexamer Octamer
1040 366 338 53 155 67 61

of each one of 6 states (monomer, dimmer, trimer, tetramer,
hexamer, and octamer) so that we have 10 datasets

{𝑆
𝑖 |
𝑆𝑖
 = 104, 𝑖 = 1, . . . , 10} . (1)

Every 𝑆
𝑖
contains 6 subsets

𝑆
𝑖
= {𝑝 | 𝑝 ∈ 𝑠

𝑖𝑐
, 𝑐 = 1, 2, 3, 4, 6, 8} , (2)

where each subset 𝑠
𝑖𝑐
contains sequences which has 𝑐 subunits

in 𝑆
𝑖
. It is noted that the generated features depend on the

original 10 fixed datasets.
For each sequence 𝑃 = 𝑎

1
𝑎
2
⋅ ⋅ ⋅ 𝑎
𝐿
∈ 𝑆
𝑖
, we select the

most similar five sequences in each one of 6 sets {𝑝 | 𝑝 ∈
𝑠
𝑘𝑐
, 𝑘 ̸= 𝑖}, 𝑐 = 1, 2, 3, 4, 6, 8 by PSI-Blastall. So we can get 30

features for each given sequence𝑃 based on the Evalue’s index
of the scientific notation from the results of the tool.

The sequence motifs can describe many properties of
protein, such as transcription factor binding sites, splice
junctions, and protein-protein interaction sites. Both GIBBS
and GLAM2 are employed to find motifs from our datasets.
In the same way, for each sequence 𝑃 ∈ 𝑆

𝑖
, we get the motifs

of each one of 6 sets {𝑝 | 𝑝 ∈ 𝑠
𝑘𝑐
, 𝑘 ̸= 𝑖}, 𝑐 = 1, 2, 3, 4, 6, 8 by

both GLAM2 and GIBBS, denoted as follows, respectively:

𝑀𝑃GLAM2
𝑐

, 𝑐 = 1, 2, 3, 4, 6, 8,

𝑀𝑃GIBBS
𝑐

, 𝑐 = 1, 2, 3, 4, 6, 8.
(3)

In fact, there are many gaps in some motifs generated by
GLAM2 so that we need to preprocess thesemotifs as follows.

(i) If a motif has more than five consecutive gaps, we
delete those gaps and divide this motif into two new
motifs.

(ii) If the AAs of a motif are less than five, we delete it.

Then we get updated

𝑀𝑃GLAM2
𝑐

, 𝑐 = 1, 2, 3, 4, 6, 8. (4)

We use the modified Smith-Waterman dynamic program-
ming (SW-DP) algorithm to make sequence alignment
between the given sequence 𝑃 and each one of𝑀𝑃GLAM2

𝑐
, 𝑐 =

1, 2, 3, 4, 6, 8. The given sequence 𝑃 acquires the five highest
alignment scores from each of𝑀𝑃GLAM2

𝑐
, 𝑐 = 1, 2, 3, 4, 6, 8, so

that we can get 30 more features for the given sequence. The
specific procedure is as follows. In fact, each position of each
motif generated by GLAM2 possibly has more than one AA
after preprocessing. We use

𝑀GLAM2 = 𝑚1𝑚2 ⋅ ⋅ ⋅ 𝑚𝑛 (5)
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Table 2: Summary of the considered features, where 𝑦 denotes one of the three secondary structure states and 𝑥 denotes one of the 20
common AAs.

Feature sets Description

Sequence-based (79)

Sequence length (1)
Composition vector (20)
The number of AAs in the sequence belonging to {R group, Electronic
group, Hydrophobicity group, Exchange group} (18)
First and second order composition moment vector (40)

PSSM-based (203) From the PSSM matrix

Secondary structure (217)
Based on the features utilized in the PSI-Pred method (90)
Based on the predicted secondary structure which describes collocation
of helical and strand segments (127)

Average RSA based (23) Average RSA of the residues with AA type 𝑥 (20)
Average RSA of the residues with secondary structure type 𝑦 (3)

Average isoelectric point (1) 𝑝𝐼 = 1/𝑁∑𝑁
𝑖=1
𝑝𝐼
𝑖
, the 𝑝𝐼

𝑖
values in the paper [11]

