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Abstract  
Schwann cell transplantation is a promising method to promote neural repair, and can be used for peripheral nerve protection and myelin-
ation. Microcapsule technology largely mitigates immune rejection of transplanted cells. We previously showed that microencapsulated 
olfactory ensheathing cells can reduce neuropathic pain and we hypothesized that microencapsulated Schwann cells can also inhibit neu-
ropathic pain. Rat Schwann cells were cultured by subculture and then microencapsulated and were tested using a rat chronic constriction 
injury (CCI) neuropathic pain model. CCI rats were treated with Schwann cells or microencapsulated Schwann cells and were compared 
with sham and CCI groups. Mechanical withdrawal threshold and thermal withdrawal latency were assessed preoperatively and at 1, 3, 5, 
7, 9, 11 and 14 days postoperatively. The expression of P2X3 receptors in L4–5 dorsal root ganglia of the different groups was detected by 
double-label immunofluorescence on day 14 after surgery. Compared with the chronic constriction injury group, mechanical withdrawal 
threshold and thermal withdrawal latency were higher, but the expression of P2X3 receptors was remarkably decreased in rats treated with 
Schwann cells and microencapsulated Schwann cells, especially in the rats transplanted with microencapsulated Schwann cells. The above 
data show that microencapsulated Schwann cell transplantation inhibits P2X3 receptor expression in L4–5 dorsal root ganglia and neuro-
pathic pain.
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Introduction 
Neuropathic pain is a perplexing chronic pain condition as-
sociated with tissue damage and nerve injury, and its under-
lying mechanism remains unknown. This important health 
issue constitutes a challenge for modern medicine through-
out the world (Li et al., 2016; Pickering et al., 2016; Lin et al., 
2017; Sagalajev et al., 2017). The purine, adenosine triphos-
phate, is not only an important messenger involved in the 
transmission of pain information (Zhu et al., 2015a, b; Kuan 

et al., 2016; Matthews et al., 2017; Tavakoli-Ardakani et al., 
2017), but also activates sensory neurons, including those 
with cell bodies in the dorsal root ganglia. Nucleotides signal 
through the P2 family of receptors. These include both the 
P2X purinergic receptors and the P2Y receptors, which have 
a diverse agonist profile (Kaan et al., 2010; Ishchenko et 
al., 2017; Jung et al., 2017; Xie et al., 2017; Ying et al., 2017; 
Zhao et al., 2017). P2X receptors play a pivotal role in the 
conduction and regulation of neuropathic pain. In experi-
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mental pain models, selective P2X3 and P2X2/3 receptor an-
tagonists effectively reduce neuropathic pain (McGaraughty 
et al., 2003; Gao et al., 2011; Li et al., 2013; Barragán-Iglesias 
et al., 2016; Chen et al., 2016).

