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Abstract

Background: The use of clinical data in electronic health records for machine-learning or data analytics depends
on the conversion of free text into machine-readable codes. We have examined the feasibility of capturing the
neurological examination as machine-readable codes based on UMLS Metathesaurus concepts.

Methods: We created a target ontology for capturing the neurological examination using 1100 concepts from the
UMLS Metathesaurus. We created a dataset of 2386 test-phrases based on 419 published neurological cases. We
then mapped the test-phrases to the target ontology.

Results: We were able to map all of the 2386 test-phrases to 601 unique UMLS concepts. A neurological
examination ontology with 1100 concepts has sufficient breadth and depth of coverage to encode all of the
neurologic concepts derived from the 419 test cases. Using only pre-coordinated concepts, component ontologies
of the UMLS, such as HPO, SNOMED CT, and OMIM, do not have adequate depth and breadth of coverage to
encode the complexity of the neurological examination.

Conclusion: An ontology based on a subset of UMLS has sufficient breadth and depth of coverage to
convert deficits from the neurological examination into machine-readable codes using pre-coordinated
concepts. The use of a small subset of UMLS concepts for a neurological examination ontology offers the
advantage of improved manageability as well as the opportunity to curate the hierarchy and subsumption
relationships.
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Background
The aggregation of clinical data for big data projects
from electronic health records poses challenges [1–5].
Much of the clinical data in electronic health records
(EHRs) are represented as free text. Although progress is
being made in the conversion of free text into structured
data by natural language processing (NLP), these
methods are not in general use [6–10]. The entry of data
about neurological patients in EHRs into large databases
requires a method for converting symptoms (patient

complaints) and signs (examination abnormalities) into
machine-readable codes.

SignsþSymptoms¼Findings➔Concepts➔Machine Codes

In this paper, we will use findings to mean signs and symp-
toms collectively. This conversion process can be facilitated
by an ontology that links neurological signs and symptoms
to appropriate concepts and machine-readable codes.

The neurological examination and history
There is no standard neurological examination and history
[11–13]. Depending on the examiner and patient, a neuro-
logical examination and history may take as little as three
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minutes or greater than 30min to complete. Furthermore,
there is no generally accepted format for recording the
neurological examination and history. Some neurologists
use an outline, some use a table, and others use a narrative.
No agreed-upon terminology exists for recording the
neurological examination and history. During an examin-
ation, a neurologist elicits symptoms such as weakness,
slowness, memory loss, speech impairment, blurred vision,
numbness, tingling, pain, or imbalance and abnormalities
in the mental status, cranial nerves, motor system, sensory
system, reflexes, coordination, and gait. Due to a lack of
standard terminology, identical neurological abnormalities
may be described variously. For example, a failure to abduct
the eye may be variously recorded as a sixth nerve palsy, an
abducens palsy, or an abducens nerve weakness. Similarly,
an upgoing great toe upon stimulation of the plantar sur-
face of the foot may be recorded variously as Babinski sign,
upgoing toe, positive Babinski, or upgoing plantar response.

The need for an ontology for the neurological
examination
If neurological findings are to be converted into machine-
readable codes, an ontology is needed [14]. At a minimum,
an ontology for the neurological examination and history
that supports big data applications should do the following:

1. Neurological findings with the same meaning but
different wording should be represented by the
same concept.

2. A unique machine-readable code should be assigned
to each concept.

3. The ontology should be organized hierarchically
with a root concept and should support
subsumption (is_a relationships).

4. The ontology should have a scope (breadth of
coverage) and a granularity (depth of coverage) that
enables it to capture findings recorded during a
neurological examination faithfully.

5. Synonymous terms should be linked to each
concept.

Some ontologies have other useful characteristics. Many
ontologies attach a definition to each concept. Other on-
tologies, SNOMED CT in particular, allow simple con-
cepts to be combined to form more complex concepts.
For example, the concept |ankle reflex| can be combined
with |absent| and is equivalent to |absent ankle reflex|.
This is known as post-coordination [15]. Concept ontol-
ogies that are organized hierarchically support the calcula-
tion of inter-concept distances [16–24].

