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Abstract: Blue steel roof is advantageous for its low cost, durability, and ease of installation. It is
generally used by industrial areas. The accurate and rapid mapping of blue steel roof is important for
the preliminary assessment of inefficient industrial areas and is one of the key elements for quantifying
environmental issues like urban heat islands. Here, the DeeplabV3+ semantic segmentation neural
network based on GaoFen-2 images was used to analyze the quantity and spatial distribution of blue
steel roofs in the Nanhai district, Foshan (including the towns of Shishan, Guicheng, Dali, and Lishui),
which is the important manufacturing industry base of China. We found that: (1) the DeeplabV3+
performs well with an overall accuracy of 92%, higher than the maximum likelihood classification;
(2) the distribution of blue steel roofs was not even across the whole study area, but they were
evenly distributed within the town scale; and (3) strong positive correlation was observed between
blue steel roofs area and industrial gross output. These results not only can be used to detect the
inefficient industrial areas for regional planning but also provide fundamental data for studies of
urban environmental issues.

Keywords: CNN; blue steel roofs; GaoFen-2; DeeplabV3+

1. Introduction

Blue steel panels have the advantages of being lightweight, easy-to-install, cost-effective,
and fireproof [1]. With these economic attributes, blue steel panels have been widely used in
roof construction in many inefficient industrial areas (factories and warehouses) and gymnasiums [2].
The distribution of blue steel panels also, directly and indirectly, reflects the urban industrial structure
and economic development. For example, the construction of blue steel roofs is largely related to
inefficient industrial land [3,4]. In addition, blue steel roofs are also an important part of urban surface
areas. Their wide application not only brings convenience to production and life but also negative
effects, such as the urban heat island effect. Some researchers have explored the relationship between
blue steel roofs and the urban heat environment. For example, some studies have demonstrated a
positive correlation between the proportion of blue steel roofs and land surface temperature with an
R? of 0.71 [5]. Thus, information on blue steel roofs can provide data to support the study of urban
industrial structure and also contribute to the study of urban ecology.

Currently, remote sensing technology is a powerful tool that provides detection and monitoring
information for blue steel roofs. These methods include an object-oriented method [6] and spectral
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index [7] etc. However, within these methods, limitations still exist which influence accuracy.
For example, Li [6] analyzed colored steel sheds by an object-oriented model based on Gaofen-1 image
and showed that the extraction accuracy in two experimental areas was greater than 88%. The setting
of separation scale in image segmentation needed a lot of repeat tests. In addition, the shape of the
segmented results could not be perfectly matched the shape of the objects, reducing the extraction
accuracy. Guo et al. [7] developed a BSTBI (blue steel tile building index) to extract blue steel roofs
using TM (Thematic Mapper) images with the aid of the spectral characteristics of them. The overall
accuracy was greater than 85%, while old blue steel tiles covered with dust, along with the lack
of homogeneity in meteorological factors, suppressed the performance of indexes and affected the
threshold settings associated with the results, thus reducing the accuracy of extraction. Compared with
the above methods, deep learning would be a better choice because it has a more powerful and abstract
learning ability and higher image recognition accuracy which may improve the weak automation in
the object-oriented method. On the other hand, deep learning method can weaken the influence of
dust and meteorological factors by increasing the samples of the training dataset.

Hinton et al. [8] proposed the concept of a deep frame neural network, this network showed
improved performance and reduced complexity of image segmentation [9]. The deep learning model has
been widely applied in geography, medicine, and physics [10-18]. For image recognition applications,
the most important network structure in the deep learning algorithm is the CNN (Convolutional Neural
Network) structure, which has the advantage of enabling computers to automatically extract feature
information [19]. Many groups of researchers have begun to use CNN in many applications with
impressive performance, such as image classification [20,21], object recognition [22,23], land use [24,25],
and semantic segmentation [26,27].

With the increasing demand for practical work in recent years, deep semantic segmentation
algorithms have been widely used in remote sensing image processing. The DeeplabV3+ [28] model
developed by Google in 2018 is an example of a deep learning algorithm. From the fully convolutional
network proposed in 2014 [26] to the DeeplabV3+ in 2018 in the field of image semantic segmentation,
the detection effect and performance of these algorithms on public natural scene data sets have
increased. Specifically, the Mean Intersection Over Union of the DeeplabV3+ algorithm in the public
dataset PASCAL VOC 2012 reached 89%, which is a significant improvement over the previous
algorithm [29]. Thus, the use of DeepLabV3+ for remote sensing image segmentation has received
increased attention by researchers [30-33].

