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Abstract
OBJECT: Preoperative knowledge of meningioma grade is essential for planning treatment and surgery. The
purpose of this study was to investigate the diagnostic value of MRI texture and shape analysis in grading
meningiomas. METHODS: A surgical database was reviewed to identify meningioma patients who had undergone
tumor resection between January 2015 and December 2016. Preoperative MR images were retrieved and
analyzed. Texture and shape analysis was conducted to quantitatively evaluate tumor heterogeneity and
morphology. Three machine learning classifiers were trained with these features to build classification models.
The performance of the features and classification models was assessed. RESULTS: A total of 131 patients were
included in this study: 21 with high-grade meningiomas and 110 with low-grade meningiomas. Three texture
features were selected: Horzl_RLNonUni, S(2,2)SumOfSqs, and WavEnHL_s-3; three shape features were
selected: GeoFv, GeoW4, and GeoW5b. The Mann–Whitney test indicated that all six features were significantly
different between high-grade and low-grade meningiomas. AUC values were generally greater than 0.50 (range,
0.73 to 0.88). Sensitivities and specificities ranged from 47.62% to 90.48% and 69.09% to 96.36%, respectively.
Among the nine classification models obtained, the one built by training the SVM classifier with all six features
achieved the best performance, with a sensitivity, specificity, diagnostic accuracy, and AUC of 0.86, 0.87, 0.87,
and 0.87, respectively. CONCLUSIONS: Texture and shape analysis, especially when combined with a SVM
classifier, can provide satisfactory performance in the preoperative determination of meningioma grade and is thus
potentially useful for clinical application.
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Introduction
Meningioma is the most common intracranial tumor in adults
(36.6%) and has an annual incidence rate of 80.3 per million [1].
Although the majority of meningiomas are benign, a small subset
exhibit aggressive behavior [2]. According to the latest CBTRUS
report, high-grade meningiomas (grade 2 and 3) accounted for 18.6%
of all newly diagnosed meningiomas between 2009 and 2013 [1].
High histopathological grade has an association with increased tumor
recurrence and poor prognosis, and therefore, preoperative knowledge
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of meningioma grade is of considerable importance to aid in
treatment and surgical planning [3,4].
Traditional magnetic resonance imaging (MRI) remains the

preferred modality for preoperative assessment of meningioma.
Several studies have investigated imaging features capable of
differentiating between high-grade and low-grade meningiomas,
with the most frequently assessed features including tumor
heterogeneity, shape, size, and location; tumor-brain interface
(TBI); capsular enhancement (CapE); and peritumoral edema
[5–8]. The results indicated that some imaging features, such as
tumor heterogeneity, tumor shape, and TBI, had different
distributions between high-grade and low-grade meningiomas and
hence may be of diagnostic value in grading these tumors. However, a
Figure 1. Representative MR images to demonstrate differences in tu
heterogeneous enhancement (D-F), regular tumor shape (G-I), and
high-grade (including D, E, F, J, and K), and the other seven are low-
major limitation of these studies is that the assessed features were
measured subjectively, requiring considerable experience and exper-
tise, and therefore being subject to intra-observer and inter-observer
variability. This limitation restricts the use of the identified features in
clinical practice. As such, objective quantitative methods may be
better suited for clinical application.

Medical images, which are digitally represented as a series of
two-dimensional pixels, usually contain complex patterns (so-called
image texture). While certain patterns (such as brightness and
smoothness) can be observed qualitatively, many of these patterns
remain imperceptible to the naked eye. Texture analysis is a
well-established quantitative approach for image pattern recognition
and works by extracting objective information through analysis of the
mor heterogeneity and shape. Homogeneous enhancement (A-C),
irregular tumor shape (J-L). Of the twelve meningiomas, five are
grade.



Table 1. Summary of Different Texture Feature Categories

Category Texture Features Number

Histogram mean, variance, skewness, kurtosis, 1-% percentile, 10-%
percentile, 50-% percentile, 90-% percentile, and 99-% percentile

9

Gradient mean, variance, skewness, kurtosis, and percentage of pixels
with nonzero gradient

5

Run-length
matrix *

run length nonuniformity, gray level nonuniformity,
long run emphasis, short run emphasis, and fraction of image in runs

20

Co-occurrence
matrix †

angular second moment, contrast, correlation, sum of squares,
inverse difference moment, sum average, sum variance, sum entropy,
entropy, difference variance, and difference entropy

