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Abstract: Diabetes is a chronic metabolic disease, whereas α-glucosidases are key enzymes involved
in the metabolism of starch and glycogen. There is a long history of the use of mulberry leaf (the leaf
of Morus alba) as an antidiabetic herb in China, and we found that chalcomoracin, one of the specific
Diels–Alder adducts in mulberry leaf, had prominent α-glucosidase inhibitory activity and has the
potential to be a substitute for current hypoglycemic drugs such as acarbose, which have severe
gastrointestinal side effects. In this study, chalcomoracin was effectively isolated from mulberry
leaves, and its α-glucosidase inhibition was studied via enzymatic kinetics, isothermal titration (ITC)
and molecular docking. The results showed that chalcomoracin inhibited α-glucosidase through
both competitive and non-competitive manners, and its inhibitory activity was stronger than that
of 1-doxymycin (1-DNJ) but slightly weaker than that of acarbose. ITC analysis revealed that the
combination of chalcomoracin and α-glucosidase was an entropy-driven spontaneous reaction, and
the molecular docking results also verified this conclusion. During the binding process, chalcomoracin
went into the “pocket” of α-glucosidase via hydrophobic interactions, and it is linked with residues
Val544, Asp95, Ala93, Gly119, Arg275 and Pro287 by hydrogen bonds. This study provided a potential
compound for the prevention and treatment of diabetes and a theoretical basis for the discovery of
novel candidates for α-glycosidase inhibitors.

Keywords: mulberry leaf; chalcomoracin; α-glucosidase inhibitor; enzymatic kinetics; molecular docking

1. Introduction

Diabetes mellitus is a chronic and metabolic disease. Every year, about 834,000 people
in China die from various complications triggered by diabetes [1,2], such as cardiovas-
cular disease [3], ketoacidosis [4], chronic kidney disease [5] and foot ulcers [6]. These
diseases have brought great harm to people’s health, family happiness and the social
economy [7–10]. Clinically, diabetes could be classified into two major types, and phar-
macotherapy is typically used in the usual treatment regimen in type II diabetics [11].
At present, the oral hypoglycemic agents are mainly divided into three classes based
on their modes of action: 1© agents that promote insulin secretion, such as sulfonamides,
glinides and ddp4 inhibitors [12]; 2© insulin sensitizers, such as biguanides and thiazolidine-
diones [13] and 3© α-glycosidase inhibitors such as acarbose, voglibose and miglitol [13,14].
Among them, α-glucosidase inhibitors have been recommended as the first-line therapy
for treating diabetes, and its target α-glucosidase directly participates in the metabolic
pathway of starch and glycogen. α-glycosidase inhibitors bind to the intestinal mucosal
epithelial cells to competitively inhibit the activity level of α-glycosidase, delay or inhibit
starch’s conversion to glucose, so as to effectively reduce the blood glucose level [15].
Compared to the other hypoglycemic agents, inhibitors of α-glycosidase are milder and
less drastic fluctuations in blood glucose or hypoglycemic symptoms, and the secondary
disabling reactions caused by a sulfonamide drug can be avoided [16]. However, long-term
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use of these α-glycosidase inhibitors may cause some side effects, such as gastrointestinal
reactions, liver damage, etc. Active compounds in natural products or traditional Chinese
medicines (TCMs) have attracted much attention due to their low toxicity, and at the
same time have advantages in the treatment of various chronic diseases with complex
pathogenesis due to their complex chemical structures, naturally occurring chirality and
natural affinities [15,17,18]. Thus, finding new natural products as safer and more effective
α-glycosidase inhibitors might be a good choice.

Mulberry leaf is the dry leaf of Morus alba, which is widely cultivated from the south
to north in China. As we know, mulberry is one of the most commonly used TCMs listed in
the Chinese Pharmacopoeia, which has been proved to have satisfactory antidiabetic effects
since as early as in the 11th century in China, as recorded in the Compendium of Materia
Medica. At present, mulberry leaf tea has been developed in various forms as a functional
food in the prevention and treatment of diabetes in China [19–21]. Modern studies have
proved that mulberry leaves are rich in alkaloids, flavonoids, polysaccharides and other
functional components, which can reduce blood sugar, blood pressure, blood lipids, anti-
aging, anti-oxidation and anti-nervous system diseases [22–25]. Recently, “total alkaloids
from Ramulus Mori”, the first new approved TCM for diabetes in the past 10 years in
China, was put on the market. Among its main ingredients, 1-deoxyylmycin (1-DNJ),
a polyhydroxy piperidine alkaloid, has been approved to be an active substance for the
treatment of diabetes type II by targeting α-glucosidase [26].