For example, Wang and Li [31] used public datasets for model training, applied the DeeplabV3+
network to road network recognition and found that the road extraction accuracy could reach 77.2% at
a single scale. In addition, Fang [33] generated a dataset based on Google Earth and also applied the
DeepLabV3+ to road network extraction, achieving an accuracy of 86.06%. Liu et al. [30] improved
the network in light of the deficiencies of the DeeplabV3+ network, and the accuracy of verification
in the high-resolution remote sensing image dataset reached 85%. Tang et al. [34] employed the
DeeplabV3+ model and the traditional supervised classification method to extract grassland information
simultaneously and found that the DeeplabV3+ extraction accuracy could reach 79.82%, which is
higher than the traditional supervised classification method by 5%. Under continuous experiment and
verification of a large number of datasets, the segmentation results based on the DeeplabV3+ network
had a higher accuracy and a more significant effect.

The Gaofen-2 remote sensing images of the Nanhai District (Lishui, Dali, Shishan, Guicheng) of
Foshan, Guangdong Province, China that recorded in 2016 have been used to extract blue steel roofs
information based on the DeepLabV3+ deep learning model, followed by a discussion of the patterns
of the spatial distribution of blue steel roofs and influencing factors. The findings provide important
data for enhancing the ability to identify types of industrial areas with blue steel roofs and could also
be used to enhance the construction and management of urban settlements.
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2. Study Area and Data

2.1. Study Area

The extraction of blue steel roofs data focused on the Nanhai District (Lishui, Dali, Shishan,
and Guicheng). The Nanhai District, one of the five administrative districts in Foshan City, Guangdong
Province, is a representative example of rural industrialization [35] and an important part of the
“Guangfo-Metropolitan Circle”, “Guangfo-Zhao Economic Circle”, and “Zhujiang-Xijiang Economic
Belt”. It is located in the hinterland of the Guangdong-Hong Kong-Macao Greater Bay Area, between

22° 48’ 03”7-23° 19’ 00” N and 112° 49’ 55”-113° 15" 47” E (Figure 1).
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Figure 1. Study area.

Shishan is dominated by plains and is located in the middle of Nanhai District, Foshan City,
Guangdong Province, close to Guangzhou, Hong Kong, and Macao, which is the core area of the
economic circle of the Guangzhou-Foshan area in the Pearl River Delta and the kernel park of
the Foshan National Hi-Tech Industrial Development Zone. In 2014, it ranked third among the
National Comprehensive Strength Top 100 towns and ranked first in Guangdong Province. In 2019,
it ranked second among the National Comprehensive Strength Top 1000 towns. Lishui is located in the
northeastern part of Nanhai District more than 10 km away from the center of Foshan in the south and
was selected as a National Key Town and was among the National Top 100 Towns. In 2019, it was
also ranked 10th in the National Comprehensive Strength Top 1000 towns. Dali is located in eastern
Nanhai District, north of the Pearl River Delta and adjacent to Guangzhou, which is a coastal area
connected to Baiyun District, Liwan District, Guangzhou City in the east and Chancheng District of
Foshan City in the south. It is an important link between the two urban centers of Guangzhou and
Foshan and was rated as a National Comprehensive Strength Top 1000 town in 2019. Guicheng is
located in Nanhai district in the Pearl River Delta, which is the political and economic center of Nanhai
District and is also one of the components of Chancheng, Guicheng, and Foshan New City in the
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central urban area of Foshan. It is also the national base for the jewelry and jade ornaments industry,
Guangdong machinery equipment professional town, and strong towns in education and sports in
Guangdong Province. According to high-resolution images and Google Earth, blue steel is the main
building material in the industrial zone of the study area.

The China Statistical Yearbook shows that the proportion of secondary industry in Foshan ranks
first in China. The Nanhai District Statistical Yearbook shows that 5.52 million m? of workshops have
been built in Nanhai district from 2012 to 2018 and that the proportion of secondary industry in Nanhai
District exceeded 50%, with fluctuations between 50% and 65% from 2005 to 2018. The population and
industrial output values of each town in 2016 are shown in Table 1.

