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Abstract: Accelerated land use and land cover changes affect regional landscape patterns and change
the ecological environment, including soil conservation capabilities. This is not conducive to the
sustainable development of human society. In this research, we explored the land use change pattern
and landscape change pattern in western Hubei from 2000 to 2020. Using the Chinese soil loss
equation and stepwise regression, we measure how landscape patterns affect soil erosion under land
use and cover changes in western Hubei Province. The results show that average soil erosion in
the mountainous areas of western Hubei tended to increase from 2000 to 2010 and decrease from
2010 to 2020; soil erosion was higher in the western than in the eastern part of the study area. The
land in areas with high-intensity and low-intensity soil erosion was mainly waterfront/grassland
and cropland/forestland, respectively, and the area of moderate to severe soil erosion was greatest
when the slope was 10–20◦. When the slope exceeded 20◦, the soil erosion area of each grade tended
to decrease; thus, 20◦ is the critical slope for soil erosion in the study area. The landscape pattern
in mountainous areas changed dramatically from 2000 to 2020. At the landscape level, landscape
fragmentation increased and connectivity decreased, but the area of landscape diversity was stable.
Soil erosion in western Hubei was positively correlated with the contiguity index, aggregation index
and largest patch index but negatively correlated with the Shannon evenness index. The higher the
landscape fragmentation and the greater the accumulation of single land-use types, the more severe
the soil erosion is, while the higher the landscape connectivity and the richer the landscape diversity,
the less severe the soil erosion is. The results can inform regional landscape management and soil
conservation research.

Keywords: soil erosion; landscape pattern; land use and land cover change; correlation analysis

1. Introduction

Soil erosion processes have been affected by human activities [1,2]. The increase in soil
erosion rates across landscapes can be observed around the world [3,4]. For over a century,
the scientific community has been analyzing the soil erosion process [5,6] and dealing
with the negative impacts that soil erosion has on the socioenvironment [7,8]. Research
on the mechanics of soil erosion has facilitated the study of developing quantitative soil
erosion prediction equations based on physical factors such as climate, soil characteristics,
vegetation type, and topography [9,10]. Traditional soil erosion prediction methods require
large investments in money, time, and field work [11]. The trend of soil erosion prediction
methods is to obtain soil erosion prediction results that meet the requirements within
a certain accuracy range and with limited data input. With the well-established use of
geospatial technologies such as geographic information systems (GIS), spatial interpolation
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techniques, and the ever-growing range of environmental data, today, research around the
world has proposed over 435 distinct soil erosion models, which are playing an increasingly
important role in the design and implementation of soil management and conservation
strategies [12,13]. Among these models, the universal soil loss equation (USLE) and the
revised universal soil loss equation (RUSLE) are the most widely applied models on a
global scale [14]. Compared to models based on physical processes (e.g., WEPP and
EUROSEM), the USLE has a simpler structure and requires fewer data, so it is widely used
for hydroerosion studies at different scales (e.g., intercontinental, national, and state) [14,15].
Therefore, the applications of models belonging to the (R)USLE family are growing [14,16].

In China, the unprecedented urban construction, road and railroad construction
and new agricultural and forestry development in the twenty-first century, along with
the increase in the intensity of human activities and unreasonable land use, has led to
changes in regional topographic conditions, the destruction of vegetation resources and
the deterioration of soil characteristics, in turn intensifying soil erosion [3,17,18]. Under
this background, the (R)USLE family is also widely used for soil erosion prediction in
China to provide scientific references for regional land use management [16]. Considering
the unique soil erosion characteristics and long-established erosion control measures of
China, Liu Baoyuan established the Chinese soil loss equation (CSLE) based on the revised
universal soil loss equation (RUSLE) [19,20]. To gain insight into regional soil erosion
characteristics and provide a better reference for regional soil management and land use
strategies, scholars applied the CSLE model with geospatial technologies to explore the
influence of land use change on soil erosion. Jing Liu and Honghu Liu (2020) calculated
the soil erosion modulus of sheet and rill erosion by the CSLE and estimated the amount
of gully erosion by gully volume based on a generalized inverted triangular pyramid
model multiplied by bulk density [21]. Lin et al. (2020) investigated the spatiotemporal
distribution of soil erosion by the CLSE and further quantified the factors influencing
soil erosion in the Three Gorges Reservoir Area by GeoDetector [22]. Huang et al. (2020)
explored the impact of land use and slope on soil erosion in the Jiuyuangou watershed by
using the CSLE [23]. Environmental patterns strongly influence ecological processes [24–26].
Anthropogenic activities (e.g., farming, timber harvest) can disrupt the structural integrity
of landscapes, which would influence ecological services, including soil conservation,
across the landscape [27–30]. Understanding the influence of landscape pattern change on
regional soil erosion could aid in the design of land development plans conducive to soil
and water conservation in regional land use layouts [31–33]. Although existing researchers
have investigated the relationship between land cover change and soil erosion [34–37], few
researchers have explored the relationship between landscape and soil erosion [26,38].

According to the 2019 Hubei Soil and Water Conservation Bulletin, the soil erosion
area in Hubei is 32,024.77 km2, the soil erosion type is mainly hydraulic erosion, the soil
erosion area accounts for 17.22% of the national land area of China, and the erosion intensity
is much higher than the allowable intensity [39]. In recent years, with the implementation
of the national project of returning farmland to forest and grass (Grain for Green) [40,41]
and the soil and water conservation project [42,43], the area of sloping and bare land has
been reduced. However, there is still a large amount of soil loss and a large area of loss.
Soil erosion leads to a decrease in cropland and thinning of the arable layer, which affects
food security [44]. Furthermore, soil erosion causes flash floods and mudslides [45], which
affect the economic and social development of mountainous areas [46].