220

Wavelet
analysis

teta1, teta2, teta3, teta4, and sigma 5

Autoregressive
model ‡

WavEn 20

* Each feature in this category is computed for four directions for each tumor (d = 0°, 45°, 90°, and 135°).
† Each feature in this category is computed for four directions and five between-pixel distances for each

tumor (d = 0°, 45°, 90°, and 135°; θ = 1, 2, 3, 4, and 5).
‡ This feature is computed at five scales within four frequency bands; thus, the total number of features

calculated for this category is twenty.
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spatial distribution of intensity variations in images [9,10]. Texture
and shape analysis has been widely used to evaluate medical images
with promising results [11–16]. However, to the best of our
knowledge, no previous work has investigated the diagnostic value of
preoperative MRI texture and shape analysis for grading meningio-
mas. Because heterogeneity and irregular shape are potential
predictors for high-grade meningiomas (Figure 1), we hypothesized
that texture and shape analysis, which can objectively evaluate the two
features, could aid in meningioma grading. To test this hypothesis, we
selected six texture and shape features and then built classification
models using these features. Following this, the performance of the
features and models in meningioma grading was assessed.

Material and Methods

Patient Population
Data were collected from our institution, a university-affiliated

hospital. Approval from the institutional review board was obtained,
and written informed consent was waived due to the retrospective
nature of the study. We searched our departmental database for
consecutive patients with histopathological confirmation of menin-
gioma between January 2015 and December 2016. The exclusion
criteria were previous intracranial surgery, radiotherapy, or injury; and
incomplete preoperative MRI data.

Overall, 131 patients were included: 110 with low-grade (grade 1)
meningioma (29 male, 81 female; mean age 53.00 ± 8.28 years,
range 33–78 years) and 21 with high-grade meningioma (10 male, 11
female; mean age 52.38 ± 12.35 years, range 24–72 years). As part of
routine clinical care, tumor samples were obtained by surgical
resection, and histopathological diagnosis was made according to the
2007 World Health Organization (WHO) classification system for
meningioma [2].

MRI Acquisition
All patients were examined using one of two scanners (Siemens

Magnetom Avanto 1.5-T, and Siemens Magnetom Verio 3-T), each
with an 8-channel radiofrequency coil. The MRI protocol used the
following parameters: field of view, 230 × 230 mm; matrix size,
512 × 512; slice thickness, 5 mm; and flip angle, 90°. The repetition
time (TR)/echo time (TE) for the T1-weighted sequence (T1WI), the
T2-weighted sequence (T2WI), and the fluid-attenuated inversion
recovery (FLAIR) sequence were 500/8.4 ms, 9000/89 ms, and 9000/
105 ms, respectively. Contrast-enhanced T1-weighted images
(CE-T1WI) were obtained in the sagittal and axial planes after
intravenous administration of 0.2 ml/kg gadopentetate dimeglumine.
All images were digitally stored in Picture Archiving and Commu-
nication Systems (PACS; Carestream Vue PACS, 11.3.4, Carestream
Health, Rochester, NY, USA) and could be remotely accessed.

Image Analysis
Preoperative axial CE-T1WI images were retrieved and anon-

ymized for image analysis. During image analysis, the investigators
were blind to the patients' clinical information (sex, age, and tumor
grade), and were allowed to zoom in/out the images and adjust the
image levels/windows for better visualization. Two investigators (PFY
and LY) independently reviewed each patient's CE-T1WI slices using
MicroDicom (version 0.9.1, MicroDicom, Sofia, Bulgaria) to select
the slice with the largest tumor cross-section; in case of discrepancy,
consensus was achieved through discussion. Then, the corresponding
slice was imported into ITK-SNAP (version 3.6.0, University of
Pennsylvania) for tumor segmentation [17]. Each tumor was
manually delineated using the “polygon mode” tool; contrast
enhanced tissue and intratumoral cysts were included in the
segmentation, whereas capsular enhancement and peritumoral
edema were excluded. One investigator (PFY), experienced in the
use of ITK-SNAP, participated in this process with the guidance of a
neuroradiologist (ZZ, with 6 years of experience). As manual
segmentation is a difficult and tedious task, to avoid potential errors,
the investigators were asked to segment 10 images per day; they
completed the whole patient population in 2 weeks. One month later,
the two investigators together re-examined all the segmentations, and
modifications were made when both agreed. The segmentations were
then exported as BMP files, which would be used as region of interest
(ROI) for feature calculation.