The UMLS Metathesaurus
The UMLS Metathesaurus is not an ontology per se [25,
26]. The 2019 AB release is a curated compendium of

155 distinct terminology sources with 4,258,810 con-
cepts. Each concept is linked to a unique machine-
readable code and a specified name. For example, the
concept aphasia has the CUI (concept unique identifier)
C0003537. Each CUI is eight characters in length and
starts with the letter C, followed by seven digits. The
concept aphasia is contributed 58 times to UMLS from
58 different source terminologies. Each contribution of
aphasia appears in the UMLS with the same CUI but a
different atom unique identifier (AUI). The UMLS main-
tains concept synonyms as normalized concept names.
The 2019AB release has 11,882,429 normalized concept
names, each with a unique LUI. For example, the con-
cept aphasia has 22 English language synonyms in
UMLS, including |loss of words|, |losing words|, |loss of
power of expression or comprehension|, |aphasic syn-
drome|, and |difficulty finding words|. The UMLS
Metathesaurus also maintains files with concept defini-
tions, files with relationships between concepts (child-
parent, etc.), and files with ontology hierarchies (paths
from each concept to the root concept).

Methods
Test-phrases
We abstracted the neurological examinations from 419
published neurological case studies [27–33]. Based on
the neurological findings, we created a dataset of 2386
test-phrases for encoding as concepts by an ontology.
Normal findings were ignored.

Table 1 Fifteen most common test concepts found in
neurological teaching casesa

Concept CUI Count Proportion (%)

hyperreflexia C0151889 47 2.0

headache C0018681 45 1.9

unstable gait C0231686 41 1.7

bilateral extensor plantar responses C0422917 38 1.6

dysarthria C0013362 32 1.3

confused C0009676 31 1.3

hearing impaired C1384666 31 1.3

appendicular ataxia C0750937 27 1.1

hemiparesis C0018989 24 1.0

papilledema C0030353 23 1.0

diplopia C0012569 22 0.9

neck stiffness C0151315 22 0.9

impaired memory C0233794 22 0.9

ataxic gait C0751837 20 0.8

disorientation C0233407 19 0.8
aCUI is from UMLS Metathesaurus browser. Proportion based on 2386 total
concepts abstracted from 419 published neurology teaching cases
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Mapping of test-phrases to UMLS concepts
Test phrases were mapped to UMLS concepts using the
UMLS browser. Except for a few concepts, we ignored
laterality (e.g., right ataxia, left ataxia, and bilateral ataxia
were all mapped to the UMLS concept ataxia
|C0004134|. We mapped the 2386 test phrases to 601
concepts. Concepts recurred a mean of 3.9 ± 5.5 times
(range 1 to 47 times) in the 419 test teaching cases. The
15 most common neurology concepts are shown in
Table 1.

Construction of NEO (neurological examination ontology)
We reviewed the neurological history and examination as
presented in three standard textbooks [11–13] and identi-
fied 1100 findings, which were either signs or symptoms.
Each of the 1100 concepts was entered into the Protégé
ontology editor [34] and consisted of the following:

� Concept name
� UMLS CUI (concept identifier)

Fig. 1 Major branches of NEO as shown in Protégé ontology editor (Image created with Protégé 5.5.0 ontology editor [34]). Mental Status
Finding branch is partially expanded further

Table 2 Composition Of Target Vocabulary By Major Branch Of
Ontology

Category Count of Concepts

Mental Status 191

Cranial Nerve 222

Motor 211

Sensory 133

Coordination 20

Reflexes 68

Gait and Balance 36

Neck 10

Head 7

Skin findings 6

Symptoms 196

Total Concepts 1100
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� SNOMED CT SCTID (concept identifier) if available
� Parent concept