Based on the existing research on the improvement of soil erosion prediction models,
the soil erosion problems faced in western Hubei Province, and the lack of research on
the relationship between regional landscape pattern change and soil erosion in western
Hubei. This study attempts to answer the following questions: (1) What are the spatial
characteristics of land use change and soil erosion change in western Hubei from 2000–2020?
(2) How did the overall landscape of western Hubei change from 2000–2020? How did
the landscape patterns of different land covers (cropland, forestland, grassland, water
bodies, built-up area, bare) in the study area change? (3) What kinds of landscape pattern
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characteristics are associated with soil erosion in each county of western Hubei? How
relevant is it? To answer question (1), we combined meteorological data, soil data and
remote sensing data, using Geo-information Tupu to derive regional land use and land
cover change characteristics and using CSLE to calculate regional soil erosion in 2000,
2005, 2010, 2015 and 2020. To answer (2), we used Fragstat 4.2 software to calculate
landscape indicators from four perspectives (area and edge, shape, aggregation, diversity
characteristics of landscape.). To answer question (3), we combined the results of the
soil erosion calculations and the landscape pattern indicator calculations with stepwise
regression analysis using SPSS 25 software. This study provides scientific guidance and
a decision-making basis for the optimal allocation of land resources and effective control
of soil erosion in the mountainous areas of western Hubei Province by understanding the
spatial and temporal layout of soil erosion and the relationship between land landscape
patterns and soil erosion in each county. The framework of this study is shown in Figure 1.
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2. Study Area and Data Sources
2.1. Study Area

Western Hubei Province is composed of eight cities: Xiangyang (X.Y.), Yichang (Y.C.),
Jingzhou (J.Z.), Jingmen (J.M.), Shiyan (S.Y.), Suizhou (S.Z.), Enshi (E.S.), and Shennongjia
(S.N.J.) (Figure 2). It includes two provincial subcenter cities, Xiangyang and Yichang, and
the only minority autonomous state in Hubei Province, Enshi Tujia and Miao Autonomous
Prefecture. The total population and area of the territory account for 50% and 70% of
those of Hubei Province, respectively. It is an area rich in ecological and cultural tourism
resources in Hubei Province. In the past two decades, urbanization and industrialization
have changed regional land cover rapidly. By overlaying China’s land use remote sensing
monitoring data in 2000 and 2020, we found that between 2000 and 2020, 26.27% of the
cropland in western Hubei Province was converted to forestland, and 5.03% of cropland
and 5.06% of the water area were converted to built-up areas, which shows that land use
and land cover have dramatically changed, in turn altering the regional ecosystem and
ecological services and affecting regional soil conservation.
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2.2. Data Sources

The data in this research are summarized in Table 1. The land use and land cover
(LULC) dataset were derived by the human-computer interactive interpretation method of
remotely sensed land cover information to interpret the Landsat TM digital images (Landsat
5 TM (2000, 2005, 2010); Landsat 8 OLI (2015, 2020)) covering China. This dataset includes
6 classes and 25 subclasses of land use. The six classes of land use include cropland,
forestland, grassland, water bodies, built-up land, and unused land. The accuracy of
the 6 classes of land use was above 94.3% [47,48]. The meteorological dataset includes
daily wind direction, daily wind speed, daily precipitation, daily air pressure, and daily
temperature [49]. The soil data included the sand, silt, clay, and organic contents of
the soil (%) [50]. The annual normalized vegetation index (NDVI) dataset for China was
derived from the maximum value of the SPOT/VEGETATION PROBA-V 1 KM PRODUCTS
decadal NDVI dataset (http://www.vito-eodata.be (accessed on 10 January 2020)) [48].
ASTER Global Digital Elevation Model (ASTERGDEM) data from the Geospatial Data
Cloud (www.giscloud.cn (accessed on 10 January 2020)) [51]. The data were resampled to a
resolution of 1 km × 1 km.

Table 1. Data description.

Data Name Data Source Time Units/Resolution

Depth to bedrock map of China Scientific data [52] 2018 100 m × 100 m

Soil data Harmonized World Soil
Database (HWSD) [50] 2012 1000 m × 1000 m

Land-use/land cover data Resource and Environment
Science and Data Center [48]

2000; 2005; 2010; 2015; 2020
30 m × 30 m

Normalized difference vegetation index 1000 m × 1000 m

Meteorological data
Meteorological Data Center of

China Meteorological
Administration [49]

2000–2020 Daily

Digital elevation model Geospatial Data Cloud [51] 2008 30 m × 30 m

http://www.vito-eodata.be
www.giscloud.cn
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3. Methods
3.1. Geo-Information Tupu

Geo-information Tupu is the visualization of “space and process” research. The map
unit codes of the land cover types of the previous two periods are overlayed to record the
evolution process of the land use pattern [53].

C = 10 × A + B (1)

where C is the map unit grid map that characterizes the evolution characteristics of the
land use pattern during the study period. A is the map unit grid attribute value of the land
use type of the study area in the previous period. B is the land use type of the study area in
the later period. Based on the remote sensing monitoring data of land cover status, this
paper assigns 6 land cover types as 1–6 based on arable land, forestland, grassland, water
area, building land and unused land and uses the raster calculator function of ArcGIS 10.7
software to calculate the land use change pattern mapping characteristics of western Hubei
Province from 2000–2005–2010–2015–2020.

3.2. Chord Diagram Analysis of Land Cover Change

The chord diagram is mainly used to show the relationship between multiple
objects [54,55]. The line segment connecting any two points on the circle is called the
chord, and the chord (the line between the two points) represents the relationship between
the two. The chord diagram can reflect the number of transitions and flow relationships
between different territorial spaces in the evolution of territorial space and visualize them.
The wider the width of the chord (connecting line), the higher the number of transitions
between different territorial spaces. This article uses Power BI software to visualize the
transition of different land cover types.

3.3. Chinese Soil Loss Equation (CSLE)

We used the CSLE:
A = R · K · L · S · B · E · T (2)

where A is the soil loss in t·ha−1·yr−1. The calculation steps for other factors in this formula
are as follows. R is the rainfall erosivity in MJ·mm·ha−1·yr−1. K is the soil erodibility in
t·h·MJ−1·mm−1.·L and S are dimensionless topographic factors of slope length and slope
steepness. B is the dimensionless vegetation cover factor of biological practices for trees,
shrubs, and grasslands. E is the dimensionless factor of engineering practices. T is the
dimensionless factor of tillage practices. Details of the computational steps are given in Li
Qing (2021) et al. [56]. The western part of Hubei Province is a typical hydraulic erosion
area, and according to the Soil Erosion Classification and Grading Standard (SL190-2007)
issued by the Ministry of Water Resources of China, soil erosion is divided into six classes
(Table 2).

Table 2. The standard for soil erosion level.

Soil Erosion
Level Slight Light Moderate High Very High Severe

Soil erosion rate
(t·ha−1·yr−1) <200 200–2500 2500–5000 5000–8000 8000–

15,000 >15,000

3.4. Landscape Pattern Analysis

We calculated the landscape index to quantify the landscape change pattern from
2000 to 2020 using Fragstat 4.2 software (University of Massachusetts Amherst, Amherst,
MA, USA). There are three main types of landscape metrics, including patch-level metrics,
class-level metrics, and landscape-level metrics. Patch metrics are defined for individual
patches and characterize the spatial character and context of patches. Class metrics are
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integrated over all the patches of a given type (class). Landscape metrics are integrated
over all patch types or classes over the full extent of the data (i.e., the entire landscape) [57].
Our research questions were (1) how the whole landscape in western Hubei changed from
2000 to 2020, (2) how the landscape pattern of each land use and land cover type (cropland,
forestland, grassland, water bodies, bare land) changed from 2000 to 2020, and (3) which
landscape index had a significant relationship with the soil erosion of each county. Thus, we
performed the analysis at the landscape level and class level. The landscape metrics were
selected according to the aspect of landscape index measuring and the most commonly
used metrics in a previous study [26,58,59] (Table 3). See Appendix A for a brief description
of each index (Table A1) [57].