Auto-correlation functions based
on FH

𝑖
, EH
𝑖
, and Hp indices (25)

𝐴𝑎
𝑛
= 1/ (𝑁 − 𝑛)∑𝑁−𝑛

𝑖=1
𝑎
𝑖
𝑎
𝑖+𝑛
, where 𝑎 defines the corresponding

physicochemical properties, such as two hydrophobicity indices (the
Fauchere-Pliska’s (FH) with 𝑛 = 1, 2, . . . , 10 and the Eisenberg’s (EH)
𝑛 = 1, 2, . . . , 6), and hydropathy (HP) index with 𝑛 = 1, 2, . . . , 9.

Auto-correlation functions based
on cumulative FH

𝑖
index (6)

𝐴𝑎
𝑛
= ∑𝑁−𝑛
𝑖=1
(∑𝑖
𝑗=1
𝑎
𝑗
) × (∑𝑖+𝑛

𝑗=1
𝑎
𝑗
) / (𝑁 − 𝑛), where 𝑎 is the FH index with

𝑛 = 1, 2, . . . , 6.
Sum of hydrophobicities based
on FH

𝑖
and EH

𝑖
(2)

𝐻𝑎sum = ∑
𝑁

𝑖=1
𝑎
𝑖
, where 𝑎 is the FH or the EH index.

R groups (5)

RG
𝑖
, where 𝑖 = 1 corresponds to nonpolar aliphatic AAs (AVLIMG),

𝑖 = 2 to polar uncharged AAs (SPTCNQ), 𝑖 = 3 to positively charged AAs
(KHR), 𝑖 = 4 to negative AAs (DE), and 𝑖 = 5 to aromatic AAs (FYW);
the composition percentage of each group in the sequence is computed

Electronic groups (5)

EG
𝑖
, where 𝑖 = 1corresponds to electron donor AAs (DEPA), 𝑖 = 2 to

weak electron donor AAs (LIV), 𝑖 = 3 to electron acceptor AAs (KNR),
𝑖 = 4 to weak electron acceptor AAs (FYMTQ), and 𝑖 = 5 to neutral AAs
(GHWS); the composition percentage of each group in the sequence is
computed

Blast based (30) Refer to subsection “Features”
GLAM2-based (30) Refer to subsection “Features”
GIBBS-based (6) Refer to subsection “Features”

to represent a motif with 𝑛 length, where 𝑚
𝑖
= {𝑏
𝑖𝑗
} and 𝑏

𝑖𝑗

may be one of 20 common AAs or a gap. For the protein seq-
uence 𝑃 = 𝑎

1
𝑎
2
⋅ ⋅ ⋅ 𝑎
𝐿
, the penalty function is defined as

𝑑GLAM2 (𝑚𝑖, 𝑎𝑗) =

{{{{{
{{{{{
{

1 if 𝑎
𝑗
∈ 𝑚
𝑖
, 𝑎
𝑗
̸= gap

0 if 𝑎
𝑗
∈ 𝑚
𝑖
, 𝑎
𝑗
= gap

−1 if 𝑎
𝑗
∉ 𝑚
𝑖
, 𝑎
𝑗
̸= gap

−
1

3
if 𝑎
𝑗
∉ 𝑚
𝑖
, 𝑎
𝑗
= gap .

(6)

Then we use the SW-DP algorithm to compute the alignment
score between 𝑃 and𝑀GLAM2.

In addition, GIBBS can find a motif like

𝑀GIBBS = 𝑡1𝑡2 ⋅ ⋅ ⋅ 𝑡𝑛 (7)

for each one of𝑀𝑃GIBBS
𝑐

, 𝑐 = 1, 2, 3, 4, 6, 8, where

𝑡
𝑖
= (𝑝𝑏1
𝑖
, 𝑝𝑏2
𝑖
, . . . , 𝑝𝑏21

𝑖
)
𝑇

, 𝑖 = 1, 2, 3, . . . , 𝑛 (8)

represent probabilities of 20 common AAs and gap in the
position 𝑖, and

{𝑏
𝑗
, 𝑗 = 1, 2, . . . , 21} = {𝐴, 𝑅,𝑁,𝐷, 𝐶, 𝑄, 𝐸, 𝐺,𝐻, 𝐼, 𝐿, 𝐾,𝑀,

𝐹, 𝑃, 𝑆, 𝑇,𝑊, 𝑌, 𝑉, −} .
(9)