The method of cell analgesia is to transplant special cells 
into the host’s central nervous system, such as the subarach-
noid space. These cells act by the sustained excretion of neu-
roactive analgesic substances, such as enkephalin and β-en-
dorphin, resulting in sustained analgesia (Sagen et al., 1986; 
Hui et al., 2011; Wu et al., 2011; Jergova et al., 2016). These 
cells function as a bio-analgesic pump that exerts a pharma-
cological effect of relieving pain or increasing pain threshold 
(Kim et al., 2004; Warren et al., 2017). In the peripheral 
nervous system, Schwann cells (SCs) are principal glial cells 
that play an important role in recovery after peripheral 
nerve injury. SCs are also valuable cells for the tissue engi-
neering of artificial neurons (Sherman et al., 2005; Gnavi 
et al., 2015; Mogha et al., 2016; Liu et al., 2017; Merolli et 
al., 2017; Wang et al., 2017; Yeh et al., 2017). They secrete 
nerve growth factors that counterbalance pro-inflammatory 
cytokines, including, interleukin-10 and erythropoietin. SCs 
provide favorable conditions for the regeneration of axons 
and guide the distal growth of axons, and have also been 
widely explored as promising donors for transplantation to 
promote axonal regeneration after nerve injury (Griffin et 
al., 2008; Qin et al., 2016; Clements et al., 2017; Gomez-San-
chez et al., 2017; Quintes et al., 2017). However, aberrant SC 
function may underlie the formation of neuropathic pain 
(Campana et al., 2007). The effects of SC transplantation on 
neuropathic pain in rats has not been reported. Immune re-
jection is a key factor influencing the outcome of tissue and 
cell transplantation. Microencapsulation is a widely used 
immunoisolation technology that can overcome this com-
plication (Zhu et al., 2015a, b; Leong et al., 2017; Meier et al., 
2017; Shimoda et al., 2017). We previously confirmed that 
transplantation of microencapsulated olfactory ensheathing 
cells can relieve pain in chronic constriction injury (CCI) 
rats (Zhao et al., 2015). In the present study we transplanted 
SCs/microencapsulated Schwann cells (MC-SCs) into the 
region surrounding the injured nerve in a model of sciatic 
CCI, investigated the effect and mechanism of P2X3 recep-
tor-mediated neuropathic pain, and explored new ways to 
prevent and treat neuropathic pain.
  
Materials and Methods
Animals
Thirty clean Sprague-Dawley rats of both sexes weighing 
150–200 g and aged 6–7 weeks were provided by the Depart-
ment of Laboratory Animal Science, Traditional Chinese 
Medicine University, China (license No. SYXK (Gan) 2015-
0001). All protocols were approved by the Animal Care and 
Ethics Committee, Medical School, Traditional Chinese 
Medicine University, Jiangxi Province, China.

Culture and identification of SCs
RSC96 cells, derived from the long-term culture of rat pri-
mary SCs, were purchased from the BaNa Culture Collec-

tion of Beijing Beina Chuanglian Biotechnology Institute 
(Beijing, China). RSC96 cells were cultured using subcultur-
ing methods. Dulbecco’s modified Eagle’s medium/Nutri-
ent Mixture (Boster, Wuhan, China) containing 15% fetal 
bovine serum (Cellmax, Beijing, China) was replaced every 
2–3 days. Cells reaching 80–90% confluency were passaged. 
Cells were fixed in 4% paraformaldehyde at room tempera-
ture for 20–30 minutes, and blocked with 5% bovine serum 
albumin (Boster) at room temperature for 30 minutes. Cells 
were incubated with a mouse monoclonal S-100β antibody 
(1:100; Abcam, Shanghai, China) at 4°C overnight, and then 
with FITC-labeled goat anti-mouse IgG (1:100; Boster) in 
the dark at room temperature for 2 hours and then in the 
dark with DAPI (Boster) for 5 minutes. Cells were examined 
using fluorescence microscopy (Olympus, Tokyo, Japan) 
(Chen et al., 2017).

CCI model
A rat CCI model was prepared (Zhu et al., 2014; Wang et 
al., 2017). Sprague-Dawley rats were anesthetized with 1% 
intraperitoneal sodium pentobarbital (40 mg/kg). Under 
aseptic conditions, the main trunk of the sciatic nerve was 
revealed in the upper third of the rat thigh. The sciatic nerve 
was ligated with 4-0 catgut, 1 mm apart. Ligation intensi-
ty was such that the nerve blood supply was not affected. 
Wounds were then sutured layer by layer and the rats were 
allowed to recover from anesthesia. Reduced pain threshold 
and walking impairments confirmed the success of the CCI 
model (Wang et al., 2014). The 30 rats were equally and ran-
domly assigned into four groups (n = 6 per group): Sham, 
CCI, CCI + SCs and CCI + MC-SCs groups. In the sham 
group, the sciatic nerve was isolated but not ligated. In the 
CCI + SCs and CCI + MC-SCs groups, 0.5 μL suspensions 
of 1 × 105 SCs or MC-SCs were, respectively, transplanted 
into the region surrounding the CCI injured nerve. Wounds 
were then sutured layer by layer and the rats were allowed to 
recover from anesthesia. 