Table 3. Landscape index selected at class-level analysis, landscape-level analysis, and
regression analysis.

The Aspect of
Landscape Pattern
Measured

Landscape Metrics

Landscape-Level Metrics Class-Level Metrics Regression Analyze

Area and edge AREA_MN CA; PLAND; ED; LPI LPI

Shape
SHAPE_MN;

CONTIG_MN;
FRAC_MN

FRAC_MN;
CONTIG_MN

Aggregation NP AI; PD AI; PD; CONTAG; LSI; NP

Diversity SHEI SHDI; SHEI

Note: AI—Aggregation Index; CA—Class Area; CONTIG—Contiguity Index; CONTAG—Contagion; ED—Edge
Density; FRAC—Fractal Dimension Index; LPI—Largest Patch Index; LSI—Landscape Shape Index; NP—Number
of Patches; PLAND—Percentage of Landscape; PD—Patch Density; SHDI—Shannon’s Diversity Index; SHEI—
Shannon’s Evenness Index.

3.5. Regression Analysis

Stepwise regression analysis of soil erosion and landscape patterns were conducted
by SPSS 25 software to investigate which landscape pattern index influences regional soil
erosion. Its essence is to establish the “optimal” multiple linear regression equation. The
basic idea of the stepwise regression analysis method is to automatically select the most
important variable from available variables to establish a prediction or explanation model
for regression analysis [60]. The steps are as follows: add the independent variables to
the regression one by one, and check whether the square of the partial regression of the
regression equation is significant. After each new independent variable is added, the
old independent variables are tested one by one, and the independent variables with
insignificant sum of squares of partial regression are eliminated. This continues to be added
and removed until neither the new variable is added nor the old variable is deleted.

4. Results
4.1. Land Cover Change from 2000 to 2020 in Western Hubei Province

From 2000 to 2020, there were 31 types of land use conversion units with temporal
heterogeneity (different land use types in different periods) in the study area (Figure 3).
The years with the most dramatic change were 2015–2020, with a total area of 9847.15 km2.
The 31 types of land use conversion units were sorted according to their size, and the
sum of the areas of the first 16 types of conversion units accounted for 97.32% of the total
conversion area (Figure 4). The most drastically changed land type from 2000 to 2005
was from arable land to water area (C–W in Figure 3), accounting for 29.48% of the total
converted area, mainly distributed in the plains of Jingzhou city. The second is from
forestland to farmland, which accounts for 20.37% of the total conversion area and is mainly
distributed in the sloping farmland around the northwest and southwest forest areas. Then,
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there is from cropland to built-up area (C–BU in Figure 3), which accounts for 7.03% of the
total converted area and is mainly distributed in the urban centers of various cities.

Int. J. Environ. Res. Public Health 2022, 19, x 8 of 28 

 

 

 
Figure 3. Land cover change in western Hubei Province from (a) 2000–2010 and (b) 2010–2020 (C—
cropland, F—forestland, G—grassland, W—water basin, BU—built-up area, BA—bare; C-F means 
land cover from cropland to forestland). 

Figure 3. Land cover change in western Hubei Province from (a) 2000–2010 and (b) 2010–2020 (C—
cropland, F—forestland, G—grassland, W—water basin, BU—built-up area, BA—bare; C-F means
land cover from cropland to forestland).



Int. J. Environ. Res. Public Health 2022, 19, 1571 8 of 27

Int. J. Environ. Res. Public Health 2022, 19, x 9 of 28 

 

 

  

  

Figure 4. Land cover transition from (a) 2000–2005, (b) 2010–2010, (c) 2010–2015, (d) 2015–2020. 

The land use changes from 2000 to 2010 were not as drastic as the land cover changes 
from 2010 to 2020, but the conversion of cropland to forestland, built-up area, water area, 
and grassland took place in a large proportion. The 18 types of land use conversion units 
are sorted by area, and the total area of the first 9 types of conversion accounted for 90.72% 
of the total conversion area. The most obvious land type conversion is the interchange of 
cropland and forestland, which accounts for 50.52% of the converted area (Figure 4) and 
is distributed in the western mountainous area. “Cultivated land to built-up area” (C–BU 
in Figure 3), which accounts for 11.97% of the total converted area, is mainly distributed 
in the marginal area of the built-up area where land use changes are relatively drastic. 
Under the policy of increasing built-up land, the urbanization of western Hubei was fast. 
The decreased cropland was mainly used for built-up land. Before 2000, driven by the 
benefits of commercial grains, large areas of ecological land in western Hubei were re-
claimed into cropland by local residents [61]. The national government has paid attention 
to this phenomenon and launched the “Grain for Green” project after 2000. Due to the 
implementation of the “Grain for Green” Project, in 2020, forestland increased by 6.7% 
(Figure 5). Among this increased forestland, 79.34% was transformed from cropland. 
Overall, the land use in western Hubei has undergone major changes from 2000 to 2020, 
which are mainly concentrated on the mutual conversion between cropland and for-
estland, grassland, built-up area, and waters. The expansion of built-up land and the 
“Grain for Green” project in ecologically fragile areas of central China exploited a large 
amount of cropland [40,62]. 
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The land use changes from 2000 to 2010 were not as drastic as the land cover changes
from 2010 to 2020, but the conversion of cropland to forestland, built-up area, water area,
and grassland took place in a large proportion. The 18 types of land use conversion
units are sorted by area, and the total area of the first 9 types of conversion accounted
for 90.72% of the total conversion area. The most obvious land type conversion is the
interchange of cropland and forestland, which accounts for 50.52% of the converted area
(Figure 4) and is distributed in the western mountainous area. “Cultivated land to built-
up area” (C–BU in Figure 3), which accounts for 11.97% of the total converted area, is
mainly distributed in the marginal area of the built-up area where land use changes are
relatively drastic. Under the policy of increasing built-up land, the urbanization of western
Hubei was fast. The decreased cropland was mainly used for built-up land. Before 2000,
driven by the benefits of commercial grains, large areas of ecological land in western Hubei
were reclaimed into cropland by local residents [61]. The national government has paid
attention to this phenomenon and launched the “Grain for Green” project after 2000. Due
to the implementation of the “Grain for Green” Project, in 2020, forestland increased by
6.7% (Figure 5). Among this increased forestland, 79.34% was transformed from cropland.
Overall, the land use in western Hubei has undergone major changes from 2000 to 2020,
which are mainly concentrated on the mutual conversion between cropland and forestland,
grassland, built-up area, and waters. The expansion of built-up land and the “Grain for
Green” project in ecologically fragile areas of central China exploited a large amount of
cropland [40,62].
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4.2. Soil Erosion Analysis
4.2.1. Spatial and Temporal Variation in Soil Erosion in Western Hubei Province