Quantitative image analysis was performed with MaZda (version
4.6.0, Institute of Electronics, Technical University of Lodz, Lodz,
Poland), which has been specifically designed for analyzing texture
and shape features [18,19]. Before analysis, image intensities were
normalized between μ ± 3σ (μ: mean of image intensity inside the
ROI; σ: standard deviation); the range obtained was then quantized
to 6 bits/pixel. This procedure has been shown to reduce brightness
and contrast variations and can minimize the influence of
inter-scanner differences [20]. Then, 279 texture features (belonging
to six categories) and 73 shape features were calculated. The six
categories of texture feature included histogram-based parameters,
gradient-based parameters, run-length matrix-based parameters,
co-occurrence matrix-based parameters, wavelet parameters, and
autoregressive model parameters (Table 1). A detailed description of
these features could be found in previous literature [9,10].
Attempting to analyze too many texture and shape features is
clinically impractical and could influence classification performance;
therefore, we selected three top-ranked texture features and three
top-ranked shape features for further analysis using the “CfsSubse-
tEval” evaluator provided in the data mining software Weka (version
3.9.1, University of Waikato, New Zealand) [21,22].

Statistical Analysis
Statistical analysis was carried out using SPSS (version 22.0; SPSS

Inc., Chicago, IL, USA) with a significance level of 0.05. Categorical
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values were expressed as numbers (with percentages), and continuous
variables were expressed as the mean ± SD. The Mann–Whitney
U test was used to examine whether each feature was significantly
different between high-grade and low-grade meningiomas [23].
Receiver operating characteristic (ROC) curves were constructed for
each feature, and the corresponding area under curve (AUC) values
were calculated [24]. When calculating true-positive (TP),
false-positive (FP), true negative (TN), and false negative (FN)
rates, high-grade meningiomas were considered positive cases,
whereas low-grade meningiomas were considered negative cases.
Classification analysis was performed with Weka. Different classifi-
cation models were built using three machine learning classifiers:
logistic regression(LR), naive Bayes(NB), and support vector machine
(SVM). Ten-fold cross-validation was used to assess classification
performance [25]. Average accuracy, sensitivity, specificity, and AUC
values were calculated for each model.

Results
In total, 131 patients were enrolled, of which 21 (16.03%) had
high-grade meningiomas and 110 (83.97%) had low-grade menin-
giomas. The mean patient age was 52.89 ± 9.00 years (range, 24 to
78 years); 39 patients were male, and 92 were female (Table 2). The
female to male sex ratio was 2.36. The mean period between
preoperative MRI examination and surgery was 8.32 ± 3.55 days
(range, 1 to 26 days).
The selected top-ranked texture features were (1) Horzl_RLNonUni,

(2) S(2,2)SumOfSqs, and (3) WavEnHL_s-3; the top-ranked shape
features were (4) GeoFv, (5) GeoW4, and (6) GeoW5b. The Mann–
Whitney test showed that features 1, 2, 4, and 5 were significantly greater
in high-grade meningiomas (P values were =.0001, b.0001, =.0006, and
b.0001, respectively), whereas features 3 and 6 were significantly greater
in low-grade meningiomas (p values were =.0009 and b.0001,
respectively; Figure 2). The ROC curves for the individual features are
shown in Figure 3. The correspondingAUCswere 0.77, 0.79, 0.73, 0.74,
0.86, and 0.88 (Table 3); all of the values were significantly greater than
0.5, indicating their potential utility in meningioma grading.
Table 2. Clinical Characteristics of Patients

Characteristics High-Grade
Meningiomas (%; n = 21)

Low-Grade Meningiomas
(%; n = 110)

P value *

Age
N = 65 years 4 (19.05) 11 (10.00) = 0.41
b 65 years 17 (80.95) 99 (90.00)

Sex
male 10 (47.62) 29 (26.36) = 0.09
female 11 (52.38) 81 (73.64)

Tumor-brain interface
clear 7 (33.3) 83 (75.45) b 0.01
unclear 14 (66.7) 27 (24.55)

Peritumoral edema
present 13 (61.90) 42 (38.18) = 0.08
absent 8 (38.10) 68 (61.82)

Capsular enhancement
present 12 (57.14) 86 (78.18) = 0.08
absent 9 (42.86) 24 (21.82)

Tumor enhancement
homogenous 4 (19.05) 79 (71.82) b 0.01
heterogeneous 17 (80.95) 31 (28.18)

Tumor shape
regular 4 (19.05) 92 (83.64) b 0.01
irregular 17 (80.95) 18 (16.36)

* Calculated using the chi-square test.
We subsequently built and assessed several classification models.
The following feature subsets were assessed: (1) the three texture
features (feature subset 1), (2) the three shape features (feature subset
2), and (3) all six texture and shape features (feature subset 3). Each
subset was used to train the three classifiers. As a result, nine
classification models were obtained. A detailed summary of the
models' performance is presented in Table 4. The classification
accuracy and AUCs of the models were generally satisfactory, ranging
from 0.77–0.89 and 0.80–0.91, respectively. Among models built
using LR and NB classifiers, those trained with feature subset 1 and 2
demonstrated similar performance. Models trained with feature
subset 3 performed better and had a marked improvement in
sensitivity, indicating that a greater number of high-grade meningi-
omas could be correctly classified using these models. Among models
built using the SVM classifier, the one trained with feature subset 3
also demonstrated better performance with a marked improvement in
specificity, indicating that a greater number of low-grade meningi-
omas could be correctly classified with this model. The NB and SVM
classifiers performed better than the LR classifier in general, as they
provided comparable specificities (0.918 and 0.873 vs. 0.936) and
significantly higher sensitivities (0.762 and 0.857 vs. 0.667).