Encapsulation and implantation of MC-SCs
Cells in the SC suspension were counted under an inverted 
microscope (Olympus, Tokyo, Japan) and adjusted to 1 × 
109/L. Cell survival rate was ensured to be > 90% using Try-
pan blue staining. The SC suspension was mixed with 1.5% 
sodium alginate solution (1:1) (Solarbio, Beijing, China) and 
then sprayed into 1.1% calcium chloride solution through 
a syringe pump. Samples were mixed gently and precipitat-
ed. The supernatant was discarded. After washing twice in 
0.9% physiological saline, the encapsulated cells were coated 
with 0.05% poly-l-lysine (Solarbio) and then washed again 
with 0.9% physiological saline. Cells were then suspended in 
0.15% sodium alginate for 5 minutes (Solarbio) to form the 
outer layer of the membrane. Microcapsules were suspended 
in just enough saline to cover the sedimentary microcap-
sules (Meier et al., 2015). In the CCI + SCs group, the SC 
suspension was transplanted into the injured sciatic nerve, 
but the rats in the CCI + MC-SCs group received the pre-
pared Schwann cell microcapsules.
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Measurement of mechanical withdrawal threshold (MWT)
The MWT was determined using Von Frey filaments (BME-
404, Tianjin, China) applied through a wire mesh (1 × 1 cm2) 
in the bottom of a box in an area adjacent to the operated 
hindlimb. At 1, 3, 5, 7, 9, 11 and 14 days after surgery, rats 
were placed in a clean glass box that was positioned on the 
wire mesh for an acclimation period of at least 15–20 min-
utes. The Von Frey filament was applied starting with a min-
imum force (0.13 g) and continuing until a foot retraction 
occurred or the force reached the maximum (20.1 g). The in-
ter-stimulus interval was at least 20 seconds to allow stimu-
lus-induced responses, such as foot-licking and leg-flicking, 
to disappear completely. Experiments were repeated three 
times and the mean of the three values (MWT) was obtained 
(Lin et al., 2014; Wang et al., 2014). 

Measurement of thermal withdrawal latency (TWL)
TWL was measured using the Thermal Paw Stimulation Sys-
tem (BME-410C, Tianjin) at 1, 3, 5, 7, 9, 11 and 14 days after 
surgery. Rats were acclimatized to the apparatus for 15–20 
minutes. Radiant heat stimulation illuminated the posterior 
limb of the rat by passing a beam of light through a glass 
plate. The light beam was switched off when the rat exhib-
ited the withdrawal reflex. The hind paws were tested alter-
nately at 5-minute intervals. The maximum time for thermal 
stimulation was 30 seconds.

Ultrastructural changes of the sciatic nerve
At 14 days after surgery, injured sciatic nerves from rats in 
each group were fixed with 2.5% glutaraldehyde solution, 
embedded in resin and semi-thin slices prepared (10 μm). 
After Wright’s staining and fixing, the slices were stained 
with osmic acid. Pathological changes of the nerve were ob-
served under transmission electron microscopy (FEI, Hills-
boro, USA).

Immunofluorescence double labeling
Rats were anesthetized with intraperitoneal 1% sodium 
pentobarbital (40 mg/kg,). The L4–5 dorsal root ganglia in 
each group were separated immediately and fixed in 4% 
paraformaldehyde overnight at 4°C. Afterwards, the ganglia 
were transferred to 10%, 20% and 30% sucrose solution for 
dehydration at 4°C overnight. Tissues were sectioned at 10 
μm on a cryostat microtome and mounted onto anti-strip-
ping slides. After drying, slides were washed three times 
with PBS and then incubated with 5% normal goat serum 
(Solarbio) for 30 minutes in a moist chamber at room tem-
perature. The sections were incubated with mouse mono-
clonal anti-P2X3 (1:500; Santa Cruz Biotechnology, Dallas, 
TX, USA) and rabbit polyclonal anti-NeuN (1:500; Abcam) 
antibodies overnight at 4°C. After rinsing three times in 
PBS, the sections were incubated with fluorescent goat an-
ti-rabbit TRITC and goat anti-mouse FITC secondary anti-
body (1:100; Boster) in the dark at room temperature for 1 
hour. The sections were washed again in PBS and coverslips 
then mounted with anti-fluorescent encapsulating agent. 
Finally, sections were examined by fluorescence microscopy 