Based on this classification standard, the soil erosion maps for 2000, 2005, 2010, 2015
and 2020 were created (Figure 6). The average soil erosion in western Hubei Province
showed a trend of increasing and then decreasing between 2000 and 2020. Specifically, the
soil erosion in western Hubei Province was 3262.52 t ha−1 yr−1 in 2000, significantly
increased in the following 10 years, and gradually reached a peak of 6894.22 t ha−1

yr−1 in 2010. Thereafter, the soil erosion began to decline, and by 2020, it was only
3140.35 t ha−1 yr−1. The spatial distribution of soil erosion was consistent from 2000 to
2020, showing an overall pattern of high in the west and low in the east, with the high-value
areas mainly located in Shiyan city, the Shenlongjia Forest Area, Yichang city, Enshi Tujia
and Miao Autonomous Prefecture and other areas with higher elevations. The soil erosion
intensity in western Hubei Province from 2000 to 2020 was mainly slight and mild, but
from 2005 to 2010, the areas of intense erosion, very intense erosion and severe erosion were
mainly in Shiyan city, Xiangyang city, Jingmen city and other areas with low topography.
The Shenlongjia Forest Area and Enshi Tujia and Miao Autonomous Prefecture, with the
most significant erosion in the Danjiangkou Reservoir area, showed a decreasing trend after
2010. This was closely related to the construction of the South-to-North Water Diversion
Project in China [63]. The Danjiangkou Reservoir of the South-to-North Water Diversion
Project was built in 2000, and high-intensity project implementation was not conducive
to the regional ecological environment and soil conservation [63]. As a result, erosion
expanded in some areas, such as Danjiangkou city. In 2010, when the South-to-North
Water Diversion Project was officially completed, China took a series of measures to restore
the ecological environment in areas along the route. In 2013, the Hubei Provincial Party
Committee proposed actively promoting the Yangtze River Ecological and Economic Belt
and the Han River Ecological and Economic Belt; the ecological environment in the western
part of Hubei Province improved, and soil erosion was subsequently reduced [64].
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Between 2000 and 2020, the percentage of land with a light grade becoming a slight
erosion grade was the highest in the area of land with a change in soil erosion grade, 37.55%
for the years 2000–2005, 18.75% for the years 2005–2010, 35.11% for 2010–2015, and 36.73%
for 2015–2020. This is followed by a larger area of land with light grade becoming slight
erosion grade with 7.9%, 18.75%, 25.23%, and 20.93%, respectively. The increase in soil
erosion areas between 2005 and 2010 is reflected in the increase in land change from slight
to severe, accounting for 5.51% of the total. Between 2015 and 2020, soil erosion increased,
as evidenced by more land eroding from moderate to high levels of soil erosion, accounting
for 4.77% of all (Figure 7).

4.2.2. Land Cover and Soil Erosion

The land cover type in the high-intensity soil erosion area is mainly waterfront and
grassland, while that in the low-intensity soil erosion area is mainly cropland and forestland.
Grassland areas are mainly grazing areas with poor vegetation cover, weak vegetation
interception and infiltration ability, serious soil erosion and high soil erosion intensity.
Waterfront areas are affected by river erosion and soil erosion, coupled with poor vegetation
growth environments along rivers, poor soil and water conservation abilities and high soil
erosion. The soil erosion intensity is lower because forestland is densely vegetated and
has high coverage and good soil and water conservation abilities, while cropland has been
impacted by soil and water protection projects and is generally located in areas with low
terrain, resulting in less rainwater scouring [65] (Figure 8).
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Since the built-up area and water area have soil erosion values of 0 and are considered
slightly eroded, cropland, forestland and grassland are selected as the objects to analyze the
relationship between soil erosion and land use (Figure 9). From 2000–2020, the soil of each
land use type in western Hubei Province mainly experienced light erosion, and the area
of light erosion accounted for more than 55% of all of the land area. In cropland, the area
of very strong erosion was smallest, while that of slight erosion was largest and showed
a significant decrease from 92.4% in 2000 to 72.22% in 2020. The areas of light, moderate,
strong, very strong and severe erosion showed an overall increase, with the area of light
erosion expanding the most: a total increase of 15.9% from 2000 to 2020.
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The areas of soil erosion at different levels showed fluctuating decreases during
2000–2020, while the area of strong erosion showed a trend of first increasing and then
decreasing. The areas of strong, intensive, and severe erosion all reached their peaks in 2010,
with proportions of 2.40%, 3.02% and 4.29%, respectively, indicating that the soil erosion of
forestland improved. Grassland covers a smaller area than cropland and forestland and is
dominated by slight and mild erosion, and the area of slight erosion decreased by as much
as 40.67%, while the areas of other erosion types showed an increasing trend, with mild
erosion showing the fastest growth rate of 95.56%. In 2010, the proportions of very strong
erosion and severe erosion in grassland were relatively large, reaching a peak in 20 years,
at 4.52% and 8.47%, respectively.

4.2.3. Soil Erosion Analysis at Different Slope Levels

Topographic factors are among the important factors affecting the intensity of soil
erosion, and slope, as the main topographic factor, also has an important influence on soil
erosion intensity. In this research, the slope map of western Hubei Province was extracted
from the DEM, the slope range was divided into 10◦ intervals, and the area and proportion
of each soil erosion class in different slope ranges were calculated (Figure 10).