Table 1. Statistical yearbook information for the study area.

GVIOADS ICECADS . GVIO (Billion
2
Name Area (km?) RLF (Billion Yuan) (Tons) Population Yuan)
Guicheng 1.54 76,425 30.56 62,022 262,646 43.46
Shishan 10.02 198,562 323.23 1,016,390 297,423 341.40
Dali 3.39 113,299 54.63 182,612 263,734 60.08
Lishui 2.89 72,821 84.61 133,177 138,284 90.81

RLF: rural labor force; GVIOADS: gross value of industrial output above designated scale; ICECADS: industrial
comprehensive energy consumption above designated scale; GVIO: gross value of industrial output.

2.2. Data and Preprocessing

The images used in this study were collected in 2016 which was the first year of the thirteenth
Five-Year Plan of China’s national economy. The data source for the remote sensing images was fused
using the panchromatic and multispectral images of Gaofen-2. Gaofen-2 includes one 1 m panchromatic
and one 4 m multispectral high resolution camera. It has the characteristics of high positioning accuracy,
high spatial resolution and fast attitude maneuver. ENVI (The Environment for Visualizing Images)
was used for radiometric calibration, atmospheric correction, ortho-rectification, and image fusion.
During the preprocessing of remote sensing images, there were four steps: (1) ortho-correction
processing of the panchromatic and multispectral imaging of Gaofen-2 images with the Rational
Rectification tool based on the Rational Polynomial Coefficient; (2) radiometric calibration, which
converts the brightness value of the image into absolute radiation; (3) fast line-of-sight atmospheric
analysis of spectral hypercubes in ENVI to conduct an atmospheric correction; and (4) NNDiffuse
(nearest-neighbor diffusion) Pan Sharpening to fuse the panchromatic and multispectral images to
obtain a 0.8 m high-resolution multispectral fusion image [36].

3. Materials and Methods

3.1. DeeplabV3+ Architecture

DeeplabV3+ is a semantic segmentation algorithm recently released by Google in 2018, which
was developed from DeeplabV1-3 [37-39]. The DeeplabV1-3 model has defects, such as slow training
speed and low accuracy of target segmentation. DeeplabV1 first involved the Dilated Convolution
layer operation, but there was a problem associated with the poor processing capability of multiscale
segmentation objects. For this reason, DeeplabV2 was developed with the Atrous Spatial Pyramid
Pooling (ASPP) structure based on V1. To compensate for the defects in DeeplabV2, DeeplabV3
changed the ASPP structure to three 3 X 3 convolution operations and a global-average-pooling
operation. The DeeplabV3+ network (as shown in Figure 2) provides an encoder-decoder structure
based on the DeeplabV3 series of algorithms, which makes DeeplabV3+ produce a faster and more
powerful network. The encoder is divided into a deep convolutional neural network and an ASPP
layer, and the decoder fuses the low-level features and recovers the feature map [30].
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Figure 2. DeepLabV3+ semantic segmentation model [28].

The DeepLabV3+ network combines a deep convolutional neural network (DCNN) and dense
conditional random fields, featuring the advantages of DeepLab, Pyramid Scene Parsing Network,
and encoder-decoder, representing the highest level in the field of semantic segmentation. First, the fully
convolutional deep neural network utilizes convolutional layers to extract the original image features.
Second, the ASPP module is used to extract the input features of remote sensing images by multiratio,
multieffective domain convolution, and the multiscale context information is encoded by a pool
operation. Finally, in the decoding stage, the input image is down-sampled, and the low-level features
are fused in the feature map restoration process. The target spatial information is gradually restored to
obtain a more accurate target boundary of the remote sensing image [30].

3.2. Extraction of Blue Steel Roofs Information

3.2.1. Training Sample Preparation and Model Training

In this study, 8000 samples, created using LabelMe tool, were selected in the Gaofen-2 images for
model training. Then, 10 percent of the samples were used as validation while 90 percent were utilized
as training samples. These samples consist of roofs with blue dyestuff with no impurities, and most
were dark blue (Figure 3).

Figure 3. Blue steel roofs sample.
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Training samples were divided into small image sets with sizes of 256 x 256 pixels, and images
without marked samples were deleted. Next, images with labeled samples were converted into
TFRecord format and applied to train model. The major parameters in the training process are shown
in Table 2. Finally, the blue steel roofs in the study area were then inferenced with the trained model.