For the protein sequence𝑃 = 𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎
𝐿
, the penalty function

is defined as

𝑑GIBBS (𝑡𝑖, 𝑎𝑗) = 𝑝𝑖
𝑎
𝑗 . (10)

We employ the SW-DP algorithm to calculate the alignment
score between 𝑃 and𝑀GIBBS again, and then we gain other 6
features for the sequence 𝑃 by GIBBS.

2.3. The Overall Design. Gaining a protein quaternary struc-
ture dataset, we design our method Quad-PRE from primary
sequence as below.
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Figure 1: The diagram of Quad-PRE.

(1) Select the features based on properties of amino acid,
PSSM, the secondary structure, the solvent accessible
surface area, and the physicochemical property.

(2) In addition,we divide our dataset equally into ten por-
tions randomly, but making sure that every portion
contains at least one element of each one of 6 states.
And thenwe obtain the new features of each sequence
using BLAST, GIBBS, and GLAM2, respectively.

Our scheme is a hybridmethod andwe give a diagram for
making it easy to follow, shown in Figure 1.

2.4. Classification. Support vector machine (SVM), which
was shown to provide high quality predictions in classifi-
cation, regression, and density estimation area, was imple-
mented with LIBSVM [18] package. The support vector
classificationC-SVC is selected in this paper.There are several
strategies to solvemulticlass problem, such as one-versus-rest
and one-versus-one. One-versus-rest strategy is used in this
paper. The prediction performance was examined by 𝑛-fold
cross validation, in which the training dataset is randomly
divided into 𝑛 subsets equally. The 𝑛 − 1 subsets are used
to train the model and the remaining one subset is used to
evaluate themodel, repeated 𝑛 times. If 𝑛 is the number of the
samples, it was named jackknife test (or leave-one-out cross
validation).

We designed a predictor with 10-fold cross validation.
First of all, the input sequence is converted into the feature
space, and then the corresponding features are passed to the
classifier. The prediction class of the sequence that corre-
sponds to one has the highest probability. Overall accuracy
(ACC), the sensitivity or true positive rate (TPR), the false
positive rate (FPR), the specificity (SPC), the precision (PPV),
and Matthew’s correlation coefficient (MCC) for each class

are used to measure the prediction performance; they are
defined as follows:

ACC = (TP + TN)
𝑁

, (11)

TPR = TP
(TP + FN)

,

FPR = FP
(FP + TN)

,

SPC = TN
(FP + TN)

= 1 − FPR,

PPV = TP
(TP + FP)

,

MCC = TP × TN − FP × FN
√(TP + FN) (TP + FP) (TN + FP) (TN + FN)

,

(12)

where TP is true positive number, TN is true negative, FP is
false positive, FN is false negative, and 𝑁 is total number
of sequences. However, these metrics are not quite intuitive
and easier-to-understand and we can adopt the formulation
proposed recently to really understand them [19–21]. We also
calculate the area under the ROC curve (AUC) to evaluate the
predictions. Higher values of these measures indicate better
quality of predictions.

3. Results and Discussion

3.1. Results and Comparison with Garian’s QSE. The choice
of the penalty factor 𝐶 and the kernel function type is very
important since SVM is sensitive to parameterization. In this
paper, we consider the radial basis function (RBF) of kernel
types following the Chang and lin [22]

𝐾(𝑥
𝑖
, 𝑥
𝑗
) = exp (−𝛾𝑥𝑖 − 𝑥𝑗


2

) , (13)



Computational and Mathematical Methods in Medicine 5

0.2 0.4 0.6 0.8 1.0
FPR

0.2

0.4

0.6

0.8

1.0

TP
R

Monomer

(a)

0.2 0.4 0.6 0.8 1.0
FPR

0.2

0.4

0.6

0.8

1.0

TP
R

Dimer

(b)