The effect of slope differs among soil erosion levels; slight and light soil erosion are
the main soil erosion classes at each slope level, and the area of land with slight and light
soil erosion shows a decreasing trend with an increase in slope. The area of the other soil
erosion levels tends to increase and then decrease with increasing slope, and all of them
reach a peak at 10–20◦. In the range of 0–10◦, soil erosion is mainly slight erosion with an
area proportion of 44.90%, followed by light erosion (5.77%). The combined representation
of the other soil erosion intensity levels is less than 1%, while the area of moderate to severe
soil erosion reaches the maximum when the slope is 10–20◦. The area of severe soil erosion
is the largest, with a proportion of 0.94%. However, light and slight erosion still dominate
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in the slope range of 10–20◦. When the slope is greater than 20◦, the soil erosion area of
all grades shows a decreasing trend, which indicates that 20◦ is the critical slope value
for soil erosion in western Hubei Province. When the slope is greater than 50◦, high-level
soil erosion disappears, and the representation of a low-intensity soil erosion area is less
than 0.1%.
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4.3. Analysis of Landscape Patterns in Western Hubei Province
4.3.1. Landscape Pattern Index Analysis

NP and AREA_MN characterize the degree of regional fragmentation; the larger
the NP value or the smaller the AREA_MN value is, the greater the regional landscape
fragmentation. The NP value of western Hubei Province significantly increased from
91,977 in 2000 to 102,373 in 2020, and the AREA_MN value showed an overall decrease
of 9.88%, indicating that the landscape fragmentation of western Hubei Province has
increased. SHAPE_MN and FRAC_MN indicate the shape of the patches, and these two
values showed a slight increase in western Hubei Province from 2000 to 2020, indicating
that the overall change in the shape of landscape patches in western Hubei Province was
small. The FRAC_MN value is greater than 1, which means that the regional landscape is
influenced more by humans, but the influence shows a decreasing trend. CONTIG_MN
shows a decreasing trend, and the degree of connectivity between regional landscape
patches decreases, which indicates that the landscape in western Hubei Province was more
dispersed and patchily distributed during 2000–2020 (Figure 11).

The SHEI is used to measure the heterogeneity of the landscape in the region, with the
magnitude of the SHEI value indicating the uniformity of landscape types in the region.
The SHEI value fluctuated during 2000–2020, showing an increase from 2000 to 2015 and a
decrease thereafter, but the changes in the value did not exceed 0.004. Moreover, the SHEI
values were all greater than 0.57, indicating that in western Hubei Province, the overall
distribution of landscape patches was relatively uniform, and landscape diversity tended
to be stable, but there were still some changes in different periods.
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Figure 11. Landscape Pattern Index for Western Hubei Province in 2000, 2005, 2010, 2015, 2020.
(CONTIG—Contiguity Index; FRAC—Fractal Dimension Index; NP—Number of Patches; SHEI—
Shannon’s Evenness Index).

4.3.2. Landscape Pattern Index Analysis for Each Land Use Cover Type

Figure 12 shows the landscape pattern indices at the class level in western Hubei
Province, and the trends of different indices vary among years and land types. In terms of
class area (CA), the areas of cropland, forestland, grassland, and unused land decreased,
with that of forestland decreasing the most, while only the area of built-up land showed an
increasing trend, with an increase rate of 64.07%. The percentage of landscape (PLAND)
and largest patch index (LPI) are consistent with the temporal change trend of CA for
different land use types. The PLAND and LPI values of cropland and forestland are the
largest, while those of unused land and built-up area are relatively low, which indicates that
cropland and forestland are the dominant land types in the region and that the dominance
of unused land and built-up area is lower (Figure 12). The detailed value of Landscape
pattern index analysis for each land cover type is in Appendix A, Table A2.

PD refers to the number of patches per unit area, and its magnitude characterizes
the fragmentation of the landscape in the region. The PD value of cropland is higher,
approximately 0.38, than that of other land types due to the influence of human production
and living behavior and rapid urbanization, and the fragmentation degree is higher. In
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addition, the changes in the PD values of each land use type from 2000 to 2020 were small,
indicating that the landscape patches in the region were relatively stable. Among all land
use types, except for unused land, the edge density (ED) and landscape shape index (LSI)
showed fluctuating increases, and the LSI value was higher, indicating an increase in
landscape edge heterogeneity in the region. The patches of all land types except unused
land show a complex shape with high boundary fragmentation, but the LSI of the built-up
area increases significantly, while the LSI values of other land types show small temporal
changes. The aggregation index (AI) reflects the degree of aggregation of the landscape
patches in a region. The AI values of each land use type have small changes and high
values, indicating that the landscape distribution areas in the region are stable and have a
high degree of aggregation (Figure 12).
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The CONTIG_MN, LPI and SHEI passed the significance test at p < 0.1, and the AI
and PD passed the significance test at p < 0.05 (Table 4). Soil erosion in western Hubei
Province shows a positive correlation with CONTIG_MN, AI, and LPI. When the average
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connectivity of the landscape in the region increases, the similarity between patches is
stronger, the landscape diversity decreases, and the ability to maintain regional soil and
water is low. Similarly, the increases in the aggregation index and the maximum patch index
indicate that the dominance and aggregation of patches increase. This leads to an increase
in the proportion of a single landscape in the region; a single landscape has a weaker ability
to maintain soil, and soil erosion is therefore high. In addition, soil erosion in western
Hubei Province showed a negative correlation with the SHEI, which is an important index
for comparing changes in diversity across landscapes or in the same landscape over time.
When the SHEI value is high, the higher the landscape heterogeneity is, the stronger the
soil and water conservation abilities, and the higher the ability to effectively prevent the
intensification of soil erosion. Conversely, the landscape dominance is relatively high, the
landscape abundance is reduced, the soil conservation ability is weaker, and the soil erosion
is high.

Table 4. Regression model parameters of the landscape pattern index and soil erosion.

Landscape Pattern Index Standard Coefficient Significant Coefficient

CONTIG_MN 0.325 0.071
AI 1.021 0.001
LPI 0.245 0.072

SHEI −0.411 0.092
Note: AI—Aggregation Index; CONTIG_MN – Mean value of Contiguity Index; LPI—Largest Patch Index;
SHEI—Shannon’s Evenness Index.

5. Discussion
5.1. Possible Reasons for Soil Erosion Changes in Western Hubei

The western region of Hubei Province is at the confluence of Daba Mountain and
Wushan Mountain, and soil erosion has become one of the main ecological problems
restricting the development of local cities. This is consistent with the conclusion of scholars
who have investigated soil erosion in Hubei Province [66]. Rainfall is one of the main
reasons for the fluctuation in soil erosion in western Hubei. Due to the natural geography
of western Hubei Province, soil erosion in the region is mainly hydraulic and gravity
erosion, which has been explained in Wang et al.’s (2016) research [67]. In this study, we
used the formula of daily rainfall erosion force to analyze the regional rainfall erosion
force in western Hubei Province (Figure 13). The lowest rainfall erosion force in 2020
was approximately 1 time lower than that in 2000, indicating that the soil loss caused
by precipitation erosion in some areas has improved. In terms of spatial distribution,
during 2000–2005, the high values of rainfall erosion force were mainly distributed in the
northeastern and southwestern parts of western Hubei Province, mainly in Suizhou city and
Enshi Tujia and Miao Autonomous Prefecture, and the low values were mainly distributed
in the central part of western Hubei Province, while from 2010, the high values of rainfall
erosion force in western Hubei Province gradually shifted to the south, especially in the
Danjiangkou Reservoir area, where the rainfall was significantly reduced. In conclusion,
the spatial and temporal variation in the rainfall erosion force in western Hubei Province is
generally consistent with the variation in the soil erosion rate, which indicates that rainfall
is one of the main factors causing soil loss in western Hubei Province.