We used Protégé to organize the concepts into a mono-
hierarchic ontology. The average number of children per
concept was 3, and the maximum ontology depth was
seven levels. The neuro-ontology is downloadable as a CSV
or OWL file at the BioPortal of the National Center for Bio-
medical Ontology [35]. The neuro-ontology has five high-
level branches to mirror the structure of the neurological
examination (mental status finding, cranial nerve finding,
motor finding, sensory finding, reflex finding) and four add-
itional high-level branches (head finding, neck finding, skin
finding, and neurological symptoms). Figure 1 demon-
strates a partial expansion of NEO. Table 2 shows the dis-
tribution of concepts by the examination section. We had
two considerations in building the concept hierarchy for
NEO. First, findings related to each part of the neurological
examination should be gathered under one consistent
heading. Second, the concept hierarchy path distance
between findings should reflect a neurologist’s thinking

about which concepts are more similar while preserving
subsumption. For example, a brisk biceps reflex could be
subsumed under either biceps reflex or brisk reflex (see
Fig. 2). We chose to subsume brisk biceps reflex under
brisk reflex because a brisk biceps reflex is more similar to
a brisk knee reflex than it is to an absent biceps reflex.

Candidate ontologies for a neurological examination
ontology
We identified five component ontologies of the UMLS
Metathesaurus (Table 3) as a potential basis for a neuro-
logical examination ontology: SNOMED CT, HPO (Human
Phenotype Ontology), MEDCIN, MeSH (Medical Subject
Headings), and OMIM (Online Mendelian Inheritance in
Man). We tested how well each of these ontologies pro-
vided concept coverage for the 601 neurology concepts
identified above.

Distance measures between concepts
We calculated distances between concepts for the
SNOMED CT and NEO ontologies by the method of

Fig. 2 Alternative subsumption strategies for placing brisk biceps reflex in concept hierarchy. Both strategies are semantically correct. Brisk biceps
reflex can be grouped with other brisk reflexes (right panel) or with other biceps reflexes (left panel). SNOMED CT groups brisk biceps reflex with
bicep reflexes, NEO groups brisk biceps reflex with other brisk reflexes (Image created with Protégé 5.5.0 ontology editor [34].)

Table 3 Candidate Ontologies For Use As A Neurological
Examination Ontology

Ontology Concepts

UMLS Unified Medical Language System 4,258,810

SNOMED CT SNOMED CT 357,533

MEDCIN MEDCIN 348,808

HPO Human Phenotype Ontology 18,278

OMIM Online Mendelian Inheritance In Man 109,609

MeSH Medical Subject Headings 279,425

NEO Neurological Examination Ontology 1100

Table 4 Coverage Of Test Neurology Concepts By Candidate
Ontologies

Ontology Concepts Covered Proportion Covered

UMLS Metathesaurus 601 100%

NEO 601 100%

SNOMED CT 412 69%

MEDCIN 317 53%

OMIM 278 46%

HPO 233 39%

MeSH 118 20%
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Wu and Palmer [24]. Distances between concepts were
normalized with a minimum of 0.0 (closest) and a max-
imum of 1.0 (most distant).

Dist a; bð Þ ¼ 1−
2�depth LCSð Þ

depth að Þ þ depth bð Þ

Dist (a, b) is the semantic distance between concept a
and concept b, LCS is the lowest common subsumer in
the ontology for both a and b, depth(a) is number of
levels from the root concept to concept a, depth (b) is
the number of levels from the root concept to concept
b, and depth(LCS) is the number of levels from the root
concept to the LCS.

Results
We found 2386 neurological examination findings in 419
published neurological teaching cases. On average, each
case had 5.7 ± 3.7 neurological findings. Since these cases
appeared in neurology textbooks, they likely had more
neurological findings per case than can be expected in

general neurological practice. These 2386 findings (based
on abstracted test-phrases) were mapped to 601 unique
UMLS concepts. We examined how well each of the six
candidate ontologies was able to cover the 601 test con-
cepts (Table 4). None of the five candidate ontologies had
sufficient scope to cover all the concepts. SNOMED CT,
the largest of the candidate ontologies, covered 69% of the

Table 5 Terms Contributed To Neurological Examination
Ontology (NEO) By Source Vocabulary

Terminology Concepts Proportion Contributed

UMLS 1100 100%

SNOMED CT 728 66%

MEDCIN 172 16%

OMIM 76 7%

HPO 52 5%

MeSH 10 1%

Miscellaneous 62 6%

Table 6 Examples Of Neurological Concepts Available In UMLS
And Not Found in SNOMED CT Browser

CUI UMLS Term

C2016536 decreased pain and temperature
sensation below T2 level

C2054091 tactile sensation decreased sensory
level at clavicles (T2 dermatome)