0.2 0.4 0.6 0.8 1.0
FPR

0.2

0.4

0.6

0.8

1.0

TP
R

Trimer

(c)

0.2 0.4 0.6 0.8 1.0
FPR

0.2

0.4

0.6

0.8

1.0
TP

R
Tetramer

(d)

0.2 0.4 0.6 0.8 1.0
FPR

0.2

0.4

0.6

0.8

1.0

TP
R

Hexamer

(e)

0.2 0.4 0.6 0.8 1.0
FPR

0.2

0.4

0.6

0.8

1.0

TP
R

Octamer

(f)

Figure 2: The ROC curves of six classes.
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where 𝛾 is the width of the RBF function. To identify the
optimal 𝐶 and 𝛾, a systematic grid search was conducted for

𝐶 = {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100} 𝛾

= {0.0025, 0.005, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64,

1.28, 2.56, 5.12, 10.24}
(14)

by the 10-fold cross validation. Then we find the optimal 𝐶
and 𝛾 are 0.1 and 0.01 with the average AUC value 0.704.With
the best parameters, the average accuracy is 45.3% by 10-fold
cross validation. The predicting matrix is as follows; the 𝑟𝑤

𝑖𝑗

is the number of the 𝑖 class predicted as the 𝑗 class

RW =(

(

285 55 12 1 5 8
185 104 9 8 7 25
24 9 13 0 1 6
55 50 3 28 4 15
18 20 6 0 16 7
22 8 5 0 2 24

)

)

. (15)

The TPR, SPC, PPV,MCC, and AUC of every class are shown
in Table 3 and the ROC curves are shown in Figure 2. Fol-
lowing fromTable 3, Quad-PRE achieved higher overall ACC
81.7%, especially higher accuracy 92.8%, 93.3%, and 90.6%
on discrimination for trimer, hexamer, and octamer, respec-
tively. And overall SPC is 87.0%, especially 96.5%, 99.0%,
98.0%, and 93.8% on discrimination for trimer, tetramer,
hexamer, and octamer, respectively. These results show that
our hybrid method has high accuracy and specificity.

In addition, we can see that it is a little more difficult to
predict dimer from Figure 2, because the AUC for predicting
dimer is smaller than other oligomers. More specifically, the
AUC of dimer is 0.582, while those of monomer, trimer, tet-
ramer, hexamer, and octamer are 0.703, 0.702, 0.765, 0.711,
and 0.758, respectively (see Table 2). However, when com-
paring with the predicted results of Garian’s QSE [2] of
classifying homodimer and nonhomodimer, the ACC, SPC,
PPV, MCC, and AUC of Quad-PRE are all larger than QSE’s,
other than the TPR (see Table 4). Apparently, Quad-PRE
performs better than QSE’s (ROC curves of two methods are
shown in Figure 3).

3.2. Discussion with Six Feature Groups. For confirming our
generated new features (TOTAL) can improve the prediction
of protein quaternary structure attributes, we compared the
results from TOTAL features with those from each one of
the six feature sets (ART 1, ART 2, ART 3, BLAST, GLAM2,
and GIBBS), which are shown in Table 5.The ROC curves for
predicting every attribute by six sets are shown in Figure 4,
respectively.

From Figure 4, we can see that the average AUC, ACC,
TPR, SPC,and MCC of any of 6 features sets are all smaller
than TOTAL features except the PPV. In particular, there are
almost the same average SPC values for all feature sets. And
the two feature sets from both GIBBS and GLAM2 all do not
performwell in everymetric. FromTable 5 we also know that
ART 1, BLAST, ART 1, ART 1, BLAST, and ART 1 play key

QSE

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Quat PRE

Figure 3: The ROC curves comparison Quad-PRE with Garian’s
QSE.

roles in improving average ACC, TPR, SPC, PPV, MCC, and
AUC of our method, respectively, because the corresponding
values of them are close to those of TOTAL. These results
mean each feature set contributes to the improvement of our
hybrid method, especially ART 1 because the average ACC,
TPR, SPC, PPV, MCC, and AUC from which are almost
superior to others (see Table 5).