Discussion
Although the majority of primary tumors theoretically originate from
a single transformed cell and proliferate via clonal expansion, various
degrees of intratumoral heterogeneity are often observed. Intratu-
moral heterogeneity is thought to reflect differences in gene
expression, motility, metabolism, proliferation, angiogenesis and
other biological characteristics [26,27]. Modern imaging techniques,
including traditional MRI, offer an ideal approach for detecting such
heterogeneity in a quick, direct, and noninvasive manner. Several
studies have sought to determine the correlation between meningi-
oma heterogeneity and histopathological grade [6–8,28]. Results of
these studies are generally consistent with the view that heterogeneity
is a characteristic feature of high-grade meningiomas.

The finding that tumor shape is an indicator of malignancy is
controversial. Some studies have reported that irregular shape is
significantly correlated with meningioma aggressiveness. For example,
after reviewing the radiological features of seven malignant
meningiomas, New et al. found that mushrooming shape was the
most useful indicator of malignancy [29]. In another study by Nakasu
et al., one hundred and one patients with meningioma were enrolled.
These patients underwent surgery and were followed up for at least
five years or until tumor recurrence. Fifteen meningiomas recurred
during follow-up. Assessment of preoperative radiological examina-
tions revealed that tumor shape was the only significant predictive
factor for recurrence in univariate and multivariate analysis.
Compared with regular-shaped meningiomas, lobulated and mush-
rooming ones were more likely to recur [30]. However, these findings
are not supported by other studies. For instance, in a study by
Kawahara et al., irregular shape increased the likelihood of high-grade
meningioma in univariate analysis, but this correlation was not
significant in multivariate analysis [7].

We also assessed several classical radiological features using the same
data as in the present study. According to our results, three radiological
features were significantly different between high-grade and low-grade
meningiomas: tumor heterogeneity, tumor shape, and TBI. Heteroge-
neous enhancement, irregular shape, and unclear TBI were predictive
factors for high-grade meningioma. The corresponding odds ratios



Figure 2. Patient distributions for each of the six texture/shape features. Red dots represent high-grade meningiomas, and green dots
represent low-grade meningiomas. For features 1, 2, 4, and 5, the values for high-grade meningiomas are generally higher than those for
low-grade meningiomas. In contrast, for features 3 and 6, the values of low-grade meningiomas are generally higher than those for
high-grade meningiomas. This observation is consistent with Mann–Whitney test results, which indicated that all the features were
significantly different between the two meningioma groups.

Figure 3. ROC curves for each of the six texture/shape features for the prediction of high-grade meningiomas.
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Table 3. Results for ROC Analysis of Each Texture/Shape Feature

Feature Sensitivity Specificity AUC Standard error P value

Horzl_RLNonUni 76.19 69.09 0.77 0.06 b0.0001
S(2,2)SumOfSqs 61.9 90.00 0.79 0.06 b0.0001
WavEnHL_s-3 71.43 69.09 0.73 0.05 b0.0001
GeoFv 47.62 96.36 0.74 0.07 =0.0003
GeoW4 76.19 83.64 0.86 0.04 b0.0001
GeoW5b 90.48 74.55 0.88 0.04 b0.0001

able 4. Details Regarding the Performance of the Classification Models

Logistic Regression
(LR)

Naive Bayes
(NB)

Support Vector
Machine (SVM)

eature subset 1 *

True positive (TP) 9 12 18
False negative (FN) 12 9 3
True negative (TN) 104 101 83
False positive (FP) 6 9 27
Sensitivity 0.43 0.57 0.86
Specificity 0.95 0.92 0.76
Diagnostic accuracy 0.86 0.86 0.77
AUC 0.84 0.88 0.81
eature subset 2
True positive (TP) 9 13 17
False negative (FN) 12 8 4
True negative (TN) 104 101 88
False positive (FP) 6 9 22
Sensitivity 0.43 0.62 0.81
Specificity 0.95 0.92 0.80
Diagnostic accuracy 0.86 0.87 0.80
AUC 0.86 0.88 0.81
eature subset 3
True positive (TP) 14 16 18
False negative (FN) 7 5 3
True negative (TN) 103 101 96
False positive (FP) 7 9 14
Sensitivity 0.67 0.76 0.86
Specificity 0.94 0.92 0.87
Diagnostic accuracy 0.89 0.89 0.87
AUC 0.85 0.91 0.87