The Diels–Alder adduct is another well characterized kind of ingredient in mul-
berry leaves, and about 22 Diels–Alder adducts have been reported to be found in morus
species [19,20]. One of these adducts, chalcomoracin, has been shown to have antitumor
activity, and its mechanism was studied in [21,27]. Recently, we found that chalcomoracin
also exhibited certain activities of α-glucosidase inhibition and a hypoglycemic effect,
which might have potential to be used as a substitute for existing α-glycosidase inhibitors.
To our knowledge, there is no report about the inhibition activities and interaction mecha-
nisms between Diels–Alder adducts and α-glucosidase. The low amount and extremely
complicated separating process of Diels–Alder adducts may be one of the bottlenecks in
performing further research.

In recent years, several methods have been developed to study the interaction mech-
anisms between proteins and ligands [28–32], such as isothermal titration (ITC), surface
particle resonance, nuclear magnetic resonance wave, ultracentrifugation analysis, the
fluorescence resonance energy transfer method and so on. ITC is an efficient biophysical
method to study the interaction mechanisms between two molecules by calculating the
heat change [33,34]. Compared with the other methods, this method is simpler, has higher
efficiency, has a wider application range and is a label-free procedure. This method is
gradually being applied to study interaction mechanisms between small molecules and
biological macromolecules.

In this study, we propose to establish a relatively simple procedure for target-oriented
isolation of chalcomoracin from mulberry leaf with high purity, combining polyamide
column chromatography and preparative chromatography, then using the high purity com-
pound to evaluate the inhibitory activities of chalcomoracin on α-glucosidase. Furthermore,
the interaction mechanisms between chalcomoracin and α-glucosidase are investigated by
kinetics studies, thermodynamic measurements by ITC and molecular docking simulation
studies. We try to provide a simple target-oriented isolating process for the natural products
and provide a theoretical basis for the discovery of novel candidates for α-glycosidase inhibitors.

2. Result and Discussion
2.1. Structure Identification of Chalcomoracin

Chalcomoracin is a pale yellow powder; [α]25
D : +84◦(0.1,DMSO); HRMS: m/z = 647.2287

(M – H)−(calcd.forC39H36O:647.2291); 1H-NMR(600 MHz, CDCl3): 6.87(1H,s, H-3), 7.30(1H,d,
J = 8.4 Hz), 6.66(1H,dd, J = 8.4, 2.0 Hz, H-5), 6.83(1H,s, H-7), 6.53(2H,s, H-2′ and H-
6′), 5.44(1H,s, H-2”),4.37(1H, t, J = 6.2 Hz, H-4”),3.79(1H,dd, J = 12.4, 6.1 Hz, H-5”),
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2.29–1.96(2H,m, H-6”), J = 8.9 Hz, H-13”),8.00(1H,d, J = 9.1 Hz, H-14”), 6.21(1H,d, J = 1.7 Hz,
H-17”), 6.02(1H,dd, J = 8.3, 1.9 Hz, H-19”), 6.70(1H,d, J = 8.4 Hz, H-20”),3.05(2H,d,
J = 6.9 Hz, H-21”), 5.02(1H,t, J = 7.1 Hz, H-22”), 1.60(3H, s, H-24”), 1.50(3H, s, H-25”),
1.00(t, J = 7.0 Hz, 2H); 13C-NMR(151 MHz, CDCl3) δ: 155.5(C-2), 102.7(C-3), 121.0(C-3a),
121.5(C-4), 112.5(C-5), 153.9(C-6), 97.4(C-7), 155.6(C-7a), 129.4(C-1′), 103.2(C-2′), 156.9(C-3′),
112.7(C-4′), 156. 9(C-5′), 103.2(C-6′), 132.2(C-1”), 127. 6(C-2”), 33.0(C-3”), 46.8(C-4”),
33.9(C-5”), 33.9(C-6”), 23.5(C-7”), 207.5(C-8”), 114.9(C-9”), 162.5(C-10”), 114.9(C-11”),
162.0(C-12”), 106.0(C-13”), 132.0(C-14”), 122.0(C-15”), 155.2(C-16”), 102.7(C-17”), 155.2(C-18”),
107.0(C-19”), 130.5(C-20”), 21.2(C-21”), 122.0(C-22”), 130.3(C-23”), 25.4(C-24”), 17.7(C-25”);
this can be found in the attached Figure S2. Compared with literature data [35], the
identified compound was chalcomoracin (2,4-dihydroxy-3-(3-methylbut-2-en-1-yl)phenyl)
((1′R,2′S,3′R)-2,2”,4”,6-tetrahydroxy-4-(6-hydroxybenzofuran-3-yl)-5′-methyl-1′,2′,3′,4′-
tetrahydro-((1,1′:3′,1”-terphenyl)-2′-yl)methanone, a known compound, and the structure
is shown in Figure 1.
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Figure 1. Chemical structure formula of chalcomoracin.