Land cover is also one of the main factors affecting the amount of soil erosion. As
the source of material transport related to human activities and the natural environment,
the erosion of soil is influenced not only by natural factors but also by human activities.
The area of cropland, grassland, forestland, and unused land in western Hubei Province
decreased from 2000 to 2020 (Figures 3 and 4), while the area of watershed and built-up area
showed different degrees of increase. Moreover, the rate of change in land use types was
relatively large from 2005 to 2010 and from 2015 to 2020 (Figure 13), which was related to
the completion of the South-to-North Water Diversion Project, the Hanjiang Ecological and
Economic Belt and the Yangtze Ecological and Economic Belt. Importantly, this was related
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to the completion of the South-to-North Water Diversion Project [63], the construction
of the Han River Ecological and Economic Zone and the Yangtze River Ecological and
Economic Zone [68], as well as the rapid development of the Yijing-Jing’en City Cluster
and the Xiangshi-Shuishen City Cluster [69]. This finding is consistent with the research of
Liu et al. (2014) and Ning et al. (2018) [47,61]. The lost cropland was mainly transformed
into forestland and built-up areas, while forestland was mainly transformed into cropland
and grassland (Figures 3 and 4). The transfer-in transfer-out rate of cropland was high, and
its ED and LSI were the highest among all categories with high landscape fragmentation.
However, the cropland area plays a protective role against soil erosion through human
implementation of various soil and water conservation measures, and the amount of soil
erosion is relatively small, while the CA, LPI and PLAND are all at high levels, with good
vegetation cover, high landscape integrity and less soil erosion (Figure 11). This finding
is similar to the finding of Mirghaed et al. (2018) [58]. In Mirghaed et al.’s (2018) study,
cropland with high values of LPI and PLAND had low soil erosion.
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In addition, changes in national policies are among the important reasons for the
spatial and temporal changes in soil erosion, especially during the construction period of
the South-to-North Water Diversion Project. When ecological damage was severe, veg-
etation cover was reduced, soil and water conservation capacities decreased, and soil
erosion increased dramatically [63]. With the completion of the project and the restora-
tion of ecological functions, the ecological environment improved, and the soil erosion
problem decreased, which is consistent with the findings of this paper for western Hubei
Province [65]. Soil erosion peaked in approximately 2010. In 2018, the National Develop-
ment and Reform Commission of the People’s Republic of China released the Development
Plan for the Han River Ecological and Economic Belt [64]. The ecological environment in
western Hubei Province has improved, the stability of the ecosystem has been enhanced,
and soil erosion has been reduced. As Hancock et al. (2019) mentioned, if grass cover
is reduced under trees, it will leave soil exposed and increase erosion risk. In addition,
Ruiz-Colmenero et al. (2013) found that planting vegetative cover crops between rows of
vines in sloping vineyards can reduce losses from erosion and improve the infiltration of
water [70]. It is necessary to adopt reasonable grazing methods in grasslands to prevent
soil erosion caused by overgrazing [71,72] and take measures to increase vegetation cover
and strengthen soil and water conservation projects in western Hubei Province.

5.2. Comparison with Existing Research

Due to the lack of field erosion data in the region, the soil erosion results estimated
by the CSLE model in this study were analyzed using the observation data of river sand
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transport monitoring stations at the outlet of each watershed of typical rivers (3 river sand
transport monitoring stations in 2010 and 2015, 4 river sand transport monitoring stations
in 2020) from the Hubei Soil and Water Conservation Bulletin for correlation analysis. The
results showed that the overall correlation coefficient was 0.98, 0.99, 0.99 in 2010, 2015 and
2020 (Figure 14), respectively, indicating that the soil erosion estimation results for these
3 years were satisfactory.
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Figure 14. Correlation analysis between simulated value (105 t) and observed value (105 t) in (a) 2010,
(b) 2015 and (c) 2020.

This study found that the land use types in the high-intensity soil erosion area are
mainly waterfront and grassland, which is consistent with the findings of Wang et al.
(2016) [67] and Xu et al. (2017) [73]. However, this finding contrasts with Ouyang et al.’s
(2010) finding [26]. In Ouyang et al.’s (2010) study, the erosion intensity of grassland
was generally lower than that of cropland. Studies have shown that when grassland is
degraded and desertified, its soil erosion rate will be higher than that of crops. The reasons
for the different study conclusions may be the different study areas, study years, and
soil erosion models. The study area is in the Longliu watershed, which is located at the
conjunction of the Qinghai-Tibet and Loess Plateau. The soil physicochemical properties
in the Loess Plateau region are different from those in the soil of mountainous regions in
the middle reaches of the Yangtze River, and the precipitation characteristics are different.
Ouyang et al.’s (2010) study focused on 1977 to 2006. This research was conducted from
2000 to 2020, and the national development policies in those years were different, so the
land use activities were different. This study used the CSLE model, while the study of
Ouyang et al. used the SWAT model, employing different model parameters and calculation
methods to calculate regional soil erosion. In addition, the findings of this study show
that the soil erosion intensity in Hubei from 2000 to 2020 was dominated by slight light
(Figure 4), which is consistent with Wang et al.’s (2016) [67] research on soil erosion in China.

The results of this study show that the soil erosion intensity in the mountainous
areas of western Hubei is positively correlated with CONTIG_MN, AI, and LPI and neg-
atively correlated with SHEI; that is, the fragmentation, diversity, and aggregation of
the landscape are closely related to regional soil erosion. These findings are consistent
with Ouyang et al.’s (2010) findings [26]. We also compared our research findings with
Mirghaed et al.’s (2018) research [58]. Mirghaed et al. (2018) explored the relationship
between soil erosion and landscape metrics of different land use types in the Gorgan Water-
shed in northern Iran. In the results of their study, the trends of the NP and LSI metrics
for all land uses can affect the sediment retention and sediment yield. However, in our
study, no such correlation was found. Due to different evaluation units, research scales,
land cover, and regional natural conditions, there are differences in the correlation between
landscape patterns and soil erosion. Our study only took counties as the evaluation unit,
calculated the land landscape pattern index and soil erosion amount of each county, and
explored the correlation between these two factors. Mirghaed et al. (2018) focused on the
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relationship of the landscape pattern of each land cover with soil erosion. Since there are
still few studies on the correlation between landscape patterns and soil erosion, especially
in central China, there are few research results we could compare.