* Feature subset 1 contains the three texture features (Horzl_RLNonUni, S(2,2)SumOfSqs, and
avEnHL_s-3), feature subset 2 contains the three shape features (GeoFv, GeoW4, and GeoW5b), and

feature subset 3 contains all six features.
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(ORs) were 5.63 (95% CI 1.25–25.41, P = .0247), 6.32 (95% CI
1.47–27.14, P = .0132), and 3.82 (95% CI 0.97–15.12, P = .0559)
(data not published).
One limitation of the above studies is that all radiological features

were assessed subjectively. Thus, the analysis could have been
influenced by factors such as intra-observer and inter-observer
variability. Objective methods, in contrast, can provide quantitative
evaluation and are more desirable for clinical application. We
searched PubMed and Google scholar, and found only a few studies
that had attempted to investigate the value of objective methods for
the preoperative determination of meningioma grade. In a study by
Schob et al., 66 meningioma patients were included, 10 with
high-grade and 56 with low-grade tumors. The authors segmented
the tumors and objectively measured their signal intensities in T1WI,
FLAIR, and CE-T1WI, and no significant differences were found
between the two groups [31]. In another study by Czyz et al., a
method called fractal analysis was used for objective assessment. The
average fractal dimension (FDa) and maximum fractal dimension
(FDm) were found to be significantly higher in high-grade
meningiomas, indicating that fractal analysis was potentially useful
for meningioma grading [32].
In the present study, we used texture and shape analysis to

quantitatively evaluate tumor heterogeneity and shape. The three
texture features obtained were Horzl_RLNonUni, S(2,2)SumOfSqs,
and WavEnHL_s-3. Horzl_RLNonUni was a run-length
matrix-based parameter, being one form of “run length nonunifor-
mity” with θ being 0°; S(2,2)SumOfSqs was a co-occurrence
matrix-based parameter, being one form of “sum of squares” with θ
being 45°and d being 2; and WavEnHL_s-3 was a wavelet parameter.
As the three features belonged to three different texture categories,
they could be considered to reflect different aspects of tumor
heterogeneity. The three shape features obtained were GeoFv,
GeoW4, and GeoW5b. GeoFv was the vertical Feret's diameter;
GeoW4 = GeoU1/GeoUw, where GeoU1 was the profile
specific perimeter and GeoUw was the convex perimeter; and
GeoW5b = GeoLsz/GeoF, where GeoLsz was the skeleton length
andGeoF was the area (i.e., number of pixels inside the tumor; Figure 4).
According to the definitions of these shape features, they were not closely
correlated with each other and hence could be considered to reflect
different aspects of tumor morphology.
The main goal of our study was to grade meningiomas based on

preoperative MRI. As each of the above six features contained specific
information regarding tumor heterogeneity or morphology, it was
reasonable to expect that combining these features would result in
better classification performance. We built nine classification models
by training three machine learning classifiers with these features. As
expected, models built with all six features (feature subset 3)
performed better than those built with fewer features. In addition, the
SVM classifier seemed superior to the LR and NB classifiers, as it
provided balanced performance in terms of sensitivity, specificity,
diagnostic accuracy, and AUC. This finding is consistent with some
previous reports demonstrating that SVM classifiers performed well
on medical classification problems [33–35]. As there is readily
available software to carry out texture/shape analysis and build
classification models (such as MaZda, TexRad, Weka, Orange, and
scikit-learn), it would not be difficult for clinicians to carry out such
analyses in clinical settings.

This study has several limitations. First, compared with the
low-grade cases, the number of high-grade cases was small (21 vs.
110). This data imbalance is similar to previous related studies, and
the primary explanation appears to be the relatively low incidence of
high-grade meningioma [6–8,31]. Second, some degree of selection
bias may exist. We excluded patients whose preoperative MR images
were not available in PACS, and these excluded tumors could have
unique heterogeneity and morphology properties that would have
influenced the results of our analysis. Third, a manual approach was
adopted to segment tumors in this study. Although manual
segmentation generally works better than automatic methods and
two investigators participated in the segmentation process, segmen-
tation errors could still exist. Fourth, as mentioned before, the MR
images in this study were obtained with two different machines. This
may have influenced image quality and subsequent analysis.
However, according to a previous study by Herlidou-Meme et al.,
texture analysis based on different MRI systems was highly
reproducible. In addition, we applied a normalization technique
before image analysis to reduce the effect of inter-scanner differences.
Therefore, the influence of this factor should have been small.