The extraction and separation method adopts a polyamide chromatographic column
combined with preparative chromatography and does not use a large amount of toxic
organic reagents in the whole process; the extraction and separation system of alcohol and
water is conducive to the recovery and utilization in large-scale production, which is also in
line with the development and utilization concept of mulberry leaf, a medicinal and edible
Chinese medicinal material. Compared with the current separation of this compound, this
method has the advantages of simplicity and greenness.

2.2. Inhibitory Effect on α-Glucosidase of Chalcomoracin

In this method, PNPG was used as a substrate and decomposed by α-glucosidase
under weak alkaline conditions into glucose and PNG, which could be quantified via a
characteristic absorption at 405 nm. Figure 2 showed the inhibition rate of chalcomoracin
on α-glucosidase, as well as the control drugs of 1-DNJ and acarbose. All their inhibition
rates were positively correlated with the drug concentrations, and the values of IC50 were
18.91, 14.23 and 2.34 µM for 1-DNJ, chalcomoracin and acarbose, respectively. Although
the inhibitory activity of chalcomoracin was lower than that of the positive control drug
Acarbose, it was superior to that of 1-DNJ, indicating that chalcomoracin has good potential
as a novel glucosidase inhibitor. The result indicated that, besides alkaloids, flavonoids
were also another effective part of mulberry leaves with glycosidase inhibition. In addition,
chalcomoracin is one of the secondary metabolites in mulberry leaves, which is expected
to reduce the gastrointestinal and hepatotoxic side effects of the chemical drug acarbose.
These results provided a new idea for the development of medicinal or health care products
of mulberry leaves.
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2.3. Inhibition Mode of Chalcomoracin on α-Glucosidase

In order to study the inhibition mode of chalcomoracin on α-glucosidase, the reaction
rates of the enzyme-catalyzed hydrolysis of PNPG with chalcomoracin of different quanti-
ties were investigated. Figure 3 is a linear regression relationship between 1/(S) and 1/v
using the Lineweaver–Burk double reciprocal plot. According to the specific enzymatic
kinetics in Table 1, it can be seen that with the increase in chalcomoracin concentration, the
Michaelis constant Km of chalcomoracin gradually increased, while the maximum reaction
rate Vm gradually decreased, indicating that chalcomoracin inhibited α-glucosidase via a
combination of both competitive and non-competitive ways [36].
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Table 1. Enzymatic kinetic parameters of chalcomoracin on α-glucosidase.

Chalcomoracin Concentration Lineweaver–Burk Equation R2 −1/Km Km 1/Vmax Vmax

0 µM y = 20.192x + 15.231 0.992 −0.754 1.326 15.231 0.066
20 µM y = 21.322x + 15.901 0.9964 −0.746 1.341 15.901 0.063
50 µM y = 23.896x + 15.914 0.9985 −0.666 1.502 15.914 0.063

2.4. ITC Determination of Interaction between Chalcomoracin and α-Glucosidase

The premise of the therapeutic effect of a drug molecule is to have a certain physical
binding with the corresponding target protein in the body. Therefore, investigating the
interaction between small molecules and biomacromolecules is a key technology to find
the potential drugs. ITC is an advanced technique that can quantitatively describe the
subtle changes in all thermodynamic parameters in the interaction between biological
macromolecules and ligands and has several unique advantages such as non-specificity,
small sample dosage, high sensitivity and accuracy [31]. ITC has become the preferred
method for determining the interactions between biomolecules [37].