Table 2. Training Parameters.

Parameter Value
Base learning rate 0.005
Batch size 4
Weight decay 0.0002
Max iteration times 10,000

3.2.2. Evaluation

Since the validation process within DeepLabV3+ model only compares the divided images of
training and testing, it cannot verify the whole footprints of the blue steel roofs at the same time. Thus,
we also selected another 20 testing samples with 500 x 500 pixels (Figure 4) which could contain the
whole footprint of the blue steel roofs building to assess the whole accuracy estimated by DeepLabV3+
model. In addition, testing samples were evenly distributed in the study area based on their according
area. Lishui and Shishan contained six and eight verification samples while Guicheng and Dali have
three verification samples. Then, the distribution of the blue steel roofs in each verification sample was
digitized (Figure 5), and the area of blue steel roofs in each sample was calculated.

Figure 5. Schematic diagram of digitalized blue steel roofs: (a) is the GF-2 image of the sixth region,
(b) is the digitalized result of the sixth region, (c) is the GF-2 image of the tenth region, and (d) is the
digitalized result of the tenth region.
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Four types of evaluation indexes were used to evaluate the extracted accuracy of blue steel roofs
information. The indexes used the confusion matrix, which was generated by the actual area of blue
steel roofs in the verification sample and the predicted area of blue steel roofs. True positive (TP)
indicates the number of pixels correctly classified as blue steel roofs, and false positive (FP) indicates
the number of pixels misclassified as blue steel roofs. False negative (FN) indicates the number of
pixels misclassified as background, and true negative (TN) indicates the number of pixels correctly
classified as background.

The first index is accuracy:

TP+ TN
TP+ FP+ TN +FN

Accuracy = 1
Generally, accuracy is used to evaluate the accuracy of a classifier relative to the samples overall.

It can intuitively reflect the model’s ability to evaluate the whole sample; that is, it can determine

the positive as positive and the negative as negative. Accuracy values for the predicted result range

between 0 and 1. In this study, Accuracy values are used to indicate the overall accuracy of detection.
The second and third indexes are precision and recall:

.. TP
Precision = TP + EP )
TP
Recall = ————
ecall = 75 FN ©)

In the study of roof recognition by DCNN, precision and recall can reflect the classifier’s
performance. Precision reflects the proportion of real positive samples in the positive cases determined
by the classifier, while recall reflects the proportion of positive cases correctly determined to the total
positive cases. Precision and recall are generally inversely related; if both are low however, there is a
problem with the network.

The fourth index is the F1-score:

2-Precision-Recall

F1- = 4
score Precision + Recall @)

The F1-score is a compromise index, which considers not only the precision of positive samples
but also the recall. It is an indicator of comprehensive performance, which is synthetically estimated
through the harmonic average. Only when the recall rate and precision rate are high is the F1-score
high. The F1-score can range between 0 to 1, with higher values correspond to higher quality.

3.3. Spatial Distribution Analysis of Blue Steel Roofs

3.3.1. Geographic Concentration Index

The geographic concentration index (G) is an important indicator for measuring the degree of
agglomeration of research objects. This study was focused on using this index to analyze the spatial
distribution of blue steel roofs in the study area. Thus, G was defined as [40]

n

G = 100 x Z( %')2 ®)

i=1

where x; is the blue steel roofs area of the ith region; T is the total area of blue steel; and # is the total
number of regions. The value of G ranges between 0 and 100. Larger G values correspond to more
concentrated distributions. In contrast, smaller G values correspond to more dispersed distributions.
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3.3.2. Distribution Homogeneity

Distribution homogeneity (C) is an important method for studying the spatial distribution of
geographically discrete regions. It can be used to describe or compare the spatial distribution of
elements [41,42]. Changes in the regional spatial distribution can be determined by comparing
differences in the regional distribution of different research objects:

_ - Zfil Pili’lPi

C=1 InN

(6)

Here, P; is the proportion of blue steel roofs area of the ith region out of the total blue steel roofs
area of the region, N is the total number of regions, and C is the distribution homogeneity. Uniformity
values range between 0 and 1, and larger values correspond to more uniform distributions. Following
the grading standards that have been used in the analysis of the equity in health resource allocation [43],
specifically, the distribution is considered to be uneven when C is under 0.3, generally uniform when C
is between 0.3 to 0.6, and uniform when C is above 0.6. This method is used to measure the uniformity
of the spatial distribution of blue steel roofs in towns and villages.

