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Abstract

Allele frequency time series data constitute a powerful resource for unraveling mechanisms of adaptation, because the
temporal dimension captures important information about evolutionary forces. In particular, Evolve and Resequence
(E&R), the whole-genome sequencing of replicated experimentally evolving populations, is becoming increasingly pop-
ular. Based on computer simulations several studies proposed experimental parameters to optimize the identification of
the selection targets. No such recommendations are available for the underlying parameters selection strength and
dominance. Here, we introduce a highly accurate method to estimate selection parameters from replicated time series
data, which is fast enough to be applied on a genome scale. Using this new method, we evaluate how experimental
parameters can be optimized to obtain the most reliable estimates for selection parameters. We show that the effective
population size (Ne) and the number of replicates have the largest impact. Because the number of time points and
sequencing coverage had only a minor effect, we suggest that time series analysis is feasible without major increase in
sequencing costs. We anticipate that time series analysis will become routine in E&R studies.
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Introduction
The underlying molecular mechanisms of adaption in natural
populations to novel environments have been of long-
standing interest in evolutionary genetics. Nevertheless, it is
also becoming increasingly clear that information about
adaptive alleles provides an enormous potential for a broad
range of disciplines including vaccine and drug development
(e.g., Andries et al. 2005; Sequist et al. 2011), animal and plant
breeding (e.g., Hufford et al. 2012; Daetwyler et al. 2014), pest
management, biomedicine and many more. A widely used
approach for the identification of selection relies on pattern
of sequence variation, which are not compatible with the null
hypothesis of neutral drift, preferentially accounting for past
demographic processes. One of the most simple selection
signatures is generated by a beneficial allele sweeping through
the population; linked neutral alleles are hitchhiking with the
target of selection (Smith and Haigh 1974; Barton 2000) gen-
erating patterns of reduced variability, increased linkage dis-
equilibrium and skewed site frequency spectra around the
targeted genomic region. These signals are generated by se-
quence variants flanking the selected site and provide infer-
ence power for popular tests for selection (e.g., Tajima 1983;
Fay and Wu 2000; Kim and Stephan 2002; Sabeti et al. 2002;
Kim and Nielsen 2004; Jensen et al. 2005; Nielsen et al. 2005;
Voight et al. 2006; Foll and Gaggiotti 2008; Pavlidis et al. 2013;
Ferrer-Admetlla et al. 2014). While these tests utilize polymor-
phism data from a single time point, the analysis of samples
collected during multiple time points may be powerful
enough to infer selection for a single site taking advantage

of the allele frequency changes across the different time inter-
vals. Although the advantage of time series for population
genetic analyses has been appreciated for a long time (Fisher
and Ford 1947; Wright 1948), due to the lack of adequate data
this approach had not been receiving much attention. With
the arrival of second-generation sequencing the situation has
changed and with decreasing sequencing costs, the collection
of time series data has become feasible and is being recog-
nized as a powerful approach to study adaptive processes.

One recent example for the successful use of time series
data is the sequencing of ancient human remains to charac-
terize trajectories of selected alleles and to identify candidate
loci in European human populations (Mathieson et al. 2015).
Another study of seasonal population samples collected over
3 years demonstrated that natural Drosophila melanogaster
populations rapidly respond to selection driven by seasonal
changes in the environment (Bergland et al. 2014).
Nevertheless, one particular challenge for the inference of
adaptive processes from natural populations arises from de-
mographic processes, which may result in biased estimates if
not accounted for (e.g., Thornton et al. 2007; Crisci et al. 2012;
Haasl and Payseur 2016).

An alternative source of high resolution time series data
comes from experimental evolution studies combined with
sequencing pools of individuals (Pool-Seq) (Futschik and
Schlötterer 2010; Schlötterer et al. 2014), which provide rep-
licated samples at multiple time points. Because the environ-
mental conditions are well controlled and evolutionary
trajectories can be monitored in replicates, such evolve and
resequence (E&R) studies (Turner et al. 2011) are particularly
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informative to link selection signatures and adaptive changes
to a given environment. Over the past years adaptation to
novel environments was studied within an E&R framework in
a wide range of organisms, including bacteria (e.g., Barrick
et al. 2009; Woods et al. 2011; Tenaillon et al. 2012, 2016),
viruses (e.g., Foll et al. 2014), yeast (e.g., Kao and Sherlock 2008;
Lang et al. 2013; Burke et al. 2014; McDonald et al. 2016),
Drosophila (e.g., Burke et al. 2010; Turner et al. 2011; Zhou
et al. 2011; Orozco-terWengel et al. 2012; Turner and Miller
2012; Tobler et al. 2014; Griffin et al. 2017), and mice (e.g.,
Chan et al. 2012).