Several α-glucosidase inhibitors have been reported to be screened out from natural
products using ITC without knowing the action sites, such as CSP80 from extracts of corn
silk [31] and arbortristoside-C from Nyctanthes arbor-tristis Linn. [32].
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Figure 4a shows the change in energy compensation during the titration of chalco-
moracin to α-glucosidase, where the negative peaks represent an exothermic binding
reaction. The area under each injection peak indicates that the cell heater needs to compen-
sate for the electrical power supplied to the sample cell so that the temperature difference
between the reference cell and the sample cell is zero, which is equal to the heat released
by this drop of sample dropping into the solution. It could be seen that the peak area of
the exothermic peak decreased with the titration time, indicating that the binding sites of
α-glucosidase were gradually saturated with chalcomoracin molecules. Figure 4b presents
a graph of the calorie molar ratio function of chalcomoracin and α-glucosidase fitted by
the origin software that comes with the instrument. Figure 4c shows the thermodynamic
parameters determined by ITC, including the binding stoichiometric ratio (N), equilibrium
binding constant (Ka), enthalpy change (∆H), entropy change (∆S) and the Gibbs free
energy (∆G), which could be calculated by ∆G = ∆H − T∆S. Their values were as follows:
N = 0.261 ± 0.112, Ka = 2.52 × 107 ± 4.2 × 108 L·mol−1, ∆H = −0.9274 ± 0.116 kcal·mol−1,
∆S = 30.9 kcal·mol−1 ◦C−1, ∆G = −7.601 kcal·mol−1 and −T∆S = −9.579 kcal·mol−1. The
results indicated that the chalcomoracin molecules bound to the α-glucosidase macro-
molecules. Normally, the thermodynamic characteristics of a spontaneous reaction at any
temperature were expressed as ∆H < 0, ∆S > 0 and ∆G < 0. Moreover, the main causes of
enthalpy change (∆H) were hydrogen bonding, van der Waals forces or covalent bonding,
while the entropy change (∆S) mostly resulted from the hydrophobic interaction or changes
in the spatial structure of macromolecules. Therefore, as the absolute value of −T∆S was
significantly larger than ∆H, the mutual binding between chalcomoracin and α-glucosidase
was a spontaneous reaction primarily driven by entropy, and the hydrophobic interaction
played a leading role in the binding.
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Figure 4. ITC thermogram for the titration of chalcomoracin to α-glucosidase. (a) Raw data for
titration of 200 µM chalcomoracin to 20 µM α-glucosidase at 37 ◦C, showing the calorimetric
response when chalcomoracin is continuously injected into the sample cell. (b) Chalcomoracin
titration α-glucosidase fitting molar ratio function, enthalpy per mole of CSP80 injected versus the
α-glucosidase molar ratio. The solid line represents the best non-linear least-squares fit of the indepen-
dent binding sites model. (c) Chalcomoracin titration thermodynamic parameters of α-glucosidase.

2.5. Binding Prediction by Molecular Docking Simulation

To further reveal the interaction behavior between α-glucosidase and chalcomoracin,
a molecular docking simulation was carried out using Schrödinger 2018.4. Figure 5 shows
that chalcomoracin was surrounded by some hydrophobic chains and amino acid residues
including Val548, Gly546, Val544, Tyr543, Pro542, Ala97, Lys96, Asp95, Pro94, Ala93, Asp91,
Pro175, Gly123, Uet122, Ala120, Gly119, Arg275, Ala289, Gly288 and Pro287 [38]. Among
them, the active amino acid residues involved in hydrogen bonding were Val544, Asp95,
Ala93, Gly119, Arg275 and Pro287, while Arg275 formed a cation–π interaction with a
benzene ring in the chalcomoracin molecular, and the docking result is shown in Table S2.
Therefore, it could be speculated that chalcomoracin was firmly bound in a hydrophobic
pocket of α-glucosidase due to the combined action of hydrophobic interaction, hydrogen
bonding and cation–π interaction. This result was consistent with that of isothermal titration.
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Due to the impressive pharmacological activity of alkaloids reported, Noor Rahman et al.
conducted molecular docking on 32 alkaloid molecules that might have inhibition on
α-glucosidase, including acarbose [39]. The results showed that acarbose bound to six
amino acid residues in α-glucosidase with hydrogen binding, including Ala93, Ile98,
Gln121, Met122, Arg275 and Pro545, where two residues were the same as the sites of
chalcomoracin (Ala93 and Arg275). Therefore, the hydrophobic ‘pockets’ loading acarbose
and chalcomoracin in α-glucosidase might be the same or adjacent, which remains to be
further experimentally verified [25,36,39,40].