3.3.3. Barycenter Model

The idea behind the analytical method of the regional center is to determine the location of the
center of the research object in the region and the changes in different years to capture the spatial
distribution characteristics of the research object [44]. It is also an important indicator for the study of
regional spatial structure. In this study, the mean center is used to represent the average center of the
distribution of blue steel roofs in the study area, and the weighted mean center is used to represent the
actual distribution center of blue steel roofs in the study area.

The mean center was determined by the following equation:

Yigxi— YiqVi

n n

@)

where X, Y are the coordinates of the mean center, x;, y; are the coordinates of the ith pixel, and n is
the total number of pixels.

The weighted mean center was determined by the following equation:
LigXic  LiqVi

Y
n n

X = 8)

where X, Y are the coordinates of the weighted mean center, x;, y; are the coordinates of the ith pixel, 1
is the total number of pixels, and w; are the weights of ith pixel [45].

3.4. Analysis of Influencing Factors of Blue Steel Roofs Area

The experiment used Pearson correlations to analyze the correlation between the area of blue
steel roofs and other influencing factors (GVIOADS, RLE, ICECADS, Population, and GVIO). Pearson
correlation coefficients were calculated based on statistical data (Table 1) that reflected the relative
strength of each influencing factor. The following formula was used for the calculations:

" (Xe=Xa)(Ya—Y
Rgvioaps = oo — I ) — )
\/ZZ:l(XH - Xa) \/Z?:1<Ya - Y)
(% - %) (Y- ¥)

VE (% - R) EL (Y- T

Rrir = (10)
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Yo (Xe=Xo)(Ye-Y
Ricecaps = 1( )( ) (11)

VEL (X=X EL (e V)
. Y (X - Xa)(Ya-Y)
V(=X T (Y- V)

Lea(Xe-X)(Ye-Y)
Rgvio = — — (13)
\/ i (Xe - Xe) \/ Tea(Ye-Y)

where Rgyioaps is the correlation coefficient between the area of blue steel roofs and GVIOADS, X, is
the GVIOADS of the ath town, Y, is the area of blue steel roofs of the ath town, and X, is the mean
value of GVIOADS. Rgy r is the correlation coefficient between the area of blue steel roofs and RLE, X},
is the RLF of the bth town, Y}, is the area of blue steel roofs of the bth town, and ?b is the mean value of
RLF. Ricecaps is the correlation coefficient between the area of blue steel roofs and ICECADS, X, is
the area of blue steel roofs of the cth town, Y, is the area of blue steel roofs of the cth town, and X,
is the mean value of ICECADS. Rp is the correlation coefficient between the area of blue steel roofs
and Population, X is the population of the dth town, Y/ is the area of blue steel roofs of the dth town,

R (12)

and X is the mean value of Population. Rgyjo is the correlation coefficient between the area of blue
steel roofs and GVIO, X, is the population of the eth town, Y, is the area of blue steel roofs of the eth
town, and X, is the mean value of GVIO. Y is the mean value of the area of total blue steel roofs, and n
is the number of samples.

Values of the correlation coefficient range between —1 to 1. Negative values represent negative
correlations, and positive values represent positive correlations. Values corresponding to —1 and 1
correspond to perfect correlations and thus linear relationships. The absolute value of the correlation
coefficient indicates the degree of correlation between the two variables. Values closer to 1 indicate
closer relationships, whereas values closer to 0 indicate weaker relationships. The strength of the
correlation expressed by different values of different correlation coefficients is shown in Table 3 and
was based on [46].

Table 3. Strength of correlation indicated by different correlation coefficient values.

Correlation Complete High Significant Low Micro No
Degree Correlation  Correlation  Correlation  Correlation  Correlation  Correlation
[R| 1 0.8~1 0.5~0.8 0.3~0.5 0.3~0 0
4. Results

4.1. Accuracy Evaluation

The four accuracy evaluation indexes described above were used to estimate the accuracy of
20 areas for verification. The value of each index ranged between 0 and 1, with larger values
corresponding to higher accuracy. The accuracy verification results of the four indicators and the
average value of each indicator are shown in Figure 6.