(Olympus, Tokyo, Japan). The mean optical density and the 
percentage of P2X3 receptor-immunoreactive cells in L4–5 

dorsal root ganglia were quantified with Image-Pro Plus 
6.0 software (Media Cybernetics Inc.) Five fields containing 
approximately 50 neurons each were randomly selected, and 
data from each rat were averaged. 

Statistical analysis
Data, expressed as the mean ± SEM, were analyzed using 
SPSS 17.0 software (SPSS, Chicago, IL, USA). Statistical 
comparisons were performed with one-way analyses of vari-
ance followed by the least significant difference post hoc test. 
P < 0.05 was considered statistically significant.

Results
Morphology and purity of SCs in culture
Under the inverted microscope, SCs appeared bipolar, spin-
dle-like or had multiple processes (Figure 1A). Immunohis-
tochemical staining revealed a purity of S-100β-positive cells 
of greater than 95% (Figure 1B).

Assessment of MWT and TWL
There were no differences in the MWT or TWL between 
groups prior to the experiment. MWT and TWL were sig-
nificantly lower in the CCI group compared with the sham 
group (P < 0.01) and were higher in the CCI + SCs and CCI 
+ MC-SCs groups than in the CCI group (P < 0.01). MWT 
and TWL were lower in the CCI + MC-SCs group than in 
the CCI + SCs group (P < 0.05; Figure 2).

Ultrastructural changes of the sciatic nerve in each group
Myelin sheaths in the sham group were dense, uniform and 
structurally intact, with lamellar structures arranged neatly, 
and with no atrophy or swelling of axons. In the CCI group, 
the myelinated fibers of the sciatic nerve were reduced in 
number, exhibited vacuolar defects, axonal contraction, my-
elin space expansion, and even the myelinated lamellae of 
the nerve fibers of the sciatic nerve were completely separat-
ed. However, in the CCI + SCs and CCI + MC-SCs groups, 
the myelin structure of the sciatic nerve was basically intact, 
and the degree of demyelination was remarkably reduced, 
especially in the CCI + MC-SCs group. Nevertheless, there 
were still local defects of the myelinated lamella and vacuo-
lar formation (Figure 3).

Co-expression of P2X3 and NeuN by double-label 
immunofluorescence
Immunofluorescence showed colocalization of P2X3 and 
NeuN immunoreactivity in dorsal root ganglia (Figure 4A–
D). The ratio of P2X3/NeuN-immunolabeled cells in the 
CCI group was significantly increased compared with that 
in the sham group (P < 0.01, Figure 4E). The ratio of P2X3/
NeuN-immunolabeled cells that was increased in CCI group 
was reduced in the CCI + SCs and CCI + MC-SCs groups (P 
< 0.01). The ratio of P2X3/NeuN-immunolabeled cells in the 
CCI + MC-SCs group was lower than that in the CCI + SCs 
group (P < 0.05; Figure 4E). The percentage of immunore-
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active cells (%) was calculated by the number of immunore-
active cells/total number of cells × 100%.  