3. Materials and Methods
3.1. Materials and Instruments

Mulberry leaves (the leaves of Morus alba L.) were collected from the suburbs of
Luoding City, Guangdong Province, China in April 2021; they were identified as the
leaves of the Morus alba L. by Professor Fahuan Ge. Polyamide for column chromatogra-
phy (100–200 mesh, chemical grade) was purchased from Sinopharm Shanghai Chemical
Reagent Co. Ltd (Sinopharm, Shanghai, China). Ethanol (analytical grade) was purchased
from Shanghai Anneiji Chemical Co., Ltd (Anneiji, Shanghai, China). P-Nitrobenzene-
α-D-glucoside (PNPG) was purchased from Sigma Aldrich (Sigma, St. Louis, MO, USA).
Yeast α-Glucosidase was purchased from Beijing Solaibao Technology Co., Ltd (Solaibao,
Bejing, China), and 1-Deoxynojirimycin (1-DNJ) was purchased from Shanghai Aladdin Bio-
chemical Technology Co., Ltd (Aladdin, Shanghai, China). Acarbose (lot No. ac-ef2110223,
content 99.2%) was provided by Lizhu group xinbeijiang Pharmaceutical Co., Ltd (xin-
beijiang, Guangzhou, China). Sodium carbonate was purchased from Shanghai Macklin
Biochemical Technology Co., Ltd (Macklin, Shanghai, China). PBS buffer (pH 7.4) was
purchased from BOSTER Biological Co., Ltd (Boster, Wuhan, China). A pH meter was
purchased from Guangzhou Aishike Instrument Equipment Co., Ltd (Aishike, Shanghai, China).

An Essentia LC-16 liquid chromatography system (Shimadzu, Kyoto, Japan) equipped
with an ACE Excel 5 C18-AR (4.6 × 250 mm, 5 µm particle size) column, a semi-preparative
HPLC (Ruibai, Guangzhou, China)with model P2100 and semi-preparative C18 column
(30 × 250 mm, 10 µm), a 600 M superconducting nuclear magnetic resonance spectrometer-
3 (Ascend TM 500, Bruker, Germany), a liquid chromatography–mass spectrometer (UFLC-
IT-TOF-MS/MS, Shimadzu, Kyoto, Japan), a high-precision polarimeter (MCP200, Anton
Paar, Germany), a multifunctional microplate reader (Bio Tek, Winooski, VT, USA) and
isothermal titrator (Microcal, Northampton, MA, USA) were all used.

3.2. Isolation of Chalcomoracin and Structure Identification

The air-dried mulberry leaf (1 kg) was crushed (passed through a 60 mesh sieve) and
extracted with 80% EtOH (2 × 10 L, 2 h, 1.5 h) at 70 ◦C under reflux. After removal of the
solvent under reduced pressure, a crude extract was obtained. The ethanolic extract was
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subjected to column chromatography over polyamide and eluted with ultrapure water,
30%, 60% and 85% ethanol, successively (four column volumes each solvent), each fraction
being monitored by HPLC. The eluate of 85% EtOH was evaporated in vacuo to remove
solvent and obtain a crude fraction (4.52 g). The crude fraction, dissolved in a mobile
phase solution, was purified using preparative HPLC (MeOH:H2O = 80:20, flow rate
13 mL/min, wavelength 320 nm, TR = 40.8 min) (Finger S10 and obtained chalcomoracin at
84.6 mg), which was identified by 1H-NMR, C13-NMR and optical rotation and compared
with literature.

3.3. α-Glucosidase Inhibition Assay

The α-glucosidase inhibitory effect of chalcomoracin was measured using the classical
PNPG method with some modifications [41]. Concisely, chalcomoracin solution with differ-
ent concentrations (200, 100, 50, 25, 12.5, 6.25, 3.125 and 1.5625 µM) was prepared, while
1-DNJ and acarbose were used as positive controls. Meanwhile, solutions of α-glucosidase
(0.25 U/mL), PNPG (2.5 mM) and Na2CO3 (0.2 mM) were also prepared. The inhibitory
activity assay was divided into four groups including blank (A1), control (A2), sample
blank (A3) and sample test (A4), and three parallel experiments were conducted for all
groups. Next, PBS buffer (pH 7.4), solutions of inhibitor (chalcomoracin, 1-DNJ or acarbose)
and α-glucosidase were added into a 96-well plate with quantities in Table S1 and kept in a
37 ◦C water bath for 10 min. Then, PNPG solution was added and kept in a 37 ◦C water
bath for another 30 min. Finally, the Na2CO3 solution was added, and the reaction ended.
The absorbance value was then measured at 405 nm on a multifunctional microplate reader,
and the inhibition rate was calculated as follows:

Inhibition rate (%) =

[
1− (A4− A3)

(A2− A1)

]
× 100%

where A1 is the absorbance of the blank group, A2 is the absorbance of the control group,
A3 is the absorbance of the sample blank group and A4 is the absorbance of the sample test
group. Statistical analysis was performed with the GraphPad Prism 9.0 (Harvey Motulsky,
Los Angeles, CA, USA) software to calculate the IC50 values.