Conclusions
In this study, we investigated the diagnostic value of preoperative MRI
texture and shape analysis for meningioma grading. Three texture
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Figure 4. Illustration of the selected shape features. Original image (A), tumor segmentation (B), the vertical Feret's diameter (C), the
profile specific perimeter (D), the convex perimeter (E), and the skeleton length (F).
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features (Horzl_RLNonUni, S(2,2)SumOfSqs, and WavEnHL_s-3)
and three shape features (GeoFv, GeoW4, and GeoW5b) were shown
to be helpful in the determination of meningioma grade. Classification
models built with these features provided generally satisfactory results.
Our findings suggest that texture and shape analysis is potentially a
useful tool for preoperative differentiation of high-grade and low-grade
meningiomas in clinical practice.

Funding sources
This research did not receive any specific grant from funding agencies
in the public, commercial, or not-for-profit sectors.

Conflicts of interest
None.

Acknowledgements
None.

References

[1] Ostrom QT, Gittleman H, Xu J, Kromer C, Wolinsky Y, Kruchko C, and
Barnholtz-Sloan JS (2016). CBTRUS Statistical Report: Primary Brain and Other
Central Nervous System Tumors Diagnosed in the United States in 2009–2013.
Neuro Oncol 18(Suppl. 5), v1–75. http://dx.doi.org/10.1093/neuonc/now207.
[2] Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A,
Scheithauer BW, and Kleihues P (2007). The 2007 WHO classification of
tumours of the central nervous system. Acta Neuropathol 114(2), 97–109. http:
//dx.doi.org/10.1007/s00401-007-0243-4.

[3] Marosi C, Hassler M, Roessler K, Reni M, Sant M, Mazza E, and Vecht C
(2008). Meningioma. Crit Rev Oncol Hematol 67(2), 153–171. http:
//dx.doi.org/10.1016/j.critrevonc.2008.01.010.

[4] McCarthy BJ, Davis FG, Freels S, Surawicz TS, Damek DM, Grutsch J, Menck
HR, and Laws Jr ER (1998). Factors associated with survival in patients with
meningioma. J Neurosurg 88(5), 831–839.

[5] Hashiba T, Hashimoto N, Maruno M, Izumoto S, Suzuki T, Kagawa N, and
Yoshimine T (2006). Scoring radiologic characteristics to predict proliferative
potential in meningiomas. Brain Tumor Pathol 23(1), 49–54. http:
//dx.doi.org/10.1007/s10014-006-0199-4.

[6] Hsu CC, Pai CY, Kao HW,Hsueh CJ, HsuWL, and Lo CP (2010). Do aggressive
imaging features correlate with advanced histopathological grade in meningiomas? J
Clin Neurosci 17(5), 584–587. http://dx.doi.org/10.1016/j.jocn.2009.09.018.

[7] Kawahara Y, Nakada M, Hayashi Y, Kai Y, Hayashi Y, Uchiyama N, Nakamura
H, Kuratsu JI, and Hamada JI (2012). Prediction of high-grade meningioma by
preoperative MRI assessment. J Neurooncol 108(1), 147–152. http:
//dx.doi.org/10.1007/s11060-012-0809-4.

[8] Lin BJ, Chou KN, Kao HW, Lin C, Tsai WC, Feng SW, Lee MS, and Hueng
DY (2014). Correlation between magnetic resonance imaging grading and
pathological grading in meningioma: Clinical article. J Neurosurg 121(5),
1201–1208. http://dx.doi.org/10.3171/2014.7.JNS132359.

[9] Haralick RM and Shanmugam K (1973). Textural features for image
classification. IEEE Trans Syst Man Cybern 3(6), 610–621. http:
//dx.doi.org/10.1109/TSMC.1973.4309314.

http://refhub.elsevier.com/S1936-5233(17)30139-0/rf0020
http://refhub.elsevier.com/S1936-5233(17)30139-0/rf0020
http://refhub.elsevier.com/S1936-5233(17)30139-0/rf0020
http://dx.doi.org/10.1007/s00401-007-0243-4
http://dx.doi.org/10.1007/s00401-007-0243-4
http://dx.doi.org/10.1016/j.critrevonc.2008.01.010
http://dx.doi.org/10.1016/j.critrevonc.2008.01.010
http://dx.doi.org/10.1007/s10014-006-0199-4
http://dx.doi.org/10.1007/s10014-006-0199-4
http://dx.doi.org/10.1007/s11060-012-0809-4
http://dx.doi.org/10.1007/s11060-012-0809-4
http://dx.doi.org/10.1019/TSMC.1973.4309314
http://dx.doi.org/10.1019/TSMC.1973.4309314


Translational Oncology Vol. 10, No. 4, 2017 Preoperative MRI texture and shape analysis in grading meningioma Yan et al. 577
[10] Haralick RM (1979). Statistical and structural approaches to texture. Proc IEEE
67(5), 786–804. http://dx.doi.org/10.1109/PROC.1979.11328.