Despite the conceptual appeal and an increasing number
of suitable data sets, the inference of selection parameters
from time series data remains a significant challenge. Unlike
in cases where random drift can be ignored (Illingworth et al.
2012), calculating the exact probability of allele frequency
trajectories for finite population sizes comes at a huge com-
putational cost (Jewett et al. 2016). Hence, transition proba-
bilities are approximated (Terhorst et al. 2015; Topa et al.
2015; Khatri 2016) and parameters are estimated in a maxi-
mum likelihood (ML) (Bollback et al. 2008; Malaspinas et al.
2012; Mathieson and McVean 2013; Steinrücken et al. 2014;
Iranmehr et al. 2017) or a Bayesian framework (Ferrer-
Admetlla et al. 2016; Schraiber et al. 2016). Because these
methods are still computationally rather demanding, esti-
mates were also obtained by forward simulations in combi-
nation with approximate Bayesian computation (Foll et al.
2015). While all these methods account for random allele
frequency fluctuations owing to finite population sizes,
some are capable of estimating both Ne and s (Bollback
et al. 2008; Malaspinas et al. 2012; Steinrücken et al. 2014;
Foll et al. 2015; Ferrer-Admetlla et al. 2016; Iranmehr et al.
2017), whereas others rely on independent Ne estimates
(Mathieson and McVean 2013). Recently, Jewett et al.
(2016) suggested that purely deterministic models, despite
ignoring the effects of random drift, could provide accurate
estimates and reduce the computation time by several orders
of magnitude. This implies that the characterization of selec-
tion dynamics for millions of loci genome-wide is possible in a
reasonable time frame. However, it remains unclear if accu-
racy is sufficiently high, when such deterministic models are
applied to E&R studies in sexual organisms, such as
Drosophila, where Ne is in the hundreds (e.g., Tobler et al.
2014). Additionally, available methods are mostly limited to
the analysis of single trajectories, while state-of-the-art E&R
studies generate replicated allele frequency trajectories. Thus,
the inference potential provided by modern experimental
designs is often not fully exploited.

Several computer simulation studies provided guidelines
about the experimental design of E&R studies to optimize the
detection of selected loci (Baldwin-Brown et al. 2014; Kofler
and Schlötterer 2014; Kessner and Novembre 2015). In con-
trast, not much is known about the influence of the experi-
mental design on the inference of selection parameters. We
introduce a fast and highly accurate approach to estimate the
selection coefficient s and dominance h and evaluate different
designs for E&R. We show that the number of replicates and
the effective population size are the primary factors

determining the accuracy of estimates. Because a large num-
ber of time points and a high sequencing depth are not
needed in terms of accuracy, time series analyses are afford-
able and will most likely be the standard for future E&R
analyses.

Results and Discussion
We introduce a new approach to estimate s for haploid and
diploid populations that combines information of replicated
evolutionary trajectories. In its basic form, it employs linear
least squares regression (LLS) to fit allele frequency data to a
purely deterministic selection model.

Robustness under a Wide Range of Scenarios
We tested the robustness of the LLS method by applying it to
a set of 1.2 million simulated trajectories varying s and p0.
These simulations covered a wide range of experimental set-
ups differing in the number of replicates, Ne, sequencing cov-
erage and the total number of generations. Selection
coefficients were estimated with LLS and contrasted with
the actual parameter values (fig. 1). Ne and the number of
replicates had the largest effect on the precision of selection
estimates, whereas sequencing coverage and number of gen-
erations only played a minor role. Although the precision
varied across experimental parameters, LLS-based estimates
were unbiased under all scenarios examined. For low sequenc-
ing coverage (20�) only, our selection estimators showed
some bias with values that were systematically too small.
This bias appears to be negligible compared with the low
precision that results from the sampling noise. Interestingly,
despite this drop in precision for low sequence coverage, our
method was still powerful to identify selected loci (87%, a ¼
0.01).

We related the performance of our approach to WFABC
(Foll et al. 2015) and CLEAR (Iranmehr et al. 2017). The former
was previously favorably compared to other methods esti-
mating s from time series data—in particular for accuracy
under strong selection and computational efficiency (Foll
et al. 2015). CLEAR is a method to detect selection in E&R
data (Iranmehr et al. 2017), which also estimates s. We sim-
ulated allele frequency trajectories for 100,000 loci and 60
generations with p0 2 [0, 1] and s 2 [0, 0.3] assuming
Ne¼ 300. Allele frequencies were sampled every ten genera-
tions mimicking an average Pool-Seq sequencing depth of
80�. The strength of selection was estimated for single tra-
jectories only assuming h¼ 0.5, with LLS, WFABC, and
CLEAR. Accuracy was measured by the relative root–mean–
square error (rRMSE, see Materials and Methods for details),
since this measure captures both bias and variance of an
estimator.