The mean values of precision and recall were 0.81 and 0.84, respectively. The mean value of the
F1-score of the 20 samples was 0.82, meaning that the classifier has good performance. This result can
also be incarnated in the 800 samples which were used as validation; the accuracy of the DeepLabV3+
model is 70%. However, the mean value of accuracy was 0.92, indicating that a high extraction accuracy
was achieved. In the 20 validation samples, there were eight samples with accuracy values higher than
0.9, and only one sample had an accuracy lower than 0.6. Recall values for 12 samples were above 0.9
and below 0.6 for four samples. Overall, there were six samples wherein all four indexes had values
above 0.9, and the tenth sample had the lowest values for all four indicators.
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Figure 6. Accuracy assessment based on four indexes. A stands for average, and numbers 1-20 indicate
the serial numbers corresponding to the verification samples.

4.2. Spatial Distribution of Blue Steel Roofs

The mean center is calculated by ArcGIS software according to Equation (7) and the weighted
mean center according to Equation (8). Figure 7, the map of the spatial distribution of blue steel
roofs and the center reveals that the spatial distribution of the blue steel roofs showed some degree
of clustering and uneven distribution at the scale of the study area and that the distribution was
concentrated in Shishan. At the town scale, the deviation in the mean center and distribution center was
not large. The blue steel roofs within the Guicheng, Dali, and Lishui regions were evenly distributed,
and the distribution type of Shishan was generally uniform.

Mean center of Dali
Center of Dali
Mean center of Guicheng

-/ Lishti

Center of Guicheng
Mean center of Lishui
Center of Lishui
Mean center of Shishan
Center of Shishan

Mean center of study area

o s

Center of study area
} Non-blue steel roofs
B Blue steel roofs

0 10 km
| —

Figure 7. Spatial distribution center and mean center of blue steel roofs.

The total area of blue steel roofs was 17.84 km?. If the blue steel roofs area was allocated
proportionally to each town (i.e., the geographical area of each town accounted for the total geographic
area of the research area)—2.27 km? (Guicheng), 2.48 km? (Dali), 4.01 km? (Lishui), and 9.09 km?
(Shishan)—then G was 58.76. However, the value of G, when the proportion of the different cites is
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not accounted for, was 62, indicating that the blue steel roofs distribution in this area was relatively
clustered. C of the blue steel roofs in the study area was 0.17, indicating that the distribution of the
blue steel roofs was uneven.

G and C of each town were also calculated separately to explore the distribution types of blue
steel roofs within towns themselves (Table 4). G of Shishan was 9.36, which was the highest among the
four towns. C of Shishan Town was 0.41, corresponding to a generally uniform spatial distribution
type. With the exception of Shishan, C was higher than 0.6, and the distribution type was uniform.

Table 4. Distribution type of blue steel sheds in each town.

Name Geographic Concentration Index  Uniformity Distribution Type
Dali 4.37 0.73 Uniform
Guicheng 2.20 0.86 Uniform
Lishui 3.84 0.78 Uniform

Shishan 9.36 0.41 Generally uniform

4.3. Area of Blue Steel Roofs

The study area included four towns—Shishan, Dali, Lishui, and Guicheng—and the total
geographical area was 662.37 km?. The town with the largest geographical area (Shishan) was
337.36 km?, followed by Lishui (148.82 km?) (Figure 8). The town with the smallest geographical
area was Guicheng (84.28 km?), followed by Dali (91.92 km?). Based on the vector statistics in
ArcGIS, the town with the largest area of blue steel roofs was Shishan (10.02 km?), followed by Dali
(3.39 km?). The town with the smallest area was Guicheng (1.54 km?), followed by Lishui (2.89 km?).
The proportion of blue steel roofs out of the total area was 8.62% (Guicheng), 16.20% (Lishui), 19.01%
(Dali), and 56.16% (Shishan), respectively. If the ratio of the area of blue steel roofs to the total
geographical area is assumed to represent the average density of blue steel roofs of Guicheng, Dali,
Lishui, and Shishan, then the average density of blue steel roofs in the four towns was 1.83%, 3.68%,
1.94%, and 2.97% respectively. Dali is the town with the highest average density of blue steel roofs,
and Guicheng is the town with the lowest average density of blue steel roofs. Thus, Shishan accounts
for more than half of the blue steel roofs in the study area, and the other three towns account for less
than 50%.