C2039818 decreased tactile sensation of ulnar
1 and ½ digits of hand

C2230515 weakness of ankle on dorsiflexion

C2230516 weakness of ankle plantar flexion

C1847766 shoulder girdle muscle atrophy

C2054045 decreased tactile sensation of lateral
leg and dorsum of foot (L5 dermatome)

C2054068 decreased tactile sensation of middle
finger only (C7 dermatome)

C2039817 decreased tactile sensation of palmar
aspect of radial 3 and ½ digits of hand

Table 7 Test Phrases Mapped To |C0422917| Bilateral Extensor
Plantar Response

Test Phrase

Babinski response elicited bilaterally

bilateral Babinski responses

bilateral Babinski signs

bilateral extensor toes signs

bilateral upgoing plantars

bilateral upgoing toes

both plantar responses were extensor

both plantars were upgoing

both toes upgoing

plantar responses were extensor

plantars extensor

upgoing plantar responses bilaterally

upgoing plantars

UMLS Listed Synonyms

Babinski reflexes bilateral

Bilateral extensor plantar response (finding)

Table 8 Some Examples of Discordant Inter-Concept Distancesa

First Concept Second
Concept

SNOMED CT Inter-
concept distance

NEO Inter-
concept
distance

brisk ankle reflex absent ankle
reflex

.11 .75

brisk biceps reflex absent
biceps reflex

.17 .75

asterixis hemiparesis .23 .64

dysdiadochokinesis athetosis .27 .69

dysmetria absent
reflexes

.11 1.00b

apraxia ataxia .17 1.00b

bradykinesia masked
facies

.79 .20

bradykinesia micrographia .56 .20

oral dyskinesia vocal cord
paralysis

.33 .67

aSNOMED CT and NEO. Distances are normalized with 0.0 as minimum
distance, 1.0 as maximum distance. Inter-concept distances were calculated by
method of Wu and Palmer based on the concept hierarcy
b When concepts are in different high-order branches of the hierarchy, the
distance is 1.0

Hier and Brint BMC Medical Informatics and Decision Making           (2020) 20:47 Page 5 of 9



test concepts. The Neurology Examination Ontology
(NEO) constructed from multiple terminologies in UMLS
(Table 5), has enough scope to cover all test concepts.

Discussion
We created a neuro-ontology of 1100 concepts derived
from the UMLS Metathesaurus to encode findings from
the neurological examination and history with machine-
readable codes. To create an ontology with enough scope
to cover common neurological findings, we drew concepts
from a variety of terminologies (Table 5). We tested the
completeness of the Neurological Examination Ontology
(NEO) by assessing its ability to encode neurological con-
cepts derived from 419 test teaching cases. These test
teaching cases generated 2386 test phrases and 601 unique
neurological concepts. NEO had adequate scope to cover
100% of the test concepts with a single concept. SNOMED
CT had pre-coordinated concepts to cover 69% of the test
concepts (Table 4). Coverage of test neurology concepts by
MEDCIN was almost as good as SNOMED CT, while
HPO, MeSH, and OMIM lack many key neurological con-
cepts needed to cover the entire neurologic examination
and history (Table 4).
Most of the concepts lacking from SNOMED CT were

granular concepts needed to describe the motor and sen-
sory examination in detail, such as which muscle groups
were weak and the precise distribution and nature of sen-
sory loss (Table 6). In this study, we did not use the post-
coordination of concepts to generate more granular
concepts. Post-coordination of SNOMED CT concepts
would likely have increased the coverage rate. Elkin et al.
[36] have shown that post-coordination of concepts can
increase coverage for problems on the medical problem
list from 50% to over 90%. Post-coordination of concepts
is the process of joining together concepts to increase spe-
cificity and granularity of meaning. For example, the con-
cept |weakness of right ankle dorsiflexion| can be
represented by bringing together the concepts |right| with
|ankle dorsiflexion| and |muscle weakness|. UMLS itself
does not have a grammar for combining concepts to cre-
ate post-coordinated concepts. SNOMED CT has a formal