All methods provided the most reliable estimates for large
selection coefficients (see fig. 2A) and intermediate (between
10% and 30%) starting allele frequencies (see fig. 2B). With
decreasing selective advantage, estimates became less accu-
rate, but LLS-based estimates provided lower rRMSE values
than those of CLEAR and WFABC. The accuracy dropped
(and rRMSE increased) also with increasing starting allele fre-
quency for all methods, but the effect was less pronounced
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for LLS and CLEAR. Under weak selection, as well as high
starting allele frequency of the beneficial allele, it is challenging
to disentangle directional selection from random drift. Our
results suggest that the good performance of LLS becomes
particularly evident for those cases where it is challenging to
distinguish selection from drift.

Applying any selection inference procedure on a genomic
scale requires a computationally effective method. It has re-
cently been suggested that runtimes of ML-based estimators
can be reduced by several orders of magnitude by ignoring

demographic histories, while maintaining high accuracy if Ne

and s are large enough (Jewett et al. 2016). WFABC is consid-
erably faster than several ML-based approaches (Foll et al.
2015), but we found that LLS required on average 0.0015 s
per locus, while CLEAR and WFABC needed about 0.1 and
1.4 s, respectively. For LLS this translates into a processing
time of 25 min for one million loci. Notably, the processing
time of CLEAR increased dramatically with Ne, while it
remained fairly constant with LLS (see supplementary table
S1, Supplementary Material online). Most importantly, the

FIG. 1. Robustness of LLS under a wide range of scenarios. Allele frequency trajectories were simulated for 100,000 unlinked loci. Unless noted
otherwise the default parameters were 60 geneations, Ne¼ 300, p02 [0, 1] and s2 [0, 0.3] and 1 replicate. We tested the influence of the number of
replicates, Ne, sequencing coverage or the total number of generations (values on top of each panel) on the robustness of LLS. A bias correction was
applied to all estimates (see Materials and Methods). The absolute error between estimated and true s is shown: median (dark blue), 25–75%
quantile (light blue) and 2.5–97.5% quantile (gray) of values.
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higher computational efficiency of LLS does not come at the
cost of reduced accuracy; as for challenging scenarios (small s
or large p0) it is more accurate than WFABC, while providing a
level of accuracy similar to CLEAR.

So far, we assumed codominance (h¼ 0.5), but since dom-
inance has a pronounced effect on the frequency trajectory of
selected alleles, we tested the robustness of LLS with different
degrees of dominance. We simulated replicated allele fre-
quency trajectories with h 2 {0, 0.5, 0.75, 1} and estimated
selection coefficients with LLS. While s is upward biased for
recessive alleles, we notice a downward bias in the case of
dominance (see fig. 3).

These results emphasize that ignoring dominance could
result in highly biased results with the LLS method. Using the
nonlinear least squares regression (NLS) approach to
coestimate s and h from time series data, we obtain unbiased
selection coefficient estimates for all values of h (see fig. 3).
While the width of the 50% band of errors is comparable
between LLS and NLS, we obtain more outliers with NLS,
which is reflected in a rather broad 95% band of errors.
Analyzing the 1% most extreme outliers suggests that that
the numerical procedure to optimize the sum of squared
errors is robust with respect to the starting value and there-
fore multiple local optima appear to be only rarely responsible
for the reduced precision (see supplementary fig. S1,
Supplementary Material online). Rather, it seems that outliers
occur frequently, when p0 of the beneficial allele is high and
the respective trajectories are not informative enough to
coestimate s and h (see supplementary figs. S2 and S3,
Supplementary Material online).

To combine the precision of LLS with the robustness of
NLS, we developed a procedure, which relies on NLS estimates
only when the data suggest a deviation from codominance.
We inferred the deviation from codominance by adding a
quadratic term to the linear model. If the P value of the
quadratic term is sufficiently small, NLS is used instead of

LLS. A too stringent threshold implies that LLS will be pre-
ferred, which will provide potentially biased estimates, if the
assumption of h¼ 0.5 is violated. On the other hand, too
liberal P value thresholds favor NLS, which is in general less
precise but always unbiased. Using a P value threshold of 0.1,
our results suggested that our automated switching method
constitutes a good compromise between precision and bias
(see fig. 3). The specificity of the switching procedure
appeared to be best for p0< 1/3 (see supplementary fig. S4,
Supplementary Material online). In the case of higher starting
allele frequencies, trajectories may not be informative enough
to detect deviations from codominance and estimates may
be biased.