FzzzA Average density of each town e Proportion of blue steel area in the total area
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Figure 8. Proportion of blue steel roofs area out of the total area and average density.

Calculations of the geographical area and blue steel roofs area of the villages show that Jianxing
in Lishui, is the village with the lowest average density of blue steel roofs. The area of blue steel roofs
was only 0.0012 km?, and the average density was 0.02%. The village with the highest average density
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of blue steel roofs was Xingxian in Shishan (9.50%). Figure 9 shows the proportion of the blue steel
roofs area relative to the total blue steel roofs area. Among areas of blue steel roofs for each village,
Shishan had the largest proportion, followed by Dali. Shishan not only had a large blue steel roofs area
but also had an average density of blue steel roofs. Among all towns, Shishan had a higher number of
large blue steel roofs buildings relative to the other towns.

[ Town boundary
<0.2%
0.2% - 0.8%

\ 0.8% - 1.6%

\ >1.6%

0 5

Figure 9. Proportion of blue steel roofs area to total blue steel roofs area.

In addition, the area of blue steel roofs is also closely related to the study of inefficient industrial
urban land. In Nanhai, Shunde, and other places, the proportion of urban construction land has
exceeded 40% and is only 21% in Hong Kong and 16.4% in Japan’s three metropolitan areas. Therefore,
if the construction of urban land is not regulated and managed, available land may be depleted [47].
In 2016, the former Ministry of Land and Resources issued a notice of “guiding opinions on further
promoting the redevelopment of urban low utility land (implementation)”. To date, nationwide research
and verification of the low efficiency of urban land construction have been conducted on a large scale.
For industrial land, detailed identification and evaluation would greatly improve the development
and future direction of urban development, as the fundamental purpose is to promote the sustainable
use of land resources along with conservation and intensive use [48]. The identification of inefficiently
designed industrial land can be made based on considering three aspects: land production efficiency,
the utilization rate of industrial land, and the adequacy of social service function [49]. The evaluation
indicators can be determined based on the aforementioned ideas relating to low-efficiency industrial
land evaluation. Among these indexes, there is a need to make calculations according to the area
of the industrial land building, such as the average output intensity of the land, the average tax of
the land, and the provision of jobs per unit area. For some heavy industrial plants using steel frame
structures, the area of blue steel roofs can reflect the area of industrial land, which is important for
conducting preliminary assessments of areas of inefficient industrial land and for regional planning
and coordination.

4.4. Correlation with Social Economic Data

GVIOADS, RLF, ICECADS, Population, and GVIO were analyzed as potential factors that could
explain the distribution of blue steel roofs. The results of the correlation analysis are shown in Table 5.
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Table 5. Pearson correlation coefficients of several factors potentially explaining the distribution of
blue steel roofs.

Factor Pearson p-Value
GVIOADS 0.988 * 0.012
RLF 0.971 % 0.029
ICECADS 0.995 ** 0.005
Population 0.487 0.513
GVIO 0.985 * 0.015

* indicates that the correlation is significant at 0.05; ** indicates that the correlation is significant at 0.01.

Population and blue steel roofs area showed a weak positive relationship (r = 0.487, p = 0.513).
GVIOADS, RLF, and GVIO all showed strong positive correlations with blue steel roofs area (r = 0.988,
p=0.012;,r=0.971, p = 0.029; and r = 0.985, p = 0.015, respectively). ICECADS also was highly and
significantly positively correlated (r = 0.995, p = 0.005).

With the development of the construction industry, colored steel plates have evolved with the
development of steel structures and have gradually replaced the traditional building structures,
and have come to be widely used in major industrial buildings [50,51]. In some heavy industries,
such as metallurgy, machinery, and automobile manufacturing, where large and medium-sized machine
tools and complete sets of equipment are used, plants are generally constructed with a single-layer
frame structure to meet the requirements of placing large and heavy equipment in the workshop to
produce heavy products [52]. Nowadays, the roofs of these steel-structured industrial plants generally
use colored steel panels, such as single-layer colored steel roofs or double-layer colored steel tile on-site
composite glass wool roofs [53].

Among correlations between the area of blue steel roofs and potential influencing factors,
the correlation between ICECADS and the area was the highest, followed by GVIOADS. Because some
heavy industrial plants need to use colored steel roofs with steel frames, the area of blue steel roofs
is closely related to ICECADS and GVIOADS. According to the Statistical Yearbook of the Nanhai
District in 2016, the GVIO of heavy industry accounted for 66.28% of the GVIO of Nanhai District,
and the Industry Energy Consumption of heavy industry accounted for 77.88% of Nanhai District.