5.3. Strengths and Limitations

This study used meteorological station data, soil data and remote sensing data with
high data credibility and fills a knowledge gap in the study of the relationship between
landscape patterns and soil erosion in western Hubei Province by using the generally
accepted method [15,60,74]. In addition, we explored the influence of changing landscape
patterns on soil erosion in the western region of Hubei Province from the perspective of
the joint influence of natural and human social systems, which is scientific and can be
replicated in other regions for comparison.

However, there are still some limitations. First, although landscape factors and external
influences such as rainfall, slope, vegetation cover and land use type are considered, the
heterogeneity of each factor is not taken into account in the evaluation [15]. In addition,
the correlation between landscape patterns and soil erosion at different scales was not
examined; for example, the relationship between landscape patterns and soil erosion at the
municipal or village level was not investigated. The soil erosion process is a multiscale
nonlinear and complex process [75]. In the future, researchers could focus on not only
improving evaluation accuracy by modifying the evaluation method of landscape indices
and by enhancing the resolution of data but also exploring the scale effects of landscapes
on soil erosion. The correlation between landscape patterns and soil erosion at multiple
scales can be analyzed in subsequent studies to provide a scientific basis for administrative
land use management at different levels.

6. Conclusions

In this research, we found that (1) the landscape pattern in mountainous areas dra-
matically changed from 2000 to 2020. The years with the most dramatic change were
2015–2020, with a total area of 9847.15 km2. The most obvious land type conversion is the
interchange in cropland and forestland, which accounts for 50.52% of the converted area.
(2) The average soil erosion in western Hubei Province showed a trend of increasing from
2000 to 2010, with a peak value of 6894.22 t·ha−1·yr−1 in 2010, and then decreasing from
2010–2020, with the lowest soil erosion value, 3140.35 t·ha−1·yr−1, in 2020. Soil erosion
was higher in the western than in the eastern part of the study area. The land in areas
with high-intensity and low-intensity soil erosion was mainly waterfront/grassland and
cropland/forestland, respectively, and the area of moderate to severe soil erosion was
greatest when the slope was 10–20◦. 20◦ is the critical slope for soil erosion in the study
area because when the slope exceeded 20◦, the soil erosion area of each grade tended to
decrease. (3) At the landscape level, landscape fragmentation increased and connectivity
decreased, but the area of landscape diversity was stable. Soil erosion in western Hubei
was positively correlated with the contiguity index, aggregation index and largest patch
index but negatively correlated with the Shannon evenness index. The higher the landscape
fragmentation and the greater the accumulation of single land-use types, the more severe
the soil erosion is, while the higher the landscape connectivity and the richer the landscape
diversity, the less severe the soil erosion is. We suggest that future land management in
each county of western Hubei should place greater emphasis on landscape connectivity
and landscape diversity to reduce land fragmentation and thus soil erosion.
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Appendix A

Table A1. Brief description of landscape index in this research (refer Fragstat 4.2 help document [57]).

Metrics
Groups Index Formula Range Comments

Area and
edge

metrics

Class Area (CA) CA =
j=1
∑
n

aij

(
1

10,000

) aij = area (m2) of
patch ij.

CA > 0,
without limit.

CA approaches 0
as the patch

type becomes
increasing rare in

the landscape.
CA = TA when the

entire landscape
consists of a single
patch type; that is,

when the entire
image is comprised
of a single patch.

Class area is a
measure of
landscape

composition;
specifically, how

much of the
landscape is

comprised of a
particular

patch type.

Percentage of
Landscape
(PLAND) PLAND = Pi =

j=1
∑
n

aij

A (100)

Pi = proportion of
the landscape

occupied by patch
type (class) i.

aij = area (m2) of
patch ij.

A = total landscape
area (m2).

0 < PLAND < 100
PLAND

approaches 0 when
the corresponding

patch type
(class) becomes

increasingly rare in
the landscape.
PLAND = 100

when the entire
landscape consists
of a single patch

type; that is, when
the entire image is

comprised of a
single patch.

Percentage of
landscape

quantifies the
proportional

abundance of each
patch type in the

landscape.
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Table A1. Cont.

Metrics
Groups Index Formula Range Comments

Edge Density
(ED) ED =

k=1
∑
m

eik

A (10, 000)

eik = total length
(m) of edge
in landscape

involving patch
type (class) i;

includes landscape
boundary and
background

segments
involving patch

type i.
A = total landscape

area (m2).

ED ≥ 0,
without limit.

ED = 0 when there
is no class edge in
the landscape; that
is, when the entire

landscape and
landscape border,
if present, consists

of the
corresponding

patch type and the
user specifies that

none of the
landscape

boundary and
background edge
be treated as edge.

Edge density is a
measure of edge

length of a
particular patch

type. ED perform
better than Total

Edge metric.

Largest Patch
Index (LPI) LPI =

j=1
max

n
(aij)

A (100)

aij = area (m2) of
patch ij.

A = total landscape
area (m2).

0 < LPI < 100
LPI approaches 0
when the largest

patch of the
corresponding
patch type is

increasingly small.
LPI = 100 when the

largest patch
comprises 100% of

the landscape.

Largest patch
index at the class

level quantifies the
percentage of total

landscape area
comprised by the

largest patch.

AREA AREA = aij

(
1

10,000

) aij = area (m2) of
patch ij.

AREA ≥ 0 Metrics based on
the mean patch

characteristic, such
as Mean patch size

(AREA_MN) or
Mean patch
shape index

(SHAPE_MN),
provide a measure
of central tendency

in the
corresponding

patch characteristic
across the entire

landscape.

Shape
metrics

SHAPE SHAPE =
0.25pij√aij

pij = perimeter (m)
of patch ij.

aij = area (m2) of
patch ij.

SHAPE ≥ 1,
without limit.

SHAPE = 1 when
the patch is square

and increases
without limit as

patch shape
becomes more

irregular. SHAPE
measures the
complexity of
patch shape

compared to a
standard shape
(square) of the

same size.
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Table A1. Cont.

Metrics
Groups Index Formula Range Comments

Contiguity Index
(CONTIG) CONTIG =

 z
∑

r=1
cijr

aij

−1

v−1

Cijr = contiguity
value for pixel r in

patch ij.
v = sum of the

values in a 3-by-3
cell template (13 in

this case).
aij = area of patch ij
in terms of number

of cells.

0 < CONTIG < 1

Contiguity index
assesses the spatial
connectedness, or
contiguity, of cells
within a grid-cell
patch to provide

an index on
patch boundary

configuration and
thus patch shape.

Fractal
Dimension Index

(FRAC)
FRAC =

2 ln
(

0.25pij

)
ln aij

pij = perimeter (m)
of patch ij.

aij = area (m) of
patch ij.