Discussion
SCs are immortal glial cells that can secrete a variety of neu-
rotrophic factors. SCs play a very important role in nerve re-
generation after peripheral nerve injury (Gnavi et al., 2015; 
Mogha et al., 2016; Merolli et al., 2017; Wang et al., 2017; 
Yeh et al., 2017). Our results have shown that transplanta-
tion of SCs or MC-SCs reduces P2X3 receptor expression 
in L4–5 dorsal root ganglia and increases behavioral pain 
threshold in rats with neuropathic pain. In a previous study, 
SCs were obtained from the sciatic nerve of neonatal rats, by 

Figure 1 Morphological identification of Schwann cells.
(A) Inverted microscopy image of cells after culture for 2 days; cells 
were bipolar and spindle-like. (B) Fluorescence microscopy image 
of cells after culture for 2 days; nuclei are labeled blue, (4′,6-diamidi-
no-2-phenylindole); Schwann cells are labeled green (S-100β). Scale 
bars: 50 μm. Arrows indicate Schwann cells.

Figure 2 Changes in thermal withdrawal latency and mechanical withdrawal threshold after Schwann cell transplantation.
(A, B) Mechanical paw withdrawal threshold and thermal withdrawal latency threshold were lower in the CCI group than in the other groups and 
were higher in the CCI + SC (SCs) and CCI + MC-SC (MC-SCs) groups than in the CCI group. Date are expressed as the mean ± SEM (n = 6 per 
group; one-way analysis of variance followed by the least significant difference post hoc test). **P < 0.01, vs. sham group; ##P < 0.01, vs. CCI group; 
&P < 0.05, vs. SCs group. SCs group: CCI rats treated with SCs; MC-SCs group: CCI rats treated with microencapsulated Schwann cells. SCs: 
Schwann cells; CCI: chronic constriction injury. 

Sham                                           CCI                                            SCs                                        MC-SCs

A

B

Figure 3 Ultrastructural changes of the sciatic nerve of each group at 14 days after surgery.
Scanning electron microscopy images of (A) nerve fiber myelin sheath (original manification, 5000×) and (B) nerve fiber myelin sheath (original 
manification, 11,500×). In the sham group, myelin sheaths appeared dense and uniform, had an intact structure, and had regular and well-defined 
patterns. However, in the CCI group, the myelinated lamellae of the nerve fibers of the sciatic nerve were completely separated. Some neuronal 
mitochondria had low numbers of cristae and some axons were atrophied in the CCI + SCs (SCs) group. In the CCI + MC-SCs (MC-SCs) group, 
there were many myelinated fibers with a uniform myelin sheath thickness; the myelin sheath occasionally appeared loose. The arrows show dam-
aged axons. SCs group: CCI rats treated with Schwann cells; MC-SCs group: CCI rats treated with microencapsulated SCs. SCs: Schwann cells; CCI: 
chronic constriction injury.
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stripping, cutting and purifying (Shakhbazau et al., 2014). 
However, there are many disadvantages to obtaining cells by 
this method: the cell content is low, and as the donor age in-
creases, the number of cells is markedly decreases and their 
ability to proliferate and differentiate declines. These limita-
tions severely limit the application of long-term transplant 
treatment methods to clinical practice. In this study, RSC96 
cells were purchased directly, and a large number of SCs 
were obtained by subculturing. SCs were then microencap-
sulated to reduce immune rejection.

The rats in the CCI group had no autophagy; the reduced 
pain threshold and walking impairments confirmed the 
model was successfully established (Zhu et al., 2014; Wang 
et al., 2017). On day 14 after surgery, the MWT and TWL in 
the CCI + SC group were remarkably higher than those of 
the CCI group. This indicates that SCs or MC-SC transplan-
tation may alleviate pain behavior in rats with neuropathic 
pain. Moreover, SC transplantation reduced P2X3 receptor 
expression in L4–5 dorsal root ganglia. P2X3 receptor pro-
tein levels in L4–5 dorsal root ganglia were elevated in the 
CCI models. However, P2X3 receptor levels were diminished 