compositional grammar that specifies rules for combining
concepts (post-coordination). However, the underlying
grammar of post-coordination of SNOMED CT concepts
is complex and requires considerable training before its
successful implementation. Even professional coders may
disagree on how to combine concepts to define more
complex concepts [37]. Furthermore, calculating semantic
distances between post-coordinated concepts and search-
ing databases with post-coordinated concepts is more
complicated than with pre-coordinated concepts.
For each clinical deficit, the clinical teaching cases

used a variety of phrasing to express the same concept.
For example, the neurological finding of bilateral exten-
sor plantar response was expressed in 13 different ways
in the clinical teaching cases (Table 7).
This heterogeneity of expressions poses challenges for

efforts to use natural language processing algorithms to
convert free text neurological examinations into UMLS
concepts [7, 8]. In a pilot study with NLM MetaMap
[38, 39] in the batch mode, we were able to convert
70.3% of the 2286 test phrases to UMLS concepts. A
higher conversion yield might be possible with additional
post-processing and pre-processing of the longer and
more complex test phrases.

Curation of the hierarchy
One of the advantages of a small domain-specific ontology,
such as NEO is that domain experts can more easily iden-
tify and correct subsumption errors. Some somewhat arbi-
trary subsumption decisions may influence how accurately
the concept distance measures derived from a concept hier-
archy align with expert opinion. Considerable effort has
been devoted to finding the best distance metrics for con-
cept hierarchies that give the closest results to expert opin-
ion [19, 20, 22]. However, when the hierarchy itself is not
aligned with expert opinion, the choice of distance metric
may be less critical. For example, most neurologists would
agree that an absent knee jerk is more similar to an absent
biceps jerk than it is to a brisk knee jerk (Fig. 2). As a result,
in NEO, we have subsumed absent ankle reflex, absent knee
reflex, absent biceps reflex, and absent triceps reflex under

Fig. 3 Dysmetria (an imprecision in performing pointing movements with the limbs) is subsumed by incoordination and reflex finding in
SNOMED CT. Read hierarchy from right to left (Diagram from Shrimp Ontoserver [42].©Australian e-Health Research Centre)

Fig. 4 In SNOMED CT, asterixis (a flapping tremor of the arms) is subsumed by coarse tremor and finding of upper limb. Read hierarchy from
right to left. (Diagram from Shrimp Ontoserver [42].©Australian e-Health Research Centre)
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absent reflex. SNOMED CT subsumes absent ankle reflex
and brisk ankle reflex under ankle reflex finding and sub-
sumes absent biceps reflex and brisk biceps reflex under bi-
ceps reflex finding. These are ontologically correct (Fig. 2)
but yield distance measures that are not in accord with a
neurologist’s opinion as to which concepts are more similar
(Table 8). In a large ontology like SNOMED CT, some er-
rors in subsumption are inevitable and need to be corrected
over time based on input from domain experts [40, 41].
Two examples of likely errors in subsumption are noted in
Figs. 3 and 4. Dysmetria is a form of ataxia and hence is
correctly subsumed by a finding related to incoordination,
but dysmetria is not a reflex finding (Fig. 3). Similarly,
apraxia is a disorder of higher cortical functions akin to
aphasia and agnosia and should not be subsumed under ei-
ther incoordination or musculoskeletal disorders (Fig. 4).
As a result, distance measures based on the SNOMED CT
concept hierarchy show dysmetria as too close to absent re-
flexes and shows apraxia too close to ataxia (Table 8). One
of the goals of SNOMED CT is to have more concepts fully
defined, which is achieved by adding qualifiers to concepts
to make them distinguishable from other concepts in the
ontology. Fully defined concepts cannot be confused logic-
ally with any other concept in the ontology. However,
adding additional subsumption relationships may yield
anomalous distance measures between unrelated concepts.
In Fig. 5, the subsumption of asterixis (a flapping tremor of
the arm) under a finding of the upper limb yields an anom-
alous distance measure placing asterixis too close to hemi-
paresis (Table 8). Similarly, in Fig. 6, the subsumption of
oral dyskinesia (adventitious spontaneous chewing and
writhing movements of the lips and tongue) under oral cav-
ity finding causes oral dyskinesia to be anomalously close to
the unrelated concept of vocal cord paralysis (Table 8).