Benefit of Replicated Allele Frequency Trajectories
Genetic drift and sampling noise during allele frequency
measurements (e.g., Pool-Seq) are responsible for devia-
tions between true and estimated parameter values. The
former can be reduced either by increasing Ne or by infer-
ring parameters using the information from multiple evo-
lutionary trajectories simultaneously, as available in
experimental evolution with replicate populations. The
latter can be decreased by increasing pool size and se-
quencing depth. This raises the question whether multiple
replicates or increased sequencing coverage are more ef-
fective to improve our estimates. To address this, we sim-
ulated time series data under two scenarios with the same
sequencing effort: 1) single trajectories with high sequenc-
ing coverage (480�) and 2) six replicates with 80� each.
An effective population size of 300 was chosen, because it
reflects a realistic value for E&R studies in sexual organisms,
such as Drosophila. Selection coefficients were estimated
with LLS.

With the same sequencing effort, we found for the entire
parameter space that more replicates provided more accu-
rate results than a single replicate with higher sequencing

FIG. 2. Comparison of LLS, WFABC, and CLEAR. Allele frequency tajectories were simulated for 100,000 unlinked loci over 60 generations assuming
Ne¼ 300 with p0 2 [0, 1] and s 2 [0, 0.3]. Selection coefficients were estimated with LLS (green), as well as WFABC (orange), and CLEAR (purple).
The relative deviation between estimated and true selection coefficient is shown as a function of s (A) and p0 (B).
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coverage (see fig. 4). This result makes intuitive sense, because
by combining allele frequency estimates across independently
evolved replicates the effect of random drift is reduced, while
increasing the read depth reduces solely the loss in accuracy
due to the sequencing noise. This emphasizes the importance
of sequencing multiple replicates, when studying populations
with small Ne. It is important to note that the reduction in
rRMSE by increasing the number of replicates will be less
pronounced for large Ne, for example, in E&R studies with

microbes, because single trajectories will be close to deter-
ministic ones.

Performance under a Typical E&R Scenario
We further characterized the accuracy of s estimates, by sim-
ulating allele frequency trajectories for unlinked loci under
experimental parameters that resemble those of recent E&R
studies with Drosophila (e.g., Turner et al. 2011; Tobler et al.
2014; Griffin et al. 2017). For a total of ten million loci, six

FIG. 3. Impact of the dominance parameter on the accuracy of selection estimates. Allele frequency trajectories were simulated in six replicates for
100,000 unlinked loci over 60 geneations assuming Ne¼ 300 with p02 [0, 1] and s2 [0, 0.3]. The dominance parameter (h) was assumed to be 0, 0.5,
0.75, or 1. Selection coefficients were estimated with both LLS and NLS. A bias correction was applied to all estimates (see Materials and Methods).
Additionally, an automatic switching approach was employed (LLS/NLS) that uses NLS-based estimates instead of those of LLS, if there is sufficient
statistical evidence for the need of a more complex selection model. Illustrated is the median (dark blue), 25–75% quantile (light blue) and 2.5–
97.5% quantile (gray) of absolute errors between true and estimated selection coefficient as a function of s.
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independent trajectories were simulated over 60 generations
each with population allele frequency estimates at every 10th
generation. Sampling noise was added to mimic Pool-Seq
with an average sequencing coverage of 80�. The entire pa-
rameter space was split into 2,500 equally sized bins based on
both p0 and s, and accuracy was assessed based on the rRMSE.

For 60% of the parameter space, estimates of s were highly
accurate with rRMSE below 0.3 (see fig. 5). Notably, this in-
cluded selection coefficients as low as 0.05, if the beneficial
allele started at a frequency between 0.1 and 0.7. For low
starting frequencies (p0< 0.1) and weak selection (s< 0.05)
the estimates were less accurate. In general, rRMSE exceeds
0.9 if either p0> 95% or s< 0.01. High starting frequencies
result in short and uninformative trajectories, which trans-
lates in the higher uncertainty. If the fitness benefit is too
small, it is challenging to distinguish random drift from selec-
tion and the relative error of estimates increases.

Analyzing the same data set with the automatic switching
method provided comparable results for variants under
strong selection (s> 0.1) with a starting allele frequency be-
low 60% (see supplementary fig. S5, Supplementary Material
online). For rare alleles under weak selection, or variants at
high frequency (p0> 0.75) estimates were imprecise and the
rRMSE exceeded 0.9.