[11] Bayanati H, Thornhill RE, Souza CA, Sethi-Virmani V, Gupta A, Maziak D,
Amjadi K, and Dennie C (2015). Quantitative CT texture and shape analysis:
Can it differentiate benign and malignant mediastinal lymph nodes in patients
with primary lung cancer? Eur Radiol 25(2), 480–487. http:
//dx.doi.org/10.1007/s00330-014-3420-6.

[12] Hodgdon T, McInnes MD, Schieda N, Flood TA, Lamb L, and Thornhill RE
(2015). Can quantitative CT texture analysis be used to differentiate fat-poor
renal angiomyolipoma from renal cell carcinoma on unenhanced CT images?
Radiology 276(3), 787–796. http://dx.doi.org/10.1148/radiol.2015142215.

[13] Skogen K, Schulz A, Dormagen JB, Ganeshan B, Helseth E, and Server A (2016).
Diagnostic performance of texture analysis on MRI in grading cerebral gliomas.
Eur J Radiol 85(4), 824–829. http://dx.doi.org/10.1016/j.ejrad.2016.01.013.

[14] Sogawa K, Nodera H, Takamatsu N, Mori A, Yamazaki H, Shimatani Y, Izumi
Y, and Kaji R (2017). Neurogenic and myogenic diseases: Quantitative texture
analysis of muscle US data for differentiation. Radiology 160826. http:
//dx.doi.org/10.1148/radiol.2016160826.

[15] Waugh SA, Purdie CA, Jordan LB, Vinnicombe S, Lerski RA, Martin P, and
Thompson AM (2016). Magnetic resonance imaging texture analysis classifica-
tion of primary breast cancer. Eur Radiol 26(2), 322–330. http:
//dx.doi.org/10.1007/s00330-015-3845-6.

[16] Zacharaki EI, Wang S, Chawla S, Soo Yoo D, Wolf R, Melhem ER, and
Davatzikos C (2009). Classification of brain tumor type and grade using MRI
texture and shape in a machine learning scheme. Magn Reson Med 62(6),
1609–1618. http://dx.doi.org/10.1002/mrm.22147.

[17] Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, and Gerig G
(2006). User-guided 3D active contour segmentation of anatomical structures:
significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128.
http://dx.doi.org/10.1016/j.neuroimage.2006.01.015.

[18] Strzelecki M, Szczypinski P, Materka A, and Klepaczko A (2013). A software tool for
automatic classification and segmentation of 2D/3D medical images. Nucl Instrum
Methods Phys Res, Sect A 702, 137–140. http://dx.doi.org/10.1016/j.nima.2012.09.006.

[19] Szczypiński PM, Strzelecki M, Materka A, and Klepaczko A (2009). MaZda—a
software package for image texture analysis. Comput Methods Programs Biomed
94(1), 66–76. http://dx.doi.org/10.1016/j.cmpb.2008.08.005.

[20] Collewet G, Strzelecki M, and Mariette F (2004). Influence of MRI acquisition
protocols and image intensity normalization methods on texture classification.
Magn Reson Imaging 22, 81–91. http://dx.doi.org/10.1016/j.mri.2003.09.001.

[21] Guyon I and Elisseeff A (2003). An introduction to variable and feature selection.
J Mach Learn Res 3(Mar), 1157–1182.
[22] Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, and Witten IH
(2009). The WEKA data mining software: an update. ACM SIGKDD
Explorations Newsl 11(1), 10–18. http://dx.doi.org/10.1145/1656274.1656278.

[23] Mann HB and Whitney DR (1947). On a test of whether one of two random
variables is stochastically larger than the other. Ann Math Stat 1, 50–60.

[24] Fawcett T (2006). An introduction to ROC analysis. Pattern Recogn lett 27(8),
861–874. http://dx.doi.org/10.1016/j.patrec.2005.10.010.

[25] Kohavi R (1995). A study of cross-validation and bootstrap for accuracy
estimation and model selection. InIjcai 14(2), 1137–1145.