Further analysis of industrial enterprises in Nanhai District by industry shows that blue steel roofs
may be more likely to be used in factories in industries that contribute more to GVIO and ICECADS.
The top 10 (Figure 10) of the GVIOADS by industry accounted for 73.35% of the total value. Some
industries may occupy large areas, require large-scale equipment, and use colored steel roofs and
steel frame plants. These include the smelting and pressing of nonferrous metals, the manufacture of
electrical machinery and equipment, metal product industry, automobile industry, and the manufacture
of nonmetallic mineral products. The top 10 of the ICECADS is shown in Figure 11; they accounted
for 91.04% of the total value. The industries that might use the colored steel roofs are production
and the supply of electric power and heat power, the manufacture of nonmetallic mineral products,
production and supply of electric power and heat power, metal product industry, automobile industry,
manufacture of electrical machinery and equipment, and manufacture of raw chemical materials and
chemical products.
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Figure 10. GVIOADS by industry (top 10).
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Figure 11. ICECADS by industry (top 10).

5. Discussion

To evaluate the performance of the deep learning method, the results were compared with the
traditional maximum likelihood classification (MLC) method using the same remote sensing images.
The comparison of the extraction results of the two methods is shown in Figure 12. The DeeplabV3+
semantic segmentation model better extracted the boundary frame of the buildings, expressed the
contour information of the building overall, and produced a more complete and detailed extraction
with fewer misclassifications [54]. When selecting samples for visual interpretation, the DeeplabV3+
method only needed to select blue steel roofs samples; in contrast, MLC needed to select both blue
steel roofs and nonblue steel roofs training sample areas.
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(d (e) ()

Figure 12. Comparison of the extraction results based on the deep learning method and the maximum
likelihood classification method: (a,d) show the GF-2 images of the second and twelfth regions,
respectively; (b,e) show the extraction results of the deep learning method in the second and twelfth
regions, respectively; and (c,f) show the extraction results of maximum likelihood classification (MLC)
in the second and twelfth region, respectively.

A comparative analysis of the four evaluation indexes revealed that the 10th region had the lowest
values of the 20 regions among the verification samples: precision, 0.43; recall, 0.20; accuracy, 0.92;
and F1-score, 0.27. Based on other regions with high values, the low detection accuracy in the tenth
region can be explained by the dimension of blue steel roofs and the shape, texture, and color of the
surrounding buildings. The forecasting results and the distribution of blue steel sheds in the tenth
area are shown in Figure 13. The color change is what makes the model unable to distinguish the blue
steel roofs from other buildings. Thus, the method used in this study still shows potential room for
improvement for reducing the false detection rate.

Figure 13. The extraction results and the actual distribution of blue steel roofs in the tenth area: (a) is
the GF-2 image, and (b) is the extraction results.

In future research, further improvement of extraction accuracy could be achieved by adding
samples and adjusting model parameters to ameliorate the low accuracy of small-scale targets and color
recognition. To improve land-use efficiency and improve spatial quality, it would be useful to continue
to use the model to learn more information about other features and extract data on various types of
urban land use to elucidate the rate of urban land-use change and regional diversity. The experimental
results could also be combined with meteorological data to develop ways of reducing the impact of the
heat island effect.
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6. Conclusions

This study focused on three aspects: the extraction of blue steel roofs from Gaofen-2 remote
sensing images, the analysis of the spatial distribution of blue steel roofs, and discussions of the
correlation between the area of blue steel roofs and economic factors. The main research results and
conclusions are detailed below.

(1) TheDeepLabV3+ deep learning model performed well in extracting the blue steel roofs information
in Nanhai District (Lishui, Dali, Shishan, and Guicheng) of Foshan City. The overall accuracy was
92%, which is better than the maximum likelihood classification methods.

(2) The distribution of blue steel roofs was not even across the whole study area, indicating regional
clustering of the factories.

(3) The blue steel roofs areas were positively correlated with economic factors, such as GVIOADS,
RLE and ICECADS, proving that it might serve as an indicator for inefficient industrial areas in
regional planning and its environmental and socio-economic significance.
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