Genetic drift results in random allele frequency changes,
thus time series data could distinguish between random (ge-
netic drift) and directional (selection) allele frequency
changes. Nevertheless, by chance genetic drift can also gen-
erate time series data that resemble those of selected alleles.
We used computer simulations to distinguish selection from
neutral expectations under drift. Specifically, we determined
the probability of a given selection coefficient under the null
hypothesis of random genetic drift by parametric bootstrap-
ping (see Materials and Methods). Applying this neutrality
test to the aforementioned simulations we determined the

fraction of significant loci (a¼ 0.01)—that is, the estimated
power of our test—for different values of s and p0 (see fig. 6).

LLS-based selection tests turned out to be very powerful.
More than 80% of the selected loci with s> 0.03, s> 0.06, or
s> 0.09 were detected for starting allele frequencies of p0¼
0.25, p0¼ 0.1, or p0¼ 0.05, respectively. Fitness advantages as
low as 2.5% can be detected in >40% of the cases if p0 is
between 0.3 and 0.7. Variants with 5% selective advantage can
be detected in>80% of the cases if they start between 0.1 and
0.8. Thus, even under challenging conditions, selected loci can
be detected with a state-of-the-art E&R design at reasonable
sensitivity using our method. However, linkage between loci

FIG. 4. The advantage of replication over high sequencing coverage. Allele frequency tajectories were simulated for 100,000 unlinked loci over 60
generations assuming Ne¼ 300 with p0 2 [0, 1] and s 2 [0, 0.3]. Selection coefficients were estimated with LLS using either a single replicate per
locus (green), or by combining the information of multiple replicates (purple). The overall sequencing effort was assumed to be constant. The
relative deviation between estimated and true selection coefficient is shown as a function of s (A) and p0 (B).

FIG. 5. Accuracy of selection coefficient estimates under a state-of-
the-art E&R experiment. Allele frequency trajectories were simulated
in six replicates for ten million unlinked loci over 60 geneations as-
suming Ne¼ 300 with p02 [0, 1] and s2 [0, 0.3]. Selection coefficients
were estimated with LLS. Estimates were divided into 2,500 bins based
on p0 and s, before computing the rRMSE for each bin. Illustrated are
the color-coded rRMSE values for each region of the parameter space,
with green and red corresponding to high and low accuracy,
respectively.
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and competition between beneficial loci in close proximity
(Hill and Robertson 1966) will complicate the identification of
selection targets.

These results also emphasize that the detection limit of
weakly selected alleles can be improved by avoiding small
starting allele frequencies. Although this may seem trivial it
is tricky to achieve. On one hand, starting the experiment
from a diverse set of haplotypes is beneficial because levels of
linkage disequilibrium (LD) are low (Baldwin-Brown et al.
2014; Kofler and Schlötterer 2014; Kessner and Novembre
2015). On the other hand, under such an experimental setup,
most alleles will be at low frequency, thus increasing the
number of founder chromosomes will also increase the prob-
ability of low frequency alleles under selection.

Recently, a highly outcrossed diploid Saccharomyces cere-
visiae population originating from four founder genotypes
was exposed to competitive growth in liquid media for 540
generations (Burke et al. 2014). Small starting allele frequen-
cies were avoided, because the founding population was de-
rived from four haplotypes only. Strain specific alleles
occurred on average at a frequency around 25%. Still, levels
of LD were kept low owing to the intense outcrossing scheme
between the four founder haplotypes. Such starting frequen-
cies greatly facilitate the identification of targets of selection,
even for weakly selected sites (see also fig. 6). Using LLS with
an FDR of 0.01, we identified all selected genomic regions of
the original analysis and inferred selection coefficients as low
as 0.002 (see fig. 7). Compared with the previous study, we
found more candidate loci, which we attribute to differences
in statistical power between the methods, particularly when
selection is acting on alleles with extreme p0 (see supplemen-
tary fig. S6, Supplementary Material online). Notably, a rather
complex life cycle was imposed in this E&R study and it is
unclear if assumptions of a constant selective pressure un-
derlying our analytic model are met. With a considerable

number of generations of asexual growth, clonal interference
could further complicate the analysis. Thus, we caution that
deviations from the model assumptions—if present—may
have influenced the inferred selection coefficients and the
exact number and location of true targets of selection require
further investigation.