Finally, in a small curated domain-specific ontology like
NEO, related concepts can be grouped to provide more ac-
curate concept distance measures. For example, by group-
ing manifestations of bradykinesia such as masked-facies
and micrographia close to bradykinesia, distance measures
calculated based on the concept hierarchy can reflect the
relatedness of these concepts (Table 8).

Manageability
One advantage of a small ontology like NEO is improved
manageability. Both the NLM and SNOMED Inter-
national recommend the use of subsets of UMLS and
SNOMED for certain restricted applications [26, 43].
NEO has only 1100 concepts, and the downloadable
CSV file has 1100 rows. In contrast, the UMLS 2019AB
release has 4,258,810 concepts, the MRREL.RRF (rela-
tionships) file has 84,189,164 rows and the MRCON-
SO.RRF (concepts) file has 15,172,405 rows. Similarly,
the 2019 SNOMED CT US Edition release has 357,533
concepts, the relationship snapshot file has 2,989,896
rows, and the concept snapshot file has 478,117 rows.
Since each row in the NEO file has the child-parent rela-
tionship for each concept, hierarchies and subsumption
tables can be generated directly from the primary file.

Limitations
A major limitation of this study is that we did not attempt
to combine concepts to generate missing or more complex
concepts (post-coordination). Because we did not post-
coordinate concepts, we were not able to grade muscle
weakness when describing the motor examination. Muscle
strength is usually graded on a scale of 0 to 5 (0 = ‘no move-
ment’ to 5 = ‘full strength’). We elected to encode the clin-
ical expression |weak quadriceps (4/5)| as |quadriceps

Fig. 5 In SNOMED CT, oral dyskinesia is subsumed by disease of mouth, movement disorder, and oral cavity finding. Its defining quality is
movement disorder. Read hierarchy from right to left. (Diagram from Shrimp Ontoserver [42].©Australian e-Health Research Centre)

Fig. 6 In SNOMED CT concept hierarchy, apraxia is subsumed by finding of praxis and musculoskeletal finding and finding of incoordination.
Read hierarchy from right to left. (Diagram from Shrimp Ontoserver [42].©Australian e-Health Research Centre)
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weakness| C0577655 and ignore the degree of weakness.
The sensory examination is notoriously difficult to describe
in text, and in the era of the paper medical record, neurolo-
gists often used drawings to document the sensory examin-
ation. For this study, we did not use post-coordinated
concepts to describe sensory findings but used instead
granular concepts from MEDCIN to describe common sen-
sory findings such as sensory loss in median nerve distribu-
tion, sensory loss in C8 dermatome distribution, a sensory
level at the T2 level, etc. Similarly, we ignored quantitative
visual acuity measurements such as 20/200 and encoded
any visual acuity of less than normal as |reduced visual acu-
ity| C0234632. Although UMLS has appropriate lateralized
concepts for some findings (hemiparesis, rigidity, myoclo-
nus, chorea, tremor, ptosis), there are not separate latera-
lized concepts for other common neurological findings
(ataxia, hyperreflexia, spasticity, hyporeflexia). We did not
develop a method to capture these lateralized findings
when existing concepts were not available in UMLS and
reverted to using the non-lateralized concept (e.g., ataxia
for left ataxia).
Another limitation is that we have not validated the

phrase abstraction methods or the phrase-to-concept
mapping methods with other neurology experts or
tested the methodology on de-identified medical re-
cords. More work is needed on whether a concise
neurological examination ontology such as NEO is
useful and acceptable to neurologists.

Conclusions
With certain limitations, an ontology that is a subset of
UMLS with approximately 1100 concepts has adequate
breadth and granularity capture the signs and symptoms
of the neurological examination and history. Additional
concepts may be needed to fully capture the laterality of
certain findings (ataxia, hyperreflexia, etc.) as well as the
severity of other findings (weakness, spasticity, rigidity,
etc.). Using a subset of UMLS concepts to convert
neurological signs and symptoms to machine-readable
codes offers the advantage of improved manageability
and coverage when compared to larger multi-purpose
ontologies such as SNOMED CT, MEDCIN, and
OMIM.
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