after SC and MC-SC transplantation. We propose the fol-
lowing as possible mechanisms of action: SCs alter the local 
microenvironment by secreting various neurotrophic factors 
(Griffin et al., 2008; Qin et al., 2016; Clements et al., 2017; 
Gomez-Sanchez et al., 2017). SC transplantation contributes 
to neuronal survival and axonal regeneration (Niapour et al., 
2012; Lee et al., 2017). Transplantation of SCs can reduce the 
secondary damage of inflammation and nerve injury, and 
promote the restoration of the injured sciatic nerve in rats. 
The expression of P2X3 receptor in L4–5 dorsal root ganglia 
was previously observed on days 7 and 14 in a preliminary 
experiment, and was especially obvious on day 14 after sur-
gery (Zhao et al., 2015). There may be time considerations 
for this experiment. Noticeable improvements in behavior 
and immunofluorescence were observed on day 14 in both 
groups that received SCs, but particularly in the CCI + MC-
SC group. We can deduce that because the microcapsule 
polymer is semipermeable, the passage of macromolecules 
was blocked, which led to this improvement. Therefore, an 
immune barrier was established between the host cells and 
the SCs, resulting in immunological isolation. To transplant 

Figure 4 Changes in the number of P2X3 receptor/NeuN double-labeled cells in L4–5 dorsal root ganglia of each group. 
(A–D) On day 14 after surgery, double immunostaining for NeuN/P2X3 in dorsal root ganglia neurons in the sham, CCI, CCI + SCs (SCs), and CCI 
+ MC-SCs (MC-SCs) groups, respectively. NeuN/P2X3 immunoreactivity was detected in the dorsal root ganglia. The P2X3 receptor (green, arrows) 
was mainly observed in the cytoplasm. The NeuN receptor (red, arrows) was mainly observed in the nucleus. Scale bar: 50 μm. (E) The ratio of NeuN/
P2X3-immunolabeled cells in each group. Data are expressed as the mean ± SEM (n = 6 per group; one-way analysis of variance followed by the least 
significant difference post hoc test). **P < 0.01, vs. sham group; ##P < 0.01, vs. CCI group; &P < 0.05, vs. SCs group. SCs group: CCI rats treated with 
Schwann cells; MC-SCs group: CCI rats treated with microencapsulated SCs. SCs: Schwann cells; CCI: chronic constriction injury. 
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SCs without immunosuppressant therapy, there is a need 
for the cells to be encapsulated in a polymer, which ensures 
their isolation from the host immune system. Artificial cell 
microencapsulation is one way to transplant cells safely into 
the body and to protect them from the immune system (Zhu 
et al., 2015a, b; Leong et al., 2017; Shimoda et al., 2017). A 
major obstacle to successful SCs microcapsules is an ideal 
microcapsule material, which will form microcapsules that 
can maintain cell viability and functions for a long time. 
Microencapsulation is durable and typically proffers a large 
surface to volume ratio, which is advantageous for the bidi-
rectional diffusion of nutrients, oxygen, and bioactive mate-
rials. In the present study, due to the lack of a microcapsule 
generator, this experiment was conducted using a self-made 
jet-head droplet-forming apparatus. Hence, the size of the 
microcapsules may be non-homogeneous, there may be in-
complete microcapsules, or cells may be able to escape from 
the microcapsules.

Microcapsule materials-APA membrane is currently in-
vestigated in-depth. It is an ideal material for transplantation, 
and is also the most widely used microcapsule material. This 
experiment used APA microcapsules, and confirmed that 
microcapsules provided immune isolation. As for many other 
microcapsule materials, there are still many immaturities, 
and a large number of experiments are required for the pro-
duction methods of microcapsules. Therefore, the experiment 
used the APA microcapsule membrane with the most mature 
application and obtained the experimental results.

In conclusion, SCs or MC-SCs transplantation not only 
exerts a therapeutic effect on nerve damage and repair, but 
also diminishes immunological rejection. Microcapsules 
play an essential role in SCs transplantation. However, how 
MC-SCs specifically affect P2X3 receptor mediated neuro-
pathic pain warrants further investigation. The relationship 
between the number of SCs and the axonal area, myelin 
sheath thickness around the injured sciatic nerve, and the 
survival time of SCs after transplantation still needs further 
investigation. 
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