Impact of Experimental Parameters
Previous studies evaluating the experimental design of E&R
studies (Baldwin-Brown et al. 2014; Kofler and Schlötterer
2014; Kessner and Novembre 2015) focused on the power
to identify selection targets, but did not evaluate the influence
of the experimental design on the inference of selection
parameters. Thus, we evaluated the impact of several exper-
imental parameters on the accuracy of estimated selection
coefficients. Allele frequency trajectories were simulated for
weak (s¼ 0.025) and strong (s¼ 0.1) selection on rare (p0¼
0.05) or common (p0¼ 0.25) variants under the standard
E&R scenario (300 Ne, 6 replicates, and 60 generations, mea-
suring allele frequencies every ten generations at 80� cover-
age). The selection coefficient s was estimated with LLS.
Furthermore, we studied the influence of dominance (for
p0¼ 0.25 and s¼ 0.1) using the switching method. The per-
formance of the estimation procedure was measured again
using the relative root mean squared error rRMSE, since it
captures both precision and bias (see fig. 8).

The measurement interval determines the temporal reso-
lution of allele frequency trajectories. Keeping the total num-
ber of generations constant, shorter intervals result in higher
resolution and more measurements. Altering the time inter-
val between 5, 10, and 20 generations, which correspond to
13, 7, and 4 allele frequency measurements, respectively, did
not change the accuracy of s estimates. Already four time
points (F0, F20, F40, and F60) resulted in accurate selection
coefficient estimates. Unlike codominant targets of selection,

FIG. 6. Sensitivity to identify selected loci. Allele frequency trajectories were simulated in six replicates for 10,000 unlinked loci over 60 geneations
assuming Ne¼ 300 varying both p0 and s. Selection coefficients were estimated and the null hypothesis of random drift was tested with LLS.
Illustrated is the sensitivity in identifying selected loci (a¼ 0.01) as a function of s and p0. (A) Beneficial variants started at 5% (orange), 10%
(purple) or 25% (green) with s 2 [0, 0.3]. (B) The selection advantage was equal to 0.025 (orange), 0.05 (purple), or 0.1 (green) with p0 2 [0, 1].
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the analysis of dominant and recessive alleles benefits from
shorter measurement intervals. Similarly, sequencing cover-
age played a minor role regarding the accuracy of selection
estimates and already a coverage of 40� produced reasonable
estimates. This is in contrast to analyses performed for two

time points, where sequencing coverage was identified as a
key factor for reliable identification of selection targets (Kofler
and Schlötterer 2014). We conclude that the availability of
multiple time points compensates for the increased sampling
variance at lower coverage.

FIG. 7. Genome-wide quantification of selection coefficients. The time series data of a recent E&R study in yeast (Burke et al. 2014) were analyzed
with LLS. Selection coefficients are plotted for significant SNPs (FDR 0.01) with the X-axis specifying their genomic positions in Mb. Different
shadings of gray illustrate individual chromosomes. Green arrows mark genomic regions that were identified as targets of selection in the original
analysis.

FIG. 8. Impact of experimental parameters on the accuracy of s estimates. Allele frequency trajectories were simulated in six replicates for 10,000
unlinked loci over 60 geneations assuming Ne¼ 300 for rare (p0¼ 0.05) and common (p0¼ 0.25) alleles under weak (s¼ 0.025) or strong (s¼ 0.1)
selection. Additionally, we also varied the dominance parameter between 0, 0.5, and 1. We tested the influence of the measurement interval,
sequencing coverage, total number of generations, Ne, and the number of replicates on the accuracy of s estimates. Illustrated is the change of
rRMSE in percent, when modifying one of the experimental parameters.
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The duration of the experiment had a pronounced ef-
fect on the accuracy. While for weakly selected alleles
rRMSE decreased continuously with the duration of the
experiment, for strongly selected alleles the optimal rRMSE
was seen for an intermediate number of generations. For
strongly selected alleles (s¼ 0.1) with a starting frequency
of 0.25, the rRMSE increased even when trajectories cov-
ered 120 generations. Deterministic trajectories show that
under strong selection (s¼ 0.1) on a rare variant (p0¼
0.05), allele frequencies start to plateau at generation 90,
while they keep increasing under weak selection (s¼ 0.025,
see supplementary fig. S7, Supplementary Material online).
This is even more extreme for beneficial variants that are
common (p0¼ 0.25, see supplementary fig. S7,
Supplementary Material online). Hence, monitoring alleles
under strong selection for a large number of generations
may not provide additional information and the accuracy
of selection estimates does not improve (see supplemen-
tary fig. S8, Supplementary Material online). It is important
to note that for both LLS and the automatic switching
method, reducing the number of generations from 60 to
30 severely deteriorated the accuracy of s-estimates for all
parameter tested.