1 < FRAC < 2
FRAC approaches
1 for shapes with

very simple
perimeters such as

squares, and
approaches 2 for

shapes with highly
convoluted,
plane-filling
perimeters.

Fractal dimension
index is appealing
because it reflects
shape complexity
across a range of

spatial scales
(patch sizes).

Aggregation
metrics

Aggregation
Index (AI) AI =

[
gii

max→gii

]
(100)

gii = number of
like adjacencies
(joins) between
pixels of patch

type (class) i based
on the singlecount

method.
max-gii = maximum

number of like
adjacencies (joins)
between pixels of

patch type (class) i
based on the
single-count

method.

0 < AI < 100
Given any Pi, AI

equals 0 when the
focal patch type

is maximally
disaggregated; AI

increases as the
focal patch type is

increasingly
aggregated and
equals 100 when

the patch type
is maximally

aggregated into
a single,

compact patch.

Landscape Shape
Index (LSI) LSI =

0.25
k=1
∑
m

e∗ik
√

A

e∗ik = total length
(m) of edge
in landscape

between patch
types(classes) i and

k; includes the
entire landscape
boundary and

some or all
background

edge segments
involving class i.

A = total landscape
area (m).

LSI > 1,
without limit.

LSI = 1 when the
landscape consists
of a single square

patch of the
corresponding

type; LSI increases
without limit
as landscape

shape becomes
more irregular.

The Landscape
shape index (LSI)

index measures the
perimeter-to

area ratio for the
landscape as a

whole. The greater
the value of LSI,

the more dispersed
are the patch types.
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Table A1. Cont.

Metrics
Groups Index Formula Range Comments

Contagion
(CONTAG)

CONTAG =1 +

i=1
∑
m

k=1
∑
m

Pi
gik

k=1
∑
m

gik

·
ln

P◦i
gik

k=1
∑
m

gik


2 ln(m)

(100)

Pi = proportion of
the landscape

occupied by patch
type (class) i.

gik = number of
adjacencies (joins)
between pixels of

patch types
(classes) i and k

based on the
double-count

method.
m = number of

patch types
(classes) present in

the landscape,
including the

landscape border
if present.

CONTAG
approaches 0 when

the patch types
are maximally

disaggregated and
interspersed.

CONTAG = 100
when all patch

types are
maximally

aggregated.

Number of
Patches (NP) NP = ni

N = total number
of patches in

the landscape.

NP > 1,
without limit.

NP = 1 when the
landscape contains

only 1 patch.

Number of patches
often has limited
interpretive value
by itself because it

conveys no
information about
area, distribution,

or density
of patches.

Patch Density
(PD) PD = ni

A (10, 000)(100)

N = total number
of patches in

the landscape.
A = total landscape

area (m2).

PD > 0,
constrained by

cell size.

Patch density has
the same basic

utility as number
of patches as an

index, except that
it expresses

number of patches
on a per unit area

basis that
facilitates

comparisons
among landscapes

of varying size.

Diversity
metrics

Shannon’s
Diversity Index

(SHDI)
SHDI = −

i=1
∑
m
(PilnPi)

Pi = proportion of
the landscape

occupied by patch
type (class) i.

SHDI > 0,
without limit

SHDI = 0 when the
landscape contains
only 1 patch (i.e.,

no diversity).

Shannon’s
diversity index is a
popular measure

of diversity
in community

ecology, applied
here to landscapes.
Shannon’s index is
more sensitive to
rare patch types
than Simpson’s
diversity index.
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Table A1. Cont.

Metrics
Groups Index Formula Range Comments

Shannon’s
Evenness Index

(SHEI) SHEI =
−

m
∑

i=1
(Pi ln Pi)

ln m

Pi= proportion of
the landscape

occupied by patch
type (class) i.

m = number of
patch types

(classes) present in
the landscape,
excluding the

landscape border
if present.

0 ≤ PLAND ≤ 100

Shannon’s
evenness index is

expressed such
that an even

distribution of area
among patch types

results in maxi-
mum evenness.

Table A2. Landscape pattern index analysis for each land use cover types.

CA PLAND LPI PD ED LSI AI

Cropland

2000 4,521,294 33.5139 10.185 0.3903 19.9131 317.138 95.5389
2005 4,479,107 33.1142 9.4578 0.373 20.5887 330.249 95.332
2010 4,345,691 32.2123 7.4388 0.3737 20.4054 331.397 95.2444
2015 4,305,303 31.8294 7.1532 0.3974 20.2421 331.096 95.2266
2020 4,273,271 31.5771 3.5793 0.3859 21.4548 351.825 94.9076

Forest land

2000 7,522,174 55.7578 23.3248 0.0688 18.0137 223.423 97.5667
2005 7,525,235 55.6343 23.2101 0.0695 18.4972 229.705 97.4985
2010 7,510,385 55.6704 23.2349 0.0722 18.3296 227.517 97.5199
2015 7,504,276 55.4797 22.6986 0.0809 18.1418 225.682 97.5391
2020 7,476,049 55.2438 22.618 0.0809 19.2024 238.594 97.3927

Grassland

2000 563,287 4.1753 0.1258 0.0402 3.5096 159.475 93.6622
2005 567,447 4.1952 0.1245 0.04 3.6098 163.97 93.507
2010 552,914 4.0985 0.1091 0.0393 3.5068 160.654 93.5551
2015 555,256 4.105 0.103 0.0416 3.4987 160.553 93.5734
2020 548,622 4.054 0.1047 0.0406 3.6392 166.92 93.277

Built-up area

2000 285,397 2.1155 0.024 0.1193 2.9705 187.701 89.5083
2005 296,981 2.1956 0.0253 0.1207 3.1102 193.191 89.4113
2010 366,518 2.7168 0.0463 0.1276 3.5906 200.237 90.1199
2015 437,021 3.2309 0.0737 0.1331 4.2058 215.339 90.267
2020 468,242 3.46 0.0794 0.1356 4.6674 230.916 89.9154

Bare

2000 19,756.2 0.1464 0.0208 0.0013 0.0946 23.4168 95.2003
2005 19,816.8 0.1465 0.0207 0.0014 0.0996 24.7945 94.9155
2010 19,717.5 0.1462 0.0207 0.0011 0.0903 22.3863 95.4168
2015 19,894.1 0.1471 0.0208 0.0012 0.0899 22.5558 95.402
2020 19,284.5 0.1425 0.016 0.0012 0.0923 23.0756 95.2196

Note: CA—Class area; PLAND—Percent of landscape; LPI—Largest patch index; PD—Patch density; ED—Edge
density; LSI—Landscape shape index; AI—Agglomeration index.
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