From the view of the average AUC, the importance of the
six feature sets from high to low is ART 1, ART 2, ART 3,
BLAST, GLAM2, and GIBBS (see Table 5). And the AUC val-
ues of ART 1, ART 2, and ART 3 for every protein attribute
are almost larger than those of BLAST, GIBBS, and GLAM2
(see Figure 4). We think that the possible reason should be
that the ART 1, ART 2, and ART 3 have much more features
than BLAST, GIBBS, and GLAM2. And because similar
sequences should have similar structures and functions, the
features from BLAST are superior to those from both GIBBS
and GLAM2 in the performance of SVM.

4. Conclusions

To predict protein quaternary structure attribute is indeed a
challenging problem. This paper presents a novel approach,
that is, Quad-PRE, to solve the problem. Quad-PRE starts
to consider the features about motifs generated by some
tools. From analysis results, we know the number of these
features is too little to play important roles in improving
the performance of our method, so that we will attempt to
find motif features more important in the future work. In
addition, Quad-PRE is a multistate method classifying mon-
omer, trimer, tetramer, hexamer, and octamer verywell, while
other previous methods to predict the quaternary structure
attributes are mostly for 2 states.

In fact, the hybrid method Quad-PRE is high accuracy
and specificity on discrimination for trimer, tetramer, hex-
amer, and octamer, respectively. But we compare the Garian’s
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Figure 4: Comparison with the ROC curves of different classes for different feature groups.
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Table 3: Predicted results with 𝐶 = 0.1 and gamma = 0.01.

Monomer Dimer Trimer Tetramer Hexamer Octamer Average
ACC 63.0% 63.8% 92.8% 87.0% 93.3% 90.6% 81.7%
TPR 77.9% 30.8% 24.5% 18.1% 23.9% 39.3% 35.7%
SPC 54.9% 79.8% 96.5% 99.0% 98.0% 93.8% 87.0%
PPV 48.4% 42.3% 27.1% 75.7% 45.8% 28.2% 44.6%
MCC 0.316 0.116 0.220 0.328 0.299 0.284 0.260
AUC 0.703 0.582 0.702 0.765 0.711 0.758 0.704

Table 4: Comparison with Garian’s method.

ACC TPR SPC PPV MCC AUC
Quad-PRE 63.8% 30.8% 79.8% 42.3% 0.116 0.582
QSE 46.2% 73.8% 32.6% 34.7% 0.065 0.522

Table 5: Comparison with results are generated by different feature groups.

ART 1 ART 2 ART 3 BLAST GLAM2 GIBBS Total
ave-ACC 42.4% 38.5% 39.9% 34.9% 23.7% 30.6% 43.5%
ave-TPR 23.9% 21.8% 23.2% 33.0% 22.7% 15.3% 35.7%
ave-SPC 85.5% 84.7% 85.1% 85.3% 84.5% 82.6% 87.0%
ave-PPV 50.5% 27.4% 28.9% 35.2% 20.5% 10.2% 44.6%
ave-MCC 0.153 0.090 0.111 0.189 0.051 −0.024 0.260
ave-AUC 0.680 0.662 0.661 0.660 0.573 0.510 0.704

QSE with our Quad-PRE using our dataset for confirming
our method is effective. The results show that our hybrid
method performs better than Garian’s QSE in predicting the
homodimmer or not from metrics ACC, SPC, PPV, MCC,
and AUC. In addition, we analyze the importance of the six
feature sets. The result clearly shows that each of six features
sets contributes to the improvement in prediction, especially
the ART 1 feature set. And three new feature sets gained
by BLAST, GLAM2, and GIBBS are all effective, because
these motif features describe the inherent properties of the
sequence inherent and the motifs in protein sequences can
help us to understand the structure and function of the
molecules the sequences represent [23].

In this paper, we did not consider feature selection
because we want to make full use of each feature as many
as possible and analyze the importance of each one of six
features sets. We believe that future improvements will be
possible by designing better sequence representations rather
than applying more complex classifiers.

Since user-friendly and publicly accessible web-servers
[24] represent the future direction for developing practically
more useful predictors, we shall make efforts in our future
work to provide aweb-server for themethod presented in this
paper.
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