Independent of p0, s, and h, Ne and the number of repli-
cates had the most pronounced influence on accuracy. At
low starting frequencies, weakly selected variants benefited
more than strongly selected ones from more replicates or
larger Ne. Under codominance both Ne and the number of
replicates had similar effects, but for recessive alleles (h¼ 0)
the influence of Ne was more pronounced and for dominance
(h¼ 1) increasing the number of replicates had a larger effect.

While Ne and number of replicates were the parameters
with the largest potential to improve E&R studies, we also
caution that the costs associated with either increased pop-
ulation size or more replicates may be a limiting factor—in
particular for studies with a substantial phenotyping
component.

Analyzing Time Series Data with the poolSeq R-
Package
We implemented the methods described here in the user-
friendly R-package poolSeq (available at https://github.com/
ThomasTaus/poolSeq). The major functions of poolSeq are
the simulation Pool-Seq data for unlinked loci, Ne estimation
(J�on�as et al. 2016) and the inference of selection parameters.
Forward in time simulations are performed for unlinked loci
of haploid or diploid individuals under a Wright–Fisher
model. Both the selection coefficient and dominance param-
eter can be specified. Sampling noise can be added to allele
frequencies to mimic the Pool-Seq process. Alternatively to
simulating data, allele counts can be loaded into R from the
commonly used “sync” file format (Kofler et al. 2011). The
package also provides fast implementations of the chi-
squared and Cochran–Mantel–Haenszel test.

Materials and Methods

Estimating s and h from Time Series Data
We consider unlinked biallelic loci with alleles A and a that
evolve at a constant population size Ne for t nonoverlapping
generations. Relative fitness is given by wA¼1þ s and wa¼1
for the two alleles in haploids. In the diploid case, the relative
fitness of the three possible genotypes AA, Aa, and aa is
defined as wAA ¼ 1þ s, wAa ¼ 1þ hs and waa ¼ 1. Allele
frequencies are denoted p and 1-p for A and a, respectively. In
populations of infinite size the allele frequency after one gen-
eration of selection (p’) can be computed for haploid individ-
uals as:

p0 ¼ wAp

wApþ wa 1� pð Þ (1)

and for diploid individuals as:

p0 ¼ wAAp2 þ wAap 1� pð Þ
wAAp2 þ wAa2p 1� pð Þ þ waa 1� pð Þ2

: (2)

Using a continuous time approximation with overlapping
generations and assuming weak selection, the trajectory of
the selected allele for h¼ 0.5 (Crow and Kimura 1970) in
infinite haploid populations is given by:

p tð Þ ¼ 1

1þ 1�p0

p0

� �
e�st

: (3)

The corresponding formula for diploids is:

p tð Þ ¼ 1

1þ 1�p0

p0

� �
e
�st

2

: (4)

From this a linear relationship between logit-transformed
allele frequencies and the number of generations is obtained,
both in the haploid and in the diploid case:

ln
p tð Þ

1� p tð Þ

� �
¼ ln

p0

1� p0

� �
þ st; (5)

ln
p tð Þ

1� p tð Þ

� �
¼ ln

p0

1� p0

� �
þ s

2
t: (6)

Using equations (5) and (6), we can infer both s and p0 by
fitting a linear model with least squares regression (LLS) to
logit-transformed allele frequency trajectories. The slope of
the linear model provides the selection coefficient, while the
starting allele frequency is given by the intercept. However,
with increasing strength of selection, the discrepancy be-
tween the discrete and continuous model grows (see supple-
mentary fig. S9, Supplementary Material online), ultimately
biasing the selection coefficient estimates for populations
evolving in discrete generations. We therefore propose a
bias correction, in cases where the estimated selection coef-
ficient is large. This is done by adding the difference between
the selection coefficient used to compute a deterministic al-
lele frequency trajectory and the value obtained by
reestimating the parameter with LLS (see equation [5] or [6]).
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It turns out that the logit transform stabilizes the drift
variance (see supplementary fig. S10, Supplementary
Material online). If sequencing coverage varies across the
time points, the fit to the regression model could be further
improved in principle by taking nonhomogeneous variances
into account. This would imply to fit a weighted linear model,
with the inverse coverage as weights. As shown by our sim-
ulations however (see fig. 1), the sequencing coverage does
not affect the accuracy of estimation much, unless it is very
small.