3.4. Interaction Kinetics of α-Glucosidase Inhibition

PNPG (0.25, 0.5, 1, 2 mM) and chalcomoracin (0, 20, 50 µM) solutions of different
concentrations were prepared, as well as the α-glucosidase solution (0.2 U/mL). The
reaction rate was determined by plotting the enzymatic reaction rate (1/V) against the
reciprocal (1/(S)) of PNPG concentration to obtain a Lineweaver–Burk double reciprocal
plot to judge the type of inhibition. The relevant parameters were obtained through the
following form [42]:

1
V

=
Km

Vmax

1
[S]

+
1

Vmax

where V is the enzyme reaction rate, Vmax is maximum enzyme reaction rate, [S] denotes
the concentration of substrate and Km represents the Michaelis–Menten constant.

3.5. Determination of Thermodynamic Parameters

The thermodynamic changes during the binding process of chalcomoracin and α-
glucosidase were determined using ITC. Firstly, all the solutions of chalcomoracin and
α-glucosidase were treated with ultrasonic degassing to meet the high sensitivity of ITC.
Tris–HCl buffer solution (pH 7.4) was used for both the sample cell and reference cell, and
the pH difference between the cells should be less than 0.1 [43]. Then, 1 mL of a 20 µM
α-glucosidase solution was added into the reference cell, while 150 µL of 200 µM chalco-
moracin solution was added into the sample cell. Thirty-drop samples were continuously
added into the buffer solution at an addition rate of 5 µL per drop under stirring of 300 rpm,
and the reaction interval was 300 s. The experiments were carried out at 37 ◦C, which
was the temperature of the human body. The titration results were analyzed using the
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Origin software’s built-in ITC to obtain the thermodynamic parameter changes during the
binding reaction.

3.6. Molecular Docking Analysis

Molecular docking analysis was carried out to predict the binding sites between
chalcomoracin and α-glucosidase molecules using the MOE 2014.09 (Molecular Operating
Environment) software(Chemical Computing Group ULC, Sherbrooke,Australia), which
helped to further study the inhibition mechanism. MOE is a drug discovery software
platform that integrates visualization, modeling and simulations, as well as methodology
development, in one package. MOE scientific applications are used by biologists, medicinal
chemists and computational chemists in pharmaceutical, biotechnology and academic
research. The operation is as follows: download the crystal structure file of α-glucosidase
with Protein Data Bank (PDB) ID of 5 kzw from the RCSB PDB database; use the MOE 2014
software to delete all solvents, ligands, etc., except for the protein; and then use the “Loop
Modeler” module of the software to refer to the complete protein sequence. Complete
missing fragments of proteins in crystal structure files and check for other structural errors.
Then, use the Schrödinger 2018.4 (Richard Friesner, Carle Place, NY, USA) to search for the
binding pocket on the processed protein and dock the small molecule into it, both of which
obtain the best results recommended by the software by default. Finally, use the PyMol
software (Warren Lyford DeLano, Palo Alto, CA, USA) to draw the molecular binding
mode map obtained by docking.

4. Conclusions

In this study, a Diels–Alder addition compound in mulberry leaves, chalcomoracin,
was extracted and purified using a simple and efficient manner. It was proved that chal-
comoracin had a good inhibitory effect on α-glucosidase. The inhibitory mode of chal-
comoracin was studied via enzymatic kinetics from the point of molecular reaction, ITC
from the point of thermodynamics and molecular docking from the point of computer
simulation. Based on the above studies, it was proved that chalcomoracin in mulberry
leaves was expected to be developed into a α-glucosidase-targeted drug for lowering
postprandial blood glucose and health food for the treatment and prevention of diabetes.
However, the presented work only involved in vitro studies; further in vivo research on
the hypoglycemic activity and mechanism study is expected.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules27185742/s1, Figure S1: Liquid phase diagram
during chalcomoracin preparation; Figure S2: NMR data of chalcomoracin; Table S1: Experimental
protocol for inhibitory activity assay; Table S2: The molecular interactions between chalcomoracin
and α-glycosidase.
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