[26] Bedard PL, Hansen AR, Ratain MJ, and Siu LL (2013). Tumour heterogeneity in
the clinic. Nature 501(7467), 355–364. http://dx.doi.org/10.1038/nature12627.

[27] MarusykA andPolyakK (2010).Tumorheterogeneity: causes and consequences.Biochim
Biophys Acta 1805(1), 105–117. http://dx.doi.org/10.1016/j.bbcan.2009.11.002.

[28] Dietemann JL, Heldt N, Burguet JL, Medjek L, Maitrot D, and Wackenheim A
(1982). CT findings in malignant meningiomas.Neuroradiology 23(4), 207–209.
http://dx.doi.org/10.1007/BF00342542.

[29] New PF, Hesselink JR, O'Carroll CP, and Kleinman GM (1982). Malignant
meningiomas: CT and histologic criteria, including a new CT sign. Am J
Neuroradiol 3(3), 267–276.

[30] Nakasu S, Nakasu Y, Nakajima M, Matsuda M, and Handa J (1999).
Preoperative identification of meningiomas that are highly likely to recur. J
Neurosurg 90(3), 455–462.

[31] Schob S, Frydrychowicz C, Gawlitza M, Bure L, Preuß M, Hoffmann KT, and
Surov A (2016). Signal Intensities in Preoperative MRI Do Not Reflect
Proliferative Activity in Meningioma. Transl Oncol 9(4), 274–279. http:
//dx.doi.org/10.1016/j.tranon.2016.05.003.

[32] CzyzM, RadwanH, Li JY, Filippi CG, Tykocki T, and SchulderM (2017). Fractal
Analysis May Improve the Preoperative Identification of Atypical Meningiomas.
Neurosurgery 80(2), 300–308. http://dx.doi.org/10.1093/neuros/nyw030.

[33] Emblem KE, Zoellner FG, Tennoe B, Nedregaard B, Nome T, Due-Tonnessen
P, Hald JK, Scheie D, and Bjornerud A (2008). Predictive modeling in glioma
grading from MR perfusion images using support vector machines. Magn Reson
Med 60(4), 945–952. http://dx.doi.org/10.1002/mrm.21736.

[34] Juntu J, Sijbers J, De Backer S, Rajan J, and Van Dyck D (2010). Machine
learning study of several classifiers trained with texture analysis features to
differentiate benign from malignant soft-tissue tumors in T1-MRI images. J
Magn Reson Imaging 31(3), 680–689. http://dx.doi.org/10.1002/jmri.22095.

[35] Larroza A, Moratal D, Paredes-Sánchez A, Soria-Olivas E, Chust ML, Arribas
LA, and Arana E (2015). Support vector machine classification of brain
metastasis and radiation necrosis based on texture analysis in MRI. J Magn Reson
Imaging 42(5), 1362–1368. http://dx.doi.org/10.1002/jmri.24913.

http://refhub.elsevier.com/S1936-5233(17)30139-0/rf0105
http://refhub.elsevier.com/S1936-5233(17)30139-0/rf0105
http://refhub.elsevier.com/S1936-5233(17)30139-0/rf0115
http://refhub.elsevier.com/S1936-5233(17)30139-0/rf0115
http://refhub.elsevier.com/S1936-5233(17)30139-0/rf0125
http://refhub.elsevier.com/S1936-5233(17)30139-0/rf0125
http://refhub.elsevier.com/S1936-5233(17)30139-0/rf0145
http://refhub.elsevier.com/S1936-5233(17)30139-0/rf0145
http://refhub.elsevier.com/S1936-5233(17)30139-0/rf0145
http://refhub.elsevier.com/S1936-5233(17)30139-0/rf0150
http://refhub.elsevier.com/S1936-5233(17)30139-0/rf0150
http://refhub.elsevier.com/S1936-5233(17)30139-0/rf0150
http://dx.doi.org/10.1007/s00330-014-3420-6
http://dx.doi.org/10.1007/s00330-014-3420-6
http://dx.doi.org/10.1148/radiol.2016160826
http://dx.doi.org/10.1148/radiol.2016160826
http://dx.doi.org/10.1007/s00330-015-3845-6
http://dx.doi.org/10.1007/s00330-015-3845-6
http://dx.doi.org/10.1016/j.tranon.2016.05.003
http://dx.doi.org/10.1016/j.tranon.2016.05.003

	The Potential Value of Preoperative MRI Texture and Shape Analysis in Grading Meningiomas: A Preliminary Investigation
	Introduction
	Material and Methods
	Patient Population
	MRI Acquisition
	Image Analysis
	Statistical Analysis

	Results
	Discussion
	Conclusions
	Funding sources
	Conflicts of interest
	Acknowledgements
	References