Relaxing the assumption of codominance (h¼ 0.5)
requires a more general function describing the allele fre-
quency depending on p0, s, h, and t. Although a general so-
lution to the underlying differential equation (Crow and
Kimura 1970) is available, numerical methods are required
to estimate both s and h for a given allele frequency trajectory.
Therefore, we coded a function to perform discrete forward in
time computations based on equations (1) and (2) to obtain
deterministic allele frequency trajectories. This function was
used within the nonlinear least squares routine nls in R, to
obtain parameter estimates for both s and h. While this ap-
proach worked for a broad range of parameter combinations,
the algorithm did not converge in a few cases (see supple-
mentary fig. S11, Supplementary Material online).

To rule out that an estimated selection coefficient could be
obtained by random genetic drift, we simulate neutral (s¼ 0)
allele frequency trajectories and estimate s with either LLS or
NLS. The P value for the null hypothesis of neutrality is the
fraction of simulations resulting in estimates of s, which are at
least as large as the selection coefficient inferred from the
empirical data.

Assuming that s and h do not change, replicated trajecto-
ries improve the inference when the information of all repli-
cates is combined. Assuming that all replicates start from the
same allele frequencies, we averaged the allele frequencies at
each time point across replicates. In the case of small Ne,
selected alleles with a low starting frequency have a high
probability of being lost which would bias the inferred selec-
tion parameters. We therefore excluded observed allele fre-
quencies in a replicate from the time an allele gets lost
onwards. In cases where the starting allele frequency is low
compared to Ne, this conditioning on fixation needs to be
accounted for. We therefore propose for a further bias cor-
rection in such cases, that is based on neutral simulations for
each locus individually, leading to corrected empirical con-
sensus trajectories. The corrected consensus trajectories can
then be used in such cases for LLS- and NLS-based inference
of s (and h).

Precision and Bias of Estimates
To assess the precision and bias of estimated selection coef-
ficients s, we used the relative root–mean–squared error
(rRMSE), a measure of the relative deviation between esti-
mated and true selection coefficient. It was computed for bins
of n loci:

rRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ŝ i�sið Þ2

n

r

�s
; (7)

where ŝi is the estimated and si is the true selection coefficient
of locus i, and�s is the mean selection coefficient of all n loci. In
the comparison between LLS, CLEAR, and WFABC, estimates
were binned according to either s or p0 and then the rRMSE
was computed for each bin. Similarly, when assessing the
accuracy of LLS under a state-of-the-art E&R design, ten mil-
lion estimates were divided into 2,500 bins depending on s
and p0. This way, the dependence of the rRMSE on s and p0

has been illustrated. Confidence intervals of rRMSE were es-
timated by bootstrapping loci in each bin.

Benchmark between LLS, CLEAR, and WFABC
We compared LLS-based estimates of s to those obtained
with CLEAR (downloaded from https://github.com/airan
mehr/clear on May 5, 2017) and WFABC (version 1.1) using
the same allele frequency trajectories. To match the default
parameter setting of WFABC, only trajectories with a minor
allele frequency larger than 0.01 at any of the time points were
used. We provided the true effective population size to
WFABC (fixed_N 600). A flat prior between �0.2 (min_s)
and 1.0 (max_s) was used. For CLEAR, Ne was set to 300
(–N 300) and the maximum selection coefficient was set to
1, scanning in steps of 0.01 (maxS¼ 1 and stepS¼ 0.01). We
further specified that all 300 individuals were sampled using
Pool-Seq (n¼ 300).

The maximal deviation of ABC-based estimates from the
true value depends on the range of the prior distribution,
while LLS estimates could theoretically range from negative
and positive infinity. To compare the methods, we projected
LLS and CLEAR estimates to the range of the priors of
WFABC.

Allele frequency trajectories were simulated under the
Wright–Fisher model for diploid individuals assuming linkage
equilibrium between loci. Starting allele frequencies were
drawn from a uniform distribution between 0 and 1 and
selection coefficients were between 0 and 0.3. To mimic sam-
pling noise of Pool-Seq, first sequence coverage for each locus
was drawn from a Poisson distribution and then binomial
sampling was performed with sample size matching coverage.

Analysis of E&R Study in Yeast
Allele frequency trajectories of all SNPs were downloaded
from http://wfitch.bio.uci.edu (last accessed April 10, 2017).
Without further filtering, selection coefficients were esti-
mated and P values under the null hypothesis of random
genetic drift were computed with LLS for all 75,410 loci. We
assumed a population of haploid individuals, since the life-
cycle imposed in this E&R study involved haploids for most of
the time. We used the Benjamini–Hochberg correction
(Benjamini and Hochberg 1995) to correct the P values for
multiple hypothesis testing. We only considered outliers,
which were supported by at least one additional outlier
SNP within 1 kb